中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (12): 1942-1961 DOI: 10.7536/PC140732 Previous Articles   Next Articles

• Review •

Asymmetric Catalytic Epoxidation of Unfunctionalized Olefins

Niu Fanfan1, Nie Changjun2, Chen Yong1, Sun Xiaoling*1   

  1. 1. School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
    2. Shanghai Hea Polyurethane Co., Ltd, Shanghai 201512, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the Shanghai Natural Science Foundation (No. 14ZR1440900) and Shanghai Alliance Program (No. LM201336)

PDF ( 1681 ) Cited
Export

EndNote

Ris

BibTeX

Due to the great importance of chiral compounds in the manufacture of drugs, vitamins, fragrances, and optical materials, the synthesis of chiral building blocks has attracted special attention. Chiral epoxides are among the most important intermediates that can react with a variety of reagents because of the polarity and ring-strain of the epoxide ring. Asymmetric epoxidation of olefins can convert prochiral olefins into epoxides with chiral carbon, which can be readily converted into various chiral compounds via regioselective ring-opening or functional group transformation reactions. Asymmetric synthesis reactions have been mainly induced by substrates or catalysts. The asymmetric synthesis induced by chiral catalysts is one of the most attractive and competitive areas in modern organic synthesis, because it can get a lot of new optical active substances using catalytic amount of chiral compounds. Asymmetric catalytic epoxidation of unfunctionalized olefins induced by the chiral catalyst has been the most effective way to obtain optical pure chiral epoxides. These chiral catalysts include enzymes, metal porphyrins, Salen-Mn (Ⅲ) complexs and organocatalysts. Among them, the synthesis of metal porphyrins and Salen-Mn (Ⅲ) complexs is inspired by enzymes. The organcatalyst, which does not contain metal ions, is regarded as a low pollution and lower toxicity catalyst. Asymmetric epoxidation of olefins catalyzed by these catalysts can get satisfactory yield and enantiomeric selectivity. Recent progress of enzymes, metal porphyrins, Salen-Mn (Ⅲ) complexs, and organcatalysts used for asymmetric epoxidation of olefins is reviewed. Moreover, the catalytic mechanisms and the development trend of this reaction are discussed.

Contents
1 Introduction
2 Enzyme-catalyzed asymmetric olefin epoxidation
2.1 Monooxygenases
2.2 Peroxidases
2.3 Artificial metalloenzymes
3 Metal porphyrin-catalyzed asymmetric epoxidation of unfunctionalized olefins
4 Salen-Mn (Ⅲ) complex-catalyzed asymmetric epoxidation of unfunctionalized olefins
4.1 Unsupported Salen-Mn(Ⅲ) complex-catalyzed asymmetric epoxidation of unfunctionalized olefins
4.2 Supported Salen-Mn(Ⅲ) complex-catalyzed asymmetric epoxidation of unfunctionalized olefins
4.3 Application of ionic liquid in Salen-Mn (Ⅲ) complex-catalyzed olefin asymmetric epoxidation
4.4 The mechanism of olefin asymmetric epoxidation catalyzed by Salen-Mn(Ⅲ) catalysts
5 Organic small molecule-catalyzed olefin asymmetric epoxidation
5.1 Chiral ketone-catalyzed olefin asymmetric epoxidation
5.2 Chiral iminium-catalyzed olefin asymmetric epoxidation

CLC Number: 

[1] Collins A N, Sheldrake G N, Crosby J. Chirality in Industry. NY: Wiley, 1992. 303.
[2] Vries de E J, Janssen D B. Curr. Opin. Biotechnol., 2003, 14: 414.
[3] Kasai N, Suzuki T, Furukawa Y. J. Mol. Catal. B: Enzyme, 1998, 4: 237.
[4] 王积涛(Wang J T), 陈蓉(Chen R), 冯霄(feng X), 李月明(Li Y M).有机化学(Chin. J. Org. Chem.), 1998, 18(2): 97.
[5] 王歆燕(Wang X Y), 石鸿昌(Shi H C), 徐寿颐(Xu S Y). 有机化学(Chin. J. Org. Chem.), 2001, 21(12): 1102.
[6] 周智明(Zhou Z M), 李连友(Li L Y), 徐巧(Xu Q), 徐从煊(Xu C X).有机化学(Chin. J. Org. Chem.), 2005,25(4):347.
[7] 罗云飞(Luo Y F), 邹晓川(Zou X C), 傅相锴(Fu X K), 贾紫永(Jia Z Y), 黄雪梅(Huang X M).中国科学:化学(Scientia Sinica Chimica), 2011, 41(3): 433.
[8] 张治国(Zhang Z G), 王歆燕(Wang X Y),孙川(Sun C),石鸿昌(Shi H C). 有机化学(Chin. J. Org. Chem.), 2004, 24(1): 7.
[9] 郑炎松(Zhen Y S),田振锋(Tian Z F). 化学通报(Chemistry), 2002, 65(4): 261.
[10] 王春(Wang C), 高勇军(Gao Y J), 张英群(Zhang Y Q), 王志(Wang Z), 马晶军(Ma J J). 化学进展(Progress in Chemistry), 2006, 18(6), 761.
[11] Lee E Y, Shuler M L. Biotechnol. Bioeng., 2007, 98: 318.
[12] Archelas A, Furstoss R. Curr. Opin. Chem. Biol., 2001, 5: 112.
[13] Steinreiber A, Faber K. Curr. Opin. Biotechnol., 2001, 12: 552.
[14] 张玲玲(Zhang L L), 巴丽娜(Ba L N), 林章凛(Lin Z L), 朱玉山(Zhu Y S). 计算机与应用化学(Computers and Applied Chemistry), 2010, 1: 025.
[15] Ortiz de Montellano P R, Fruetel J A, Collins J R, Camper D L, Loew G H. J. Am. Chem. Soc., 1991, 113: 3195.
[16] Ruettinger R T, Fulco A J. J. Biol. Chem., 1981, 256: 5728.
[17] Wistuba D, Nowotny H P, Trager O, Schurig V. Chirality, 1989, 1: 127.
[18] Martinez C A, Stewart J D. Curr. Org. Chem., 2000, 4: 263.
[19] Kubo T, Peters M W, Meinhold P, Amold F H. Chemistry, 2006, 12: 1216.
[20] 吴襟(Wu J), 孙万儒(Sun W R). 生物工程进展(Progress in Biotechnology), 2001, 21(4): 234.
[21] Poulos T L, Raag R. Faseb. J., 1992, 6: 674.
[22] Raag R, Poulos T L. Biochemistry, 1991, 30: 2674.
[23] 李亚非(Li Y F), 王繁业(Wang F Y). 化学工业与工程技术(Journal of Chemical Industry & Engineering), 2007, 27(6):44.
[24] Bernasconi S, Orsini F, Sello G, Colmegna A, Galli E, Bestetti G. Tetrahedron Lett., 2000, 41: 9157.
[25] Panke S, Wubbolts M. G, Schmid A, Witholt B. Biotechnol. Bioeng., 2000, 69: 91.
[26] Bernasconi S, Orsini F, Sello G, Di Gennaro P. Tetrahedron: Asymmetry, 2004, 15: 1603.
[27] Park S M, Bae J W, Han J H, Lee E Y, Lee S G, Park S J. Microbiol. Biotechnol., 2006, 16: 1041.
[28] Kuhn D, Kholiq M A, Heinzle E, Buhler B. Schmid A. Green Chem., 2010, 12: 815.
[29] Panke S, Held M, Wubbolts M G, Witholt B, Schmid A. Biotechnol. Bioeng., 2002, 80: 33.
[30] Hofstetter K, Lutz J, Lang I, Witholt B, Schmid A. Angew. Chem. Int. Ed., 2004, 43: 2163.
[31] Hollmann F, Hofstetter K, Habicher T, Hauer B, Schmid A. J. Am. Chem. Soc., 2005, 127: 6540.
[32] Lin H, Liu Y, Wu Z L. Chem. Commun., 2011, 47: 2610.
[33] van Deurzen M P J, van Rantwijk F, Sheldon R A. Tetrahedron, 1997, 53: 13183.
[34] Colonna S, Gaggero N, Riehelmi C, Pasta P. Trends. Biotechnol., 1999, 17: 163.
[35] Adam W, Lzarus M, Saha-Moller C R, Weiehold O, Hoch U, Haring D, Schreier P. Adv. Biochem. Eng. Biotechnol., 1999, 63: 73.
[36] van Rantwijk F, Sheldon R A. Curr. Opin. Biotechnol., 2000, 11: 554.
[37] 智丽飞(Zhi L F), 蒋育澄(Jiang Y C), 胡满成(Hu M C), 李淑妮(Li S N). 化学进展(Progress in Chemistry), 2006, 18(9): 1150.
[38] 吴金跃(Wu J Y), 蒋育澄(Jiang Y C), 胡满成(Hu M C), 李淑妮(Li S N), 翟全国(Zhai Q G). 中国科学:化学(Scientia Sinica Chimica), 2010, 40(8): 1018.
[39] Hager L P, Lakner F J. J. Mol. Catal. B: Enzym., 1998, 5: 95.
[40] Hu S, Hager L P. Tetrahedron Lett., 1999, 40: 1641.
[41] Hwang S, Choi C Y, Lee E Y. J. Ind. Eng. Chem., 2010, 16: 1.
[42] 方唯硕(Fang W S), 程克棣(Cheng K D). 有机化学(Chin. J. Org. Chem.), 2002, 22(10): 710.
[43] Allain E J, Hager L P, Deng L, Jacobsen E N. J. Am. Chem. Soc., 1993, 115: 4415.
[44] Dembitsky V M. Tetrahedron, 2003, 59: 4701.
[45] Yi L, Steven M. Book of Abstracts, 219th ACS National Meeting, 2000.
[46] Kazlauskas R J, Okrasa K. Chem. Eur. J., 2006, 12: 1587.
[47] Keyhani J, Keyhani E, Zarchipour S, Tayefi-Nasrabadi H, Einollahi N. Biochem. Biophys. Acta, 2005, 1711: 312.
[48] Zou P, Schrempf H. Eur. J. Biochem., 2000, 267: 2840.
[49] 刘雪英(Liu X Y), 刘军涛(Liu J T), 冯爱青(Feng A Q), 欧军(Ou J), 陈亿新(Chen Y X). 广州化工(Guangzhou Chemical Industry), 2006, 34(1): 16.
[50] Guemgerich F P, Macdonald T L. Acc. Chem. Res. 1984, 17: 9.
[51] 周贤太(Zhou X T), 纪红兵(Ji H B), 裴丽霞(Pei L X), 佘远斌(She Y B), 徐建昌(Xu J C), 王乐夫(Wang Y F). 有机化学(Chin. J. Org. Chem.), 2007, 27(9): 1039.
[52] 王树军(Wang S J), 彭玉苓(Peng Y L). 化学进展(Progress in Chemistry), 2009, 21(7/8): 1515.
[53] Gorves J T, Nemo T E. J. Am. Chem. Soc., 1983, 105: 5786.
[54] Collman J P, Lee V J, Zhang X, Ibers J A, Brauman J I. J. Am. Chem. Soc., 1993, 115: 3834.
[55] Collman J P, Zhang X, Lee V J, Brauman J L. J. Chem. Soc. Chem. Commun., 1992, 1647.
[56] Che C M, Yu W Y. Pure Appl. Chem., 1999, 71: 281.
[57] Collman J P, Wang Z, Straumanis A, Quelquejeu M, Rose E. J. Am. Chem. Soc., 1999, 121: 460.
[58] 任奇志(Ren Q Z), Rose E, Andrioletti B, 阎陶(Yan T). 化学学报(Acta Chimica Sinica), 2006, 64(24): 2447.
[59] Ren Q Z, Hou Z S, Zhang H, Wang A Q, Liu S G. J. Porphyrins Phthalocyanines, 2009, 13: 1214.
[60] Zhang R, Yu W Y, Wong K Y, Che C M. J. Org. Chem., 2001, 66: 8145.
[61] Niwa T, Nakada M. J. Am. Chem. Soc., 2012, 134: 13538.
[62] Dai W, Li J, Li G S, Yang H, Wang L Y, Gao S. Org. Lett., 2013, 15: 4138.
[63] Meunier B. Chem. Rev. 1992, 92: 1411.
[64] Collman J P, Zhang X, Lee V J, Uffelman E S, Brauman J I. Science, 1993,261: 1404.
[65] Oyama S T. Mechanisms in Homogeneous and Heterogeneous Epoxidation Catalysis. UK: Elsevier Science, 2008.
[66] Garrison J M, Bruice T C. J. Am. Chem. Soc., 1989, 111:191.
[67] Curet-Arana M C, Emberger G A, Broadbelt L J, Snurr R Q. J. Mol. Catal. A: Chem., 2008, 285: 120.
[68] 刘均洪(Liu J H), 梁辉(Liang H). 化学工业与工程技术(Journal of Chemical Industry & Engineering), 2007, 28(1): 6.
[69] Zhang W, Loebach J L,Wilson S R, Jacobsen E N. J. Am. Chem. Soc., 1990, 112: 2801.
[70] Irie R, Noda K, Ito Y, Katsuki T. Tetrahedron Lett., 1990, 31: 7345.
[71] Lee N H, Muci A R, Jacobsen E N. Tetrahedron Lett., 1991, 32: 5055.
[72] Deng L, Jacobsen E N J. Org. Chem., 1992, 57: 4320.
[73] Chang S, Lee N H, Jacobsen E N. J. Org. Chem., 1993, 58: 6939.
[74] Chang S, Galvin J M, Jacobsen E N. J. Am. Chem. Soc., 1994, 116: 6937.
[75] Brandes B D, Jacobsen E N. J. Org. Chem., 1994, 59: 4378.
[76] Palucki M, Pospisil P J, Zhang W, Jacobsen E N. J. Am. Chem. Soc., 1994, 116: 9333.
[77] Brandes B D, Jacobsen E N. Tetrahedron Lett., 1995, 36: 5123.
[78] Liao S H, List B. Angew. Chem. Int. Ed., 2010, 49: 628.
[79] Huang X M, Fu X K, Wu X J, Jia Z Y. Tetrahedron Lett., 2013, 54: 4041.
[80] Huang X M, Fu X K, Jia Z Y, Miao Q, Wang G M. Sci. China. Chem., 2013, 56: 604.
[81] Suresh P, Srimurugan S, Dere T R, Venkat Ragavan R, Gopinath S V. Tetrahedron: Asymmetry, 2013, 24: 669.
[82] Wang X, Miao C X, Wang S F, Xia C G, Sun W. ChemCatChem, 2013, 5: 2489.
[83] Chen L H, Cheng F X, Jia L, Zhang A J, Wu J C, Tang N. Chirality, 2011, 23: 69.
[84] Luo R C, Tan R, Peng Z G, Zheng W G, Kong Y, Yin D H. J. Catal., 2012, 287: 170.
[85] Kuzniarska-Biernacka I, Silva A R, Carvalho A P, Pires J, Freire C. J. Mol. Catal. A: Chem., 2007, 278: 82.
[86] Serrano D P, Vargas J A. Appl. Catal. A: Gen., 2008, 335: 172.
[87] Sliva A R, Budarin V, Clark J H, Freire C, de Castro B. Carbon, 2007, 45: 1951.
[88] 屈育龙(Qu Y L), 胡道道(Hu D D). 高分子通报(Polymer Bulletin), 2005, 1: 31.
[89] De B B, Lohray B B, Sivaram S, Dhal P. Tetrahedron: Asymmetry, 1995, 6: 2105.
[90] Canali L, Cowan E, Deleuze H, Gibson C L, Sherrington D C. Chem. Commun., 1998, 2561.
[91] Reger T S, Janda K D. J. Am. Chem. Soc., 2000, 122: 6929.
[92] Beigi M, Haag R, Liese A. Adv. Synth. Catal., 2008, 350: 919.
[93] Davis M E. Nature, 2002, 417: 813.
[94] Mcmorn P, Huthings G J. Chem. Soc. Rev., 2004, 33: 108.
[95] Frunza L, Kosslick H, Landmesser H, Hoft E, Fricke R. J. Mol. Catal. A: Chem., 1997, 123: 179.
[96] Piaggio P, Langham C,ns: Oxidation). 北京:化学工业出版社(Beijing: Chemical Industry Press), 2008. 129.
[146] Engelhardt U, Linker T. Chem. Commun., 2005, 1152.
[147] Fu H, Look G C, Zhang W, Jacobsen E N, Wang C -H, J. Org. Chem., 1991, 56: 6497.
[148] Norrby P -O, Linde C, Åkermark B. J. Am. Chem. Chem. Soc.,1995, 117: 11035.
[149] Bäckvall J E, Bokman F, Blomberg M R A. J. Am. Chem. Chem. Soc., 1992, 114: 534
[150] Adam W, Mock-Knoblauch C, Saha-Möller C R, Herderich M. J. Am. Chem. Soc., 2000, 122: 9685.
[151 Adam W, Roschmann K J, Saha-Möller C R, Seebach D J. Am. Chem. Soc., 2002, 124: 5068.
[152] Bommarius A S, Riebel B R. Biocatalysis: Fundamentals and Applications. Wiley-VCH, 2004. 159.
[153] Nnoyori R. Asymmetric Catalysis in Organic Synthesis. NY: Wiley, 1994. 137.
[154] Dalko P I, Moisan L. Angew. Chem. Int. Ed., 2001, 40: 3726.
[155] List B. Synlett., 2001, 1675.
[156] Jarvo E R, Miller S J. Tetrahedron, 2002, 58: 2481.
[157] 张治国(Zhang Z G), 王歆燕(Wang X Y), 孙川(Sun C), 石鸿昌(Shi H C). 有机化学(Chin. J. Org. Chem.), 2004, 24(1):7.
[158] 林晓倩(Lin X Q), 卢楠(Lu N), 山东化工(Shandong Chemical Industry), 2011, 40(1):34.
[159] Yang D. Acc. Chem. Rev., 2004, 37: 497.
[160] Ma S M. Topics in Organometallic Chemistry. Berlin Heidelberg: Springer-Verlag, 2011. 123.
[161 Wong O A, Shi Y. Chem. Rev., 2008, 108: 3958.
[162] Curci R, Fiorentino M, Serio M R. J. Chem. Soc., Chem. Commun., 1984 :155.
[163] Curci R, Dinoi A, Rubino M F. Pure Appl. Chem., 1995, 67: 811.
[164] Yang D, Yip Y C, Wang M K, Zheng J H. J. Am. Chem. Soc., 1996, 118: 491.
[165] TuY, Wang Z, Shi Y. J. Am. Chem. Soc., 1996, 118: 9806.
[166] Wang Z X, Tu Y, Frohn M, Zhang J R , Shi Y. J. Org. Chem., 1997, 62: 2328.
[167] Frohn M, Shi Y. Synthesis, 2000, 1997.
[168] Frohn M, Shi Y. Org. Synth., 2003, 80: 1.
[169] Wong O A, Wang B, Zhao M X, Shi Y. J. Org. Chem., 2009, 74: 6335.
[170] Denmark S E, Matsuhashi H. J. Org. Chem., 2002, 67: 3479.
[171 Vega-Pérez J M, Holm M V, Martínez M L, Blanco E, Iglesias-Guerra F. Eur. J. Org. Chem., 2009, 2009: 6009.
[172] Bohe L, Hanquet G, Lusinchi M, Lusinchi X. Tetrahedron Lett., 1993, 34:7271.
[173] Bohe L, Lusinchi M, Lusinchi X. Tetrahedron, 1999, 55: 141.
[174] Aggarwal V K, Wang M F J. Chem. Soc., Chem. Commun., 1996, 191.
[175] Page P C B, Rassias G A, Barros D, Ardakani A, Buckley B, Bethell D, SmithT A D, Slawin A M Z. J. Org. Chem., 2001, 66: 6926.
[176] Page P C B, Buckley B R, Blacker A J. Org. Lett., 2004, 6: 1543.
[177] Page P C B, Buckley B R, Heaney H, Blacker A J, Org. Lett., 2005, 7: 375.
[178] Vachon J, Perollier C, Monchaud D, Marsol C, Ditrich K, Lacour J. J. Org. Chem.,2005, 70, 5903.
[179] Page P C B, Buckley B R, Farah M M, Blacker A J, Eur. J. Org. Chem., 2009, 2009 : 3413.
[180] Page P C B, Bartlett C J, Chan Y, Day D, Parker P, Buckley B R, Rassias G A, Slawin A M Z, Allin S M, Lacour J, Pinto A. J. Org. Chem., 2012, 77: 6128.
[181] Farahb M M, Bulman Page P C, Buckley B R, Blacker A J, Elsegood M R J. Tetrahedron, 2013, 69: 758.

 

[1] Xie Yingjuan, Wu Zhijiao, Zhang Xiao, Ma Peijun, Piao Lingyu. Synthesis and Photocatalytic Mechanisms of the Mixed-Phase TiO2 Photocatalysts [J]. Progress in Chemistry, 2014, 26(07): 1120-1131.
[2] Zhang Qian, Zhou Ying, Zhang Zhao, He Yun, Chen Yongdong, Lin Yuanhua. Plasmonic Photocatalyst [J]. Progress in Chemistry, 2013, 25(12): 2020-2027.
[3] Chun Wang,Yongjun Gao,Yingqun Zhang,Zhi Wang**,Jingjun Ma. Organocatalytic Asymmetric Epoxidation of Olefins Catalyzed by Chiral Ketones Derived from Carbohydrates [J]. Progress in Chemistry, 2006, 18(06): 761-767.