中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (07): 1120-1131 DOI: 10.7536/PC140124 Previous Articles   Next Articles

• Review •

Synthesis and Photocatalytic Mechanisms of the Mixed-Phase TiO2 Photocatalysts

Xie Yingjuan1,2, Wu Zhijiao1, Zhang Xiao3, Ma Peijun4, Piao Lingyu*1   

  1. 1. Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. School of Science, Beijing Jiaotong University, Beijing 100044, China;
    4. College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the Ministry of Science and Technology of China (No. 2011FY130104), the National Science and Technology Pillar Program (No. 2011BAK15B05), and the National Basic Research Program of China (973 Program) (No. 2011CB932802)

PDF ( 1891 ) Cited
Export

EndNote

Ris

BibTeX

This review summarizes the preparation methods of mixed-phase TiO2 photocatalysts. Two main lines of fabrication have been followed: one is preparation of mixed-phase TiO2 in situ (e. g. hydrothermal method, solvothermal method, sol-gel method and microemulsion-mediated hydrothermal method, etc.), and the other is physical mixing of different phases of TiO2 or calcinations under high temperature (e. g. solvent mixing and calcination treatment, calcination under high temperature, etc.). The latter has fewer requirements on the equipments, but the produced TiO2 nanoparticles tend to be aggregates, which affects the photocatalytic performance of TiO2 materials seriously. The former has more advantages in practical applications. At the same time, this review summarizes and remarks the researches on photocatalytic mechanisms of the mixed-phase TiO2. Furthermore, the applications of the mixed-phase TiO2 photocatalysts in environmental and energy fields are also prospected.

Contents
1 Introduction
2 Synthesis of the mixed-phase TiO2 photocatalysts
2.1 Phases of TiO2
2.2 Methods of preparing the mixed-phase TiO2 photocatalysts and their influencing factors
3 Mechanisms of the enhanced photocatalytic activities by the mixed-phase TiO2 photocatalysts
4 Conclusion and outlook

CLC Number: 

[1] Fujishima A, Honda K. Nature, 1972, 238: 37.
[2] Carey J H, Lawrence J, Tosine H M. Bull. Environ. Contam. Toxicol., 1976, 16 (6): 697.
[3] Habisreutinger S N, Mende L S, Stolarczyk J K. Angew. Chem. Int. Ed., 2013, 52: 7372.
[4] Hu K, Robson K C D, Johansson P G, Berlinguette C P, Meyer G J. J. Am. Chem. Soc., 2012, 134: 8352.
[5] Guo Q, Xu C B, Ren Z F, Yang W S, Ma Z B, Dai D X, Fan H J, Minton T K, Yang X M. J. Am. Chem. Soc., 2012, 134: 13366.
[6] Kim Y J, Lee M H, Kim H J, Lim G, Choi Y S, Park N G, Kim K, Lee W I. Adv. Mater., 2009, 21: 3668.
[7] Liu S S, Li Q, Hou C C, Feng X D, Guan Z S. J. Alloys Compd., 2013, 575: 128.
[8] Zhu S L, Xie G Q, Yang X J, Cui Z D. Mater. Res. Bull., 2013, 48: 1961.
[9] Beuvier T, Plouet M R, Granvalet M M L, Brousse T, Crosnier O, Brohan L. Inorg. Chem., 2010, 49: 8457.
[10] Xin X K, Scheiner M, Ye M D, Lin Z Q. Langmuir, 2011, 27: 14594.
[11] Hosono E, Fujihara S, Imai H, Honma I, Masaki I, Zhou H S. ACS Nano, 2007, 1 (4): 273.
[12] Sinha A K, Jana S, Pande S, Sarkar S, Pradhan M, Basu M, Saha S, Pal A, Pal T. CrystEngComm, 2009, 11: 1210.
[13] Cheng Q Q, Cao Y, Yang L, Zhang P P, Wang K, Wang H J. Mater. Res. Bull., 2011, 46: 372.
[14] Wang Y W, Zhang L Z, Deng K J, Chen X Y, Zou Z G. J. Phys. Chem. C, 2007, 111: 2709.
[15] Wei J P, Yao J F, Zhang X Y, Zhu W, Wang H T, Rhodes M J. Mater. Lett., 2007, 61: 4610.
[16] Hu Y H. Angew. Chem. Int. Ed., 2012, 51: 12410.
[17] Oh J K, Lee J K, Kim H S, Han S B, Park K W. Chem. Mater., 2010, 22: 1114.
[18] Ye M D, Liu H Y, Lin C J, Lin Z Q. Small, 2013, 9(2): 312.
[19] Si P, Ding S J, Yuan J, Lou X W, Kim D H. ACS Nano, 2011, 5 (9): 7617.
[20] Li Y J, Yan X, Yan W F, Lai X Y, Li N, Chi Y, Wei Y J, Li X T. Chem. Eng. J., 2013, 232: 356.
[21] Etgar L, Gao P, Xue Z S, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Grätzel M. J. Am. Chem. Soc., 2012, 134: 17396.
[22] Guo W X, Xu C, Wang X, Wang S H, Pan C F, Lin C J, Wang Z L. J. Am. Chem. Soc., 2012, 134: 4437.
[23] Wang Y Q, Gu L, Guo Y G, Li H, He X Q, Tsukimoto S, Ikuhara Y, Wan L J. J. Am. Chem. Soc., 2012, 134: 7874.
[24] So S, Lee K, Schmuki P. J. Am. Chem. Soc., 2012, 134: 11316.
[25] Wang W N, An W J, Ramalingam B, Mukherjee S, Niedzwiedzki D M, Gangopadhyay S, Biswas P. J. Am. Chem. Soc., 2012, 134: 11276.
[26] Chen C Q, Li P, Wang G Z, Yu Y, Duan F F, Chen C Y, Song W G, Qin Y, Knez M. Angew. Chem. Int. Ed., 2013, 52: 9196.
[27] Hoang S, Berglund S P, Hahn N T, Bard A J, Mullins C B. J. Am. Chem. Soc., 2012, 134: 3659.
[28] Seh Z W, Liu S H, Low M, Zhang S Y, Liu Z L, Mlayah A, Han M Y. Adv. Mater., 2012, 24: 2310.
[29] Zuo F, Bozhilov K, Dillon R J, Wang L, Smith P, Zhao X, Bardeen C, Feng P Y. Angew. Chem. Int. Ed., 2012, 51: 6223.
[30] Zuo F, Wang L, Wu T, Zhang Z Y, Borchardt D, Feng P Y. J. Am. Chem. Soc., 2010, 132: 11856.
[31] Cai M L, Pan X, Liu W Q, Sheng J, Fang X Q, Zhang C N, Huo Z P, Tian H J, Xiao S F, Dai S Y. J. Mater. Chem. A, 2013, 1: 4885.
[32] Lianga M S, Khaw C C, Liu C C, Chin S P, Wang J, Li H. Ceram. Int., 2013, 39: 1519.
[33] Kim H, Hwanga Y H, Cho G, Kim D, Lim N, Pyo M. Electrochim. Acta, 2011, 56: 9476.
[34] Zhang C N, Huang Y, Chen S H, Tian H J, Mo L, Hu L H, Huo Z P, Kong F T, Ma Y W, Dai S Y. J. Phys. Chem. C, 2012, 116: 19807.
[35] Bae E G, Kim H, Hwang Y H, Sohn K S, Pyo M. J. Mater. Chem., 2012, 22: 551.
[36] Xie K P, Sun L, Wang C L, Lai Y K, Wang M Y, Chena H B, Lin C J. Electrochim. Acta, 2010, 55: 7211.
[37] Ismail A A. Micropor. Mesopor. Mater., 2012, 149: 69.
[38] Chen Y, Tang Y H, Luo S L, Liu C B, Li Y. J. Alloys Compd., 2013, 578: 242.
[39] Selvam K, Swaminathan M. Catal. Commun., 2011, 12: 389.
[40] Wang Y, Feng C X, Zhang M, Yang J J, Zhang Z J. Appl. Catal. B: Environ., 2010, 100: 84.
[41] Feng C X, Wang Y, Zhang J W, Yu L G, Li D L, Yang J J, Zhang Z J. Appl. Catal. B: Environ., 2012, 113/114: 61.
[42] Charanpahari A, Umarea S S, Gokhaleb S P, Sudarsan V, Sreedhar B, Sasikala R. Appl. Catal. A: Gen., 2012, 443/444: 96.
[43] Tian B Z, Li C Z, Gu F, Jiang H B. Catal. Commun., 2009, 10: 925.
[44] Zhang P, Shao C L, Li X H, Zhang M Y, Zhang X, Sun Y Y, Liu Y C. J. Hazard. Mater., 2012, 237/238: 331.
[45] Zhang Z H, Yuan Y, Liang L H, Cheng Y X, Shi G Y, Jin L T. J. Hazard. Mater., 2008, 158: 517.
[46] Sohn J R, Lim J S. Catal. Lett., 2006, 108: 1.
[47] Yang M, Men Y, Li S L, Chen G W. Appl. Catal. A: Gen., 2012, 433/434: 26.
[48] Su R, Bechstein R, S L, Vang R T, Sillassen M, Esbjörnsson B, Palmqvist A, Besenbacher F. J. Phys. Chem. C, 2011, 115: 24287.
[49] Bojinova A, Kralchevska R, Poulios I, Dushkin C. Mater. Chem. Phys., 2007, 106: 187.
[50] Harum D, Agrios A, Gray K, Rajh T, Thurnauer M. J. Phys. Chem. B, 2003, 107: 4545.
[51] Scotti R, Bellobono I R, Canevali C, Cannas C, Catti M, D'Arienzo M, Musinu A, Polizzi S, Sommariva M, Testino A, Morazzoni F. Chem. Mater., 2008, 20: 4051.
[52] Puddu V, Choi H, Dionysiou D D, Puma G L. Appl. Catal. B: Environ., 2010, 94: 211.
[53] Zheng R B, Meng X W, Tang F Q. Appl. Surf. Sci., 2009, 255: 5989.
[54] Jiao Y C, Chen F, Zhao B, Yang H Y, Zhang J L. Colloids Surf. A: Physicochem. Eng. Aspects, 2012, 402: 66.
[55] Paola A D, Cufalo G, Addamo M, Bellardita M, Campostrini R, Ischia M, Ceccato R, Palmisano L. Colloids Surf. A: Physicochem. Eng. Aspects, 2008, 317: 366.
[56] Li W, Liu C, Zhou Y X, Bai Y, Feng X, Yang Z H, Lu L H, Lu X H, Chan K Y. J. Phys. Chem. C, 2008, 112: 20539.
[57] Deng Q X, Wei M D, Ding X K, Jiang L L, Ye B H, Wei K M. Catal. Commun., 2008, 3657.
[58] Lin H F, Li L P, Zhao M L, Huang X S, Chen X M, Li G S, Yu R C. J. Am. Chem. Soc., 2012, 134(20): 8328.
[59] Zhang H Z, Banfield J F. J. Phys. Chem. B, 2000, 104: 3481.
[60] Tay Q L, Liu X F, Tang Y X, Jiang Z L, Sum T C, Chen Z. J. Phys. Chem. C, 2013, 117: 14973.
[61] 刘守新(Liu S X), 刘鸿(Liu H). 光催化及光电催化基础与应用(Foundation and Application of Photocatalysis and Photoelectrocatalysis). 北京:化学工业出版社(Beijing: Chemical Industry Press), 2006. 44.
[62] Khataee A R, Kasiri M B. J. Mol. Catal. A: Chem., 2010, 328: 8.
[63] Jung K Y, Park S B, Jang H D. Catal. Commun., 2004, 5: 491.
[64] Zhang L, Ding Q Q, Zhou Y. Cryst. Res. Technol., 2011, 46: 1202.
[65] Wu J M, Song X M, Ma L Y, Wei X D. J. Cryst. Growth, 2011, 319: 57.
[66] Yin H B, Wada Y, Kitamura T, Kambe S, Murasawa S, Mori H, Sakata T, Yanagida S. J. Mater. Chem., 2001, 11: 1694.
[67] Ng J W, Wang X P, Sun D D. Appl. Catal. B: Environ., 2011, 110: 260.
[68] Ovenstone J, Yanagisawa K. Chem. Mater., 1999, 11: 2770.
[69] Li G H, Ciston S, Saponjic Z V, Chen L, Dimitrijevic N M, Rajh T, Gray K A. J. Catal., 2008, 253: 105.
[70] Fehsea M, Fischer F, Tessier C, Stievano L, Monconduit L. J. Power Sources, 2013, 231: 23.
[71] Zhang Y Y, Chen J Z, Li X J. Catal. Lett., 2010, 139: 129.
[72] Shen X J, Tian B Z, Zhang J L. Catal. Today, 2013, 201: 151.
[73] Li G H, Gray K A. Chem. Mater., 2007, 19: 1143.
[74] Lei S, Duan W. J. Environ. Sci., 2008, 20: 1263.
[75] Yan M C, Chen F, Zhang J L, Anpo M. J. Phys. Chem. B, 2005, 109: 8673.
[76] Shen X J, Zhang J L, Tian B Z. J. Hazard. Mater., 2011, 192: 651.
[77] Zachariah A, Baiju K V, Shukla S, Deepa K S, James J, Warrier K G K. J. Phys. Chem. C, 2008, 112: 11345.
[78] Liu Z Y, Zhang X T, Nishimoto S, Jin M, Tryk D A, Murakami T, Fujishima A. Langmuir, 2007, 23: 10916.
[79] Nair R G, Paul S, Samdarshi S K. Sol. Energy Mater. Sol. Cells, 2011, 95: 1901.
[80] Gouma P I, Mills M J. J. Am. Ceram. Soc., 2001, 84: 619.
[81] Zhang J, Li M J, Feng Z C, Chen J, Li C. J. Phys. Chem. B, 2006, 110: 927.
[82] Chan C K, Porter J F, Li Y G, Wei G, Chan C M. J. Am. Ceram. Soc., 1999, 82: 566.
[83] 温福宇(Wen F Y), 杨金辉(Yang J H), 宗旭(Zong X), 马艺(Ma Y), 徐倩(Xu Q), 马保军(Ma B J), 李灿(Li C). 化学进展(Progress in Chemistry), 2009, 21:2285.
[84] Hsu Y C, Lin H C, Chen C H, Liao Y T, Yang C M. J. Solid State Chem., 2010, 183: 1917.
[85] Bickley R I, Gonzalezcarreno T, Lees J S, Palmisano L, Tilley R J D. J. Solid State Chem., 1991, 92: 178.
[86] Deskins N A, Kerisit S, Rosso K M, Dupuis M. J. Phys. Chem. C, 2007, 111: 9290.
[87] Deák P, Aradi B, Frauenheim T. J. Phys. Chem. C, 2011, 115: 3443.
[88] Scanlon D O, Dunnill C W, Buckeridge J, Shevlin S A, Logsdail A J, Woodley S M, Catlow C R A, Powell M J, Palgrave R G, Parkin I P, Watson G W, Keal T W, Sherwood P, Walsh A, Sokol A A. Nat. Mater., 2013, 7: 1.
[89] Datye A K, Riegel G, Bolton J R, Huang M, Prairie M R. J. Solid State Chem., 1995, 115: 236.
[90] Zhang Z B, Wang C C, Zakaria R, Ying J Y. J. Phys. Chem. B, 1998, 102: 10871.
[91] Ohno T, Sarukawa K, Tokieda K, Matsumura M. J. Catal., 2001, 203: 82.
[92] Kawahara T, Konishi Y, Tada H, Tohge N, Nishii J, Ito S. Angew. Chem. Int. Ed., 2002, 41: 2811.
[93] Li G H, Gray K A. Chem. Phys., 2007, 339: 173.
[94] Sun B, Vorontsov A V, Smirniotis P G. Langmuir, 2003, 19: 3151.
[95] Sun B, Smirniotis P G. Catal. Today, 2003, 88: 49.
[96] Liu B T, Peng L L. J. Alloys Compd., 2013, 571: 145.
[97] Li G, Chen L, Graham M E, Gray K A. J. Mol. Catal. A: Chem., 2007, 275: 30.
[98] Wang C Y, Pagel R, Dohrmann J K, Bahnemann D W. C. R. Chim., 2006, 9: 761.

[1] Yukun Zhao, Yuanyuan Wang, Hongwei Ji, Wanhong Ma, Chuncheng Chen*, Jincai Zhao*. Photocatalytic Reductive Debromination of Polybrominated Diphenyl Ethers [J]. Progress in Chemistry, 2017, 29(9): 911-918.
[2] Zhang He, Zhang Chi, Song Ye. Fabrication of Anodic Titania Nanotube Arrays with Tunable Morphologies [J]. Progress in Chemistry, 2016, 28(6): 773-783.
[3] Wang Jing, Fan Haowen, Zhang He, Chen Qun, Liu Yi, Ma Weihua. Anodizing Process of Titanium and Formation Mechanism of Anodic TiO2 Nanotubes [J]. Progress in Chemistry, 2016, 28(2/3): 284-295.
[4] Zhang Lingfeng, Hu Zhongpan, Liu Xinying, Yuan Zhongyong. Noble-Metal-Free Co-Catalysts for TiO2-Based Photocatalytic H2-Evolution Half Reaction in Water Splitting [J]. Progress in Chemistry, 2016, 28(10): 1474-1488.
[5] Zhang Xiaodong, Yang Yang, Li Hongxin, Zou Xuejun, Wang Yuxin. Non-TiO2 Photocatalysts Used for Degradation of Gaseous VOCs [J]. Progress in Chemistry, 2016, 28(10): 1550-1559.
[6] Jin Chao, Qin Yao, Yang Jinhu. Novel Non-TiO2 Semiconductor Photocatalysts [J]. Progress in Chemistry, 2014, 26(0203): 225-233.
[7] Hu Jinlin, Yang Qihao, Chen Jing, Wang Taiya, Lin He, Qian Haisheng. Synthesis and Applications of Mesoporous TiO2 Functional Nanomaterials [J]. Progress in Chemistry, 2013, 25(12): 2080-2092.
[8] Wang Yajun, Jiang Lijuan, Feng Changgen. Photocatalytic Reduction of Cr(Ⅵ) [J]. Progress in Chemistry, 2013, 25(12): 1999-2010.
[9] Zhu Xufei, Han Hua, Qi Weixing, Lu Chao, Jiang Longfei, Duan Wenqiang. Theoretical Foundation and Limitation of Two-Step Anodizing Technology [J]. Progress in Chemistry, 2012, 24(11): 2073-2086.
[10] Wang Huixiang, Jiang Dong, Wu Dong, Li Debao, Sun Yuhan. Photocatalytic Reduction of CO2 on TiO2 Catalysts [J]. Progress in Chemistry, 2012, 24(11): 2116-2123.
[11] Li Yefei, Liu Zhipan. Recent Theoretical Progress on Photochemical reactions at the Solid/Solution Interface [J]. Progress in Chemistry, 2012, 24(06): 957-963.
[12] Lin Yuan, Wang Shanghua, Fu Nianqing, Zhang Jingbo, Zhou Xiaowen, Xiao Xurui. Preparation and Properties of Flexible Dye-Sensitized Solar Cells [J]. Progress in Chemistry, 2011, 23(0203): 548-556.
[13] . TiO2/Carbon Nanotube Composites and Their Synergistic Effects on Enhancing the Photocatalysis Efficiency [J]. Progress in Chemistry, 2010, 22(05): 867-876.
[14] Sheng Guodong Li Jiaxing Wang Suowei Wang Xiangke. Modification to Promote Visible-Light Catalytic Activity of TiO2 [J]. Progress in Chemistry, 2009, 21(12): 2492-2504.
[15] Chen Guohua|Zhao Fengming**. Synthesis of Porous TiO2 Films by Anodic Oxidation [J]. Progress in Chemistry, 2009, 21(01): 121-127.