English
新闻公告
More
化学进展 2021, Vol. 33 Issue (4): 610-632 DOI: 10.7536/PC200534 前一篇   后一篇

• 综述 •

锂硒电池的研究现状与展望

丁宇森1, 张璞1, 黎洪1, 朱文欢1,*(), 魏浩1   

  1. 1 上海交通大学电子信息与电气工程学院 薄膜与微细技术教育部重点实验室 上海 200240
  • 收稿日期:2020-05-14 修回日期:2020-06-18 出版日期:2021-04-20 发布日期:2020-07-31
  • 通讯作者: 朱文欢
  • 作者简介:
    These authors contributed equally to this work
  • 基金资助:
    国家自然科学基金项目(61774102); 上海交通大学“新进青年教师启动计划”(19X100040004)

Research Status and Prospect of Li-Se Batteries

Yusen Ding1, Pu Zhang1, Hong Li1, Wenhuan Zhu1(), Hao Wei1   

  1. 1 Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2020-05-14 Revised:2020-06-18 Online:2021-04-20 Published:2020-07-31
  • Contact: Wenhuan Zhu
  • Supported by:
    the National Natural Science Foundation of China(61774102); the Startup Fund for Youngman Research at SJTU(SFYR at SJTU)(19X100040004)

锂硒电池是一种非常有潜力的下一代高能量密度电池,具有理论体积能量密度大(3253 mAh·cm-3)、电导率高(1×10-3 S·m-1)、环境友好等优良特性,已经逐渐成为电化学领域的一个研究热点。然而,目前锂硒电池仍面临活性材料利用率低、库仑效率低、容量衰减快以及多硒化物中间体穿梭等诸多问题。针对这些问题,国内外研究人员进行了大量的探索,例如,在正极处采用多种碳材料、金属化合物、硒合金等进行封装改性;在负极处采用固体电解质界面方法进行保护。本文全面综述了锂硒电池在正极、负极、电解质、隔膜、黏结剂、集流体等方面取得的最新研究进展,特别是在纳米硒的封装、固体电解质保护层的制备、新型多功能隔膜的研究、多种黏结剂和集流体的应用等方面进行了重点总结。最后,对锂硒电池的未来发展前景和商业化应用进行了展望。

Lithium selenium batteries are very promising next-generation high-energy-density batteries with the properties of high theoretical volume energy density(3253 mAh·cm-3), high electrical conductivity(1×10-3 S·m-1),and environmental friendliness, which have gradually become a research hotspot in the field of electrochemistry. However, at present, lithium selenium batteries still face many problems such as low utilization rate of active materials, low coulomb efficiency, fast capacity decay and shuttle of polyselenides intermediates. In recent years, worldwide researchers have conducted a lot of researches on these issues. For example, a variety of carbon materials, metal compounds, selenium alloys, etc. have been used for packaging modification at the positive electrode. Solid electrolyte interface methods have been used for protection at the negative electrode. We comprehensively review the latest research progress of lithium selenium batteries in cathode, anode, electrolytes, separators, binders, current collectors, etc. especially summarize the sealing of nano selenium, the preparation of solid electrolyte protective layer, the research on multifunctional separators and the application of various binders and current collectors. Finally, we prospect the future development and commercial applications of lithium selenium batteries.

Contents

1 Introduction

2 Electrochemical principles of Li-Se batteries

3 Cathode materials

3.1 Selenium/carbon composite electrodes

3.2 Selenium/auxiliary additive composite electrodes

3.3 Metal compound electrodes

3.4 Selenium alloy composite electrodes

4 Anode materials

4.1 Electrolyte additives

4.2 Protective layer(SEI method)

4.3 Anode modification

5 Lithium selenium battery electrolytes

5.1 Liquid electrolytes

5.2 Solid electrolytes

6 Multifunctional separator and separation of cathode and anode

7 Binder

7.1 Selenium cathode binder

7.2 Binderless

8 Current collectors

8.1 Current collectors' classification

8.2 Current collectors' application

9 Conclusion and outlook

9.1 Cathode material

9.2 Anode material

9.3 Other

9.4 Application and Commercialization

9.5

Prospect

()
图1 硒正极发生的相转变[21]
Fig.1 Phase transition of selenium cathode[21]
图2 Se-MCNF复合材料正极[23]
Fig.2 Se-MCNF composite cathode[23]
图3 Se/Se8-CNT复合材料正极[31]
Fig.3 Se/Se8-CNT composite cathode[31]
图4 硒附着效果示意图[43]
Fig.4 Schematic diagram of selenium adhesion effect[43]
图5 (a) CPAN/Se复合正极合成过程; (b) CPAN/Se合成化学反应式[45]
Fig.5 (a) CPAN/Se composite positive electrode synthesis process;(b) CPAN/Se synthesis chemical reaction formula[45]
图6 碳化微孔氮掺杂正极[53]
Fig.6 Carbonized micro porous nitrogen-doped positive electrode[53]
图7 MOF-Ni介孔碳元素映射区域:(a) 元素映射领域;(b) 碳元素映射;(c) 硒元素映射;(d) 镍元素映射[75]
Fig.7 MOF-Ni mesoporous carbon element mapping region:(a) element mapping domain;(b) carbon element mapping;(c) selenium element mapping;(d) nickel element mapping[75]
表1 不同类型锂硒电池电化学性能表
Table 1 Electrochemical performance table of different types of lithium selenium batteries
图8 硒正极稳定化策略示意图:(a) 多孔碳颗粒(例如SAC)(b) 渗入Se和(c) 在集电箔流体上流延以制备电极;(d) 含有固体电解质形成剂(例如FEC)的电解质组装的电池循环至电解质(或添加剂)还原的电势;(e) 在Li2Se形成后剩余的孔内和颗粒外表面上形成的原位固体电解质层可作为溶剂和聚硒化物扩散以及所得聚硒化物溶解的有效物理屏障[92]
Fig.8 Schematic illustration of the proposed strategy for Se cathode stabilization:(a) porous carbon particles(such as SAC) are(b) infiltrated with Se and(c) cast on current collector foil to prepare a regular electrode;(d) cells assembled with an electrolyte containing a solid electrolyte former(such as FEC) are cycled to a potential of the electrolyte(or additive) reduction; and(e) solid electrolyte layer in situ formed both within the pores remaining after Li2Se formation and on the outer surface of the particles serves as an efficient physical barrier for solvent and polyselenide diffusion and the resulting polyselenide dissolution[92]
图9 Bi2Se3矩形纳米片合成法[96]
Fig.9 Bi2Se3 Rectangular nanosheet synthesis[96]
图10 不同电流密度下SenS8-n/NMC(n = 1~3)的倍率性能[102]
Fig.10 Rate performances of SenS8-n/NMC(n = 1~3) at different current densities[102]
图11 Se2S6/NMC复合材料合成法[102]
Fig.11 Se2S6/NMC composite material synthesis[102]
图12 GenII电解质溶剂EC-EMC的照片:(从左往右)单独使用、与不溶性硒,与Li2Se以及两者结合使用[109]
Fig.12 Photograph of GenII electrolyte solvent EC-EMC alone, with insoluble Se, with Li2Se, and with a combination of the two[109]
图13 SEI层的化学和电化学性质的光谱分析:XPS(a) C1s,(b) F1s核心光谱,(c)奈奎斯特图(d) Se-SAC-NR和Se-SAC-FD的波特图。将Nyquist和Bode图中的实线拟合到等效电路(图(c)的插图)[92]
Fig.13 Spectroscopic analysis on chemical and electro-chemical properties of SEI layer: XPS(a) C1s,(b) F1s core spectra,(c) Nyquist plot, and(d) Bode plot of Se-SAC-NR and Se-SAC-FD. Solid lines in Nyquist and Bode plots were fitted to the equivalent circuit(inset of(c))[92]
图14 SeS0.7/CPAN电池在测试前和在充满电至3.0 V后静置2 h后的阻抗分析[114]
Fig.14 Impedance analysis for SeS0.7/CPAN cell before test and after fully charge to 3.0 V and rest for 2 h[114]
图15 (a) 具有石墨烯-聚合物隔膜的Li-Se电池的示意性构造;用于石墨烯-聚合物隔膜的石墨烯材料的(b) SEM图像(c) TEM图像[34]
Fig.15 (a) Schematic configuration of a Li-Se cell with a graphene-polymer separator(b) SEM image and (c) TEM image of the graphene material used for the graphene-polymer separator[34]
图16 在0.5 C电流密度下的(a) 石墨烯-聚合物隔膜和(b) 聚合物隔膜的Li-Se电池的放电曲线。在0.5 C下具有不同隔膜的Li-Se电池的(c)上高原放电容量和(d)下高原放电容量。(e) 具有石墨烯-聚合物隔膜和聚合物隔膜的Li-Se电池的电化学阻抗谱(f) 相对于Li+/Li,在1.7至2.8 V的电势窗口中,带有石墨烯-聚合物隔板的电池在0.1 mV·s-1时的循环伏安图[34]
Fig.16 Discharge curves of Li-Se cells with(a) the graphene-polymer separator and (b) a polymer separator at 0.5 C.(c) Upper plateau discharge capacities and (d) lower plateau discharge capacities of Li-Se cells with different separators at 0.5 C. (e) Electrochemical impedance spectra of Li-Se cells with a graphene-polymer separator and a polymer separator.(f) Cyclic voltammograms of the cell with the graphene-polymer separator at 0.1 mV·s-1 in the potential window from 1.7 to 2.8 V vs. Li+/Li[34]
图17 碳中间层的形态:(a) 和(c) 对应循环前,(b)(d) 和(e) 对应在C/10速率循环20次后,(f) 为(e) 的元素映射[117]
Fig.17 Morphology of the carbon interlayer:(a) and(c) before cycling,(b),(d) and(e) after 20 cycles at C/10 rate, and(f) elemental mapping of(e)[117]
图18 (a) C/Se复合材料的原位合成示意图;(b)密封真空玻璃管退火后的照片[123]
Fig.18 (a) Schematic illustration for the in situ synthesis of C/Se composites;(b) Photograph of sealed vacuum glass tube after annealing[123]
图19 从平面铜箔制备3D多孔铜箔的流程图[129]
Fig.19 Schematic presentation of the procedures to prepare a 3D porous Cu foil from a planar Cu foil[129]
图20 3D集流体:示意性地给出了电场中集流体中电子的分布;虚线表示可能会沉积锂的位置[129]
Fig.20 3D current collector: The distribution of the electrons in the current collectors in the electrical field is schematically presented; the dashed lines illustrate the possible position where Li would be deposited[129]
[1]
Yang C H, Xiong J W, Ou X, Wu C F, Xiong X H, Wang J H, Huang K, Liu M L. Mater. Today Energy, 2018, 8: 37.
[2]
Nguyen N, Doan T N L, Hoang T K A, Zhao H B, Chen P. Mater. Today Energy, 2018, 8: 73.
[3]
Uddin M J, Alaboina P K, Cho S J. Mater. Today Energy, 2017, 5: 138.
[4]
Gao H, Ma T Y, Duong T, Wang L, He X M, Lyubinetsky I, Feng Z X, Maglia F, Lamp P, Amine K, Chen Z H. Mater. Today Energy, 2018, 7: 18.
[5]
Makaremi M, Mortazavi B, Singh C V. Mater. Today Energy, 2018, 8: 22.
[6]
Ni L B, Yang G, Sun C Y, Niu G S, Wu Z, Chen C, Gong X X, Zhou C Q, Zhao G J, Gu J, Ji W, Huo X, Chen M, Diao G W. Mater. Today Energy, 2017, 6: 53.
[7]
Xu X Q, Wan Y X, Zuo C, Yan H P, Du M T, Xue G, Zhou D S. Mater. Today Energy, 2018, 7: 80.
[8]
Xu F, Jin S B, Zhong H, Wu D C, Yang X Q, Chen X, Wei H, Fu R W, Jiang D L. Sci. Rep., 2015, 5: 8225.
[9]
Gu X X, Lai C. Energy Storage Mater., 2019, 23: 190.
[10]
Zhang X, Wang Z, Yao L, Mai Y Y, Liu J Q, Hua X L, Wei H. Mater. Lett., 2018, 213: 143.
[11]
Zhang X, Yao L, Liu S, Zhang Q, Mai Y Y, Hu N T, Wei H. Mater. Today Energy, 2018, 7: 141.
[12]
Wei H, Ding Y S, Li H, Zhang Q, Hu N T, Wei L M, Yang Z. Electrochimica Acta, 2019, 327: 134994.
[13]
Liu S, Yao L, Zhang Q, Li L, Hu N, Wei L, Wei H. Acta Phys.-Chim. Sin., 2017, 33: 2339.
刘帅, 姚路, 章琴, 李路路, 胡南滔, 魏良明, 魏浩. 物理化学学报, 2017, 3: 2339.
[14]
Yu X W, Feng S N, Boyer M J, Lee M, Ferrier R C Jr, Lynd N A, Hwang G S, Wang G B, Swinnea S, Manthiram A. Mater. Today Energy, 2018, 7: 98.
[15]
Hernández G, Lago N, Shanmukaraj D, Armand M, Mecerreyes D. Mater. Today Energy, 2017, 6: 264.
[16]
Kim S, Cho M, Lee Y. Adv. Energy Mater., 2020, 10(5): 1903477.
[17]
Jin J, Tian X C, Srikanth N, Kong L B, Zhou K. J. Mater. Chem. A, 2017, 5(21): 10110.
[18]
Chen D, Yue X Y, Li X L, Wu X J, Zhou Y N. Acta Physico-Chimica Sinica, 2019, 35(7): 667.
陈东, 岳昕阳, 李璕琭, 吴晓京, 周永宁. 物理化学学报, 2019, 35(7): 667.
[19]
Lin D C, Liu Y Y, Cui Y. Nat. Nanotechnol., 2017, 12(3): 194.

URL     pmid: 28265117
[20]
Eftekhari A. Sustain. Energy Fuels, 2017, 1(1): 14.
[21]
Abouimrane A, Dambournet D, Chapman K W, Chupas P J, Weng W, Amine K. J. Am. Chem. Soc., 2012, 134(10): 4505.

URL     pmid: 22364225
[22]
Zhang L, Lu L, Zhang D C, Hu W T, Wang N, Xu B, Li Y M, Zeng H. Electrochimica Acta, 2016, 209: 423.
[23]
Liu Y X, Si L, Du Y C, Zhou X S, Dai Z H, Bao J C. J. Phys. Chem. C, 2015, 119(49): 27316.
[24]
Yuan B B, Sun X Z, Zeng L C, Yu Y, Wang Q S. Small, 2018, 14(9): 1703252.
[25]
Li J, Zhang C, Wu C J, Tao Y, Zhang L, Yang Q H. Rare Met., 2017, 36(5): 425.
[26]
Balakumar K, Kalaiselvi N. Carbon, 2017, 112: 79.
[27]
He J R, Chen Y F, Lv W, Wen K C, Li P J, Wang Z G, Zhang W L, Qin W, He W D. ACS Energy Lett., 2016, 1(1): 16.
[28]
Han K, Liu Z, Ye H Q, Dai F. J. Power Sources, 2014, 263: 85.
[29]
Cui Y, Zhou X W, Guo W, Liu Y Z, Li T Y, Fu Y Z, Zhu L K. Batter. Supercaps, 2019, 2(9): 784.
[30]
Wang X W, Zhang Z A, Qu Y H, Wang G C, Lai Y Q, Li J. J. Power Sources, 2015, 287: 247.
[31]
Dutta D, Gope S, Negi D S, Datta R, Sood A K, Bhattacharyya A J. J. Phys. Chem. C, 2016, 120(51): 29011.
[32]
Youn H C, Jeong J H, Roh K C, Kim K B. Sci. Rep., 2016, 6: 30865.

doi: 10.1038/srep30865     URL     pmid: 27480798
[33]
Han K, Liu Z, Shen J M, Lin Y Y, Dai F, Ye H Q. Adv. Funct. Mater., 2015, 25(3): 455.
[34]
Fang R P, Zhou G M, Pei S F, Li F, Cheng H M. Chem. Commun., 2015, 51(17): 3667.
[35]
Huang D K, Li S H, Luo Y P, Xiao X, Gao L, Wang M K, Shen Y. Electrochimica Acta, 2016, 190: 258.
[36]
Fan S, Zhang Y, Li S H, Lan T Y, Xu J L. RSC Adv., 2017, 7(34): 21281.
[37]
Zhang J J, Xu Y H, Fan L, Zhu Y C, Liang J W, Qian Y T. Nano Energy, 2015, 13: 592.
[38]
Peng X, Wang L, Zhang X M, Gao B, Fu J J, Xiao S, Huo K F, Chu P K. J. Power Sources, 2015, 288: 214.
[39]
Chen C, Zhao C H, Hu Z B, Liu K Y. Funct. Mater. Lett., 2017, 10(2): 1650074.
[40]
Guo J, Wang Q S, Qi C, Jin J, Zhu Y J, Wen Z Y. Chem. Commun., 2016, 52(32): 5613.
[41]
Cai Q F, Li Y Y, wang L, Li Q W, Xu J, Gao B, Zhang X M, Huo K F, Chu P K. Nano Energy, 2017, 32: 1.
[42]
Zhang Z A, Yang X, Guo Z P, Qu Y H, Li J, Lai Y Q. J. Power Sources, 2015, 279: 88.
[43]
Zhang J J, Fan L, Zhu Y C, Xu Y H, Liang J W, Wei D H, Qian Y T. Nanoscale, 2014, 6(21): 12952.

doi: 10.1039/c4nr03705g     URL     pmid: 25233292
[44]
Hu J L, Zhang C C, Zhang L Z. J. Alloy. Compd., 2019, 806: 146.
[45]
Wang H Q, Li S, Chen Z X, Liu H K, Guo Z P. RSC Adv., 2014, 4(106): 61673.
[46]
Burbank R D. Acta Crystallogr., 1951, 4(2): 140.
[47]
Li J, Zhao X X, Zhang Z A, Lai Y Q. J. Alloy. Compd., 2015, 619: 794.
[48]
Kalimuthu B, Nallathamby K. ACS Appl. Mater. Interfaces, 2017, 9(32): 26756.

URL     pmid: 28718630
[49]
Lv H, Chen R P, Wang X Q, Hu Y, Wang Y R, Chen T, Ma L B, Zhu G Y, Liang J, Tie Z X, Liu J, Jin Z. ACS Appl. Mater. Interfaces, 2017, 9(30): 25232.

doi: 10.1021/acsami.7b04321     URL     pmid: 28691792
[50]
Klavetter K C, Pedro de Souza J, Heller A, Mullins C B. J. Mater. Chem. A, 2015, 3(11): 5829.
[51]
Jiang Y, Ma X J, Feng J K, Xiong S L. J. Mater. Chem. A, 2015, 3(8): 4539.
[52]
Qu Y H, Zhang Z A, Jiang S F, Wang X W, Lai Y Q, Liu Y X, Li J. J. Mater. Chem. A, 2014, 2(31): 12255.
[53]
Yi Z Q, Yuan L X, Sun D, Li Z, Wu C, Yang W J, Wen Y W, Shan B, Huang Y H. J. Mater. Chem. A, 2015, 3(6): 3059.
[54]
Li Z Q, Yin L W. Nanoscale, 2015, 7(21): 9597.

URL     pmid: 25951942
[55]
Xie L S, Yu S X, Yang H J, Yang J, Ni J L, Wang J L. Rare Met., 2017, 36(5): 434.
[56]
Jia M, Lu S Y, Chen Y M, Liu T, Han J, Shen B L, Wu X S, Bao S J, Jiang J, Xu M W. J. Power Sources, 2017, 367: 17.
[57]
Zhao C H, Fang S Z, Hu Z B, Qiu S G, Liu K Y. J. Nanoparticle Res., 2016, 18(7): 201.
[58]
Zhao C H, Xu L B, Hu Z B, Qiu S E, Liu K Y. RSC Adv., 2016, 6(53): 47486.
[59]
Jia M, Niu Y B, Mao C P, Liu S G, Zhang Y, Bao S J, Xu M W. J. Colloid Interface Sci., 2017, 490: 747.

URL     pmid: 27988468
[60]
Liu T, Jia M, Zhang Y, Han J, Li Y, Bao S J, Liu D Y, Jiang J, Xu M W. J. Power Sources, 2017, 341: 53.
[61]
Liu T, Dai C L, Jia M, Liu D Y, Bao S J, Jiang J, Xu M W, Li C M. ACS Appl. Mater. Interfaces, 2016, 8(25): 16063.

URL     pmid: 27268221
[62]
Qu Y H, Zhang Z A, Lai Y Q, Liu Y X, Li J. Solid State Ionics, 2015, 274: 71.
[63]
Lai Y Q, Yang F H, Zhang Z A, Jiang S F, Li J. RSC Adv., 2014, 4(74): 39312.
[64]
Zhou J J, Yang J, Xu Z X, Zhang T, Chen Z Y, Wang J L. J. Mater. Chem. A, 2017, 5(19): 9350.
[65]
Zhang H, Yu F Q, Kang W P, Shen Q. Carbon, 2015, 95: 354.
[66]
Zhao-Karger Z, Lin X M, Bonatto Minella C, Wang D, Diemant T, Behm R J, Fichtner M. J. Power Sources, 2016, 323: 213.
[67]
Bergstrom F W. J. Am. Chem. Soc., 1926, 48(1): 146.
[68]
Liu Y X, Si L, Zhou X S, Liu X, Xu Y, Bao J C, Dai Z H. J. Mater. Chem. A, 2014, 2(42): 17735.
[69]
Zhao P, Shiraz M H A, Zhu H Z, Liu Y H, Tao L, Liu J. Electrochimica Acta, 2019, 325: 134931.
[70]
Aboonasr S M H, Zhu H Z, Liu Y L, Sun X L, Liu J. J. Power Sources, 2019, 438: 227059.
[71]
Jia M, Mao C P, Niu Y B, Hou J K, Liu S G, Bao S J, Jiang J, Xu M W, Lu Z S. RSC Adv., 2015, 5(116): 96146.
[72]
Li Z, Yuan L X, Yi Z Q, Liu Y, Huang Y H. Nano Energy, 2014, 9: 229.
[73]
Song J P, Wu L, Dong W D, Li C F, Chen L H, Dai X, Li C, Chen H, Zou W, Yu W B, Hu Z Y, Liu J, Wang H E, Li Y, Su B L. Nanoscale, 2019, 11(14): 6970.

doi: 10.1039/c9nr00924h     URL     pmid: 30916057
[74]
Lai Y Q, Gan Y Q, Zhang Z A, Chen W, Li J. Electrochimica Acta, 2014, 146: 134.
[75]
Liu T, Zhang Y, Hou J K, Lu S Y, Jiang J, Xu M W. RSC Adv., 2015, 5(102): 84038.
[76]
Sun D F, Ma S Q, Ke Y X, Collins D J, Zhou H C. J. Am. Chem. Soc., 2006, 128(12): 3896.

doi: 10.1021/ja058777l     URL     pmid: 16551082
[77]
Chai S Z, Liu H H, Zhang X, Han Y, Hu N T, Wei L M, Cong F S, Wei H, Wang L. Appl. Surf. Sci., 2016, 384: 539.
[78]
Han Y, Zhang Q, Hu N T, Zhang X, Mai Y Y, Liu J Q, Hua X L, Wei H. Chin. Chem. Lett., 2017, 28(12): 2269.
[79]
Wei H, Chai S Z, Hu N T, Yang Z, Wei L M, Wang L. Chem. Commun., 2015, 51(61): 12178.
[80]
Han Y, Hu N T, Liu S, Hou Z Y, Liu J Q, Hua X L, Yang Z, Wei L M, Wang L, Wei H. Nanotechnology, 2017, 28(33): 33LT01.

doi: 10.1088/1361-6528/aa7bb6     URL     pmid: 28721952
[81]
Chai S Z, Hu N T, Han Y, Zhang X, Yang Z, Wei L M, Wang L, Wei H. RSC Adv., 2016, 6(55): 49425.
[82]
Ding Y S, Wang Y, Su Y J, Yang Z, Liu J Q, Hua X L, Wei H. Chin. Chem. Lett., 2020, 31(1): 193.
[83]
Wu F, Zhao S Y, Lu Y, Li J, Su Y F, Chen L. Progress in Chemistry, 2017, 29(6): 593.
吴锋, 赵双义, 卢赟, 李健, 苏岳锋, 陈来. 化学进展, 2017, 29(6): 593.
[84]
Deng N P, Ma X M, Ruan Y L, Wang X Q, Kang W M, Cheng B W. Progress in Chemistry, 2016, 28(9): 1435.
邓南平, 马晓敏, 阮艳莉, 王晓清, 康卫民, 程博闻. 化学进展, 2016, 28(9): 1435.
[85]
Zhang S T, Zheng M B, Cao J M, Pang H. Progress in Chemistry, 2016, 28(8): 1148.
张松涛, 郑明波, 曹洁明, 庞欢. 化学进展, 2016, 28(8): 1148.
[86]
Wan W B, Pu W H, Ai D S. Progress in Chemistry, 2013, 25(11): 1830.
万文博, 蒲薇华, 艾德生. 化学进展, 2013, 25(11): 1830.
[87]
Huang N, Chen X, Krishna R, Jiang D L. Angew. Chem. Int. Ed., 2015, 54(10): 2986.
[88]
Ye H, Yin Y X, Zhang S F, Guo Y G. J. Mater. Chem. A, 2014, 2(33): 13293.
[89]
Zhou J Q, Qian T, Xu N, Wang M F, Ni X Y, Liu X J, Shen X W, Yan C L. Adv. Mater., 2017, 29(33): 1701294.
[90]
Xu G L, Liu J Z, Arnine R, Chen Z H, Arnine K. ACS Energy Lett., 2017, 2(3): 605.
[91]
Zeng L X, Chen X, Liu R P, Lin L X, Zheng C, Xu L H, Luo F Q, Qian Q R, Chen Q H, Wei M D. J. Mater. Chem. A, 2017, 5(44): 22997.
[92]
Lee J T, Kim H, Nitta N, Eom K S, Lee D C, Wu F X, Lin H T, Zdyrko B, Cho W I, Yushin G. J. Mater. Chem. A, 2014, 2(44): 18898.
[93]
Mikhaylik Y V, Akridge J R. J. Electrochem. Soc., 2004, 151(11): A1969.
[94]
Zhang Z A, Yang X, Wang X W, Li Q, Zhang Z Y. Solid State Ionics, 2014, 260: 101.
[95]
Li W J, Zhou Y N, Fu Z W. Electrochimica Acta, 2010, 55(28): 8680.
[96]
Xu H M, Chen G, Jin R C, Chen D H, Wang Y, Pei J. RSC Adv., 2014, 4(17): 8922.
[97]
Bludská J, Jakubec I, Karamazov S, Horák J, Uher C. J. Solid State Chem., 2010, 183(12): 2813.
[98]
Mao F X, Guo J, Zhang S H, Yang F, Sun Q, Ma J M, Li Z. RSC Adv., 2016, 6(44): 38228.

doi: 10.1039/C6RA01301E     URL    
[99]
Tang Q M, Cui Y H, Wu J W, Qu D Y, Baker A P, Ma Y H, Song X N, Liu Y C. Nano Energy, 2017, 41: 377.
[100]
Wei Y J, Tao Y Q, Kong Z K, Liu L, Wang J T, Qiao W M, Ling L C, Long D H. Energy Storage Mater., 2016, 5: 171.
[101]
Zhang H W, Zhou L, Huang X D, Song H, Yu C Z. Nano Res., 2016, 9(12): 3725.
[102]
Sun F G, Cheng H Y, Chen J Z, Zheng N, Li Y S, Shi J L. ACS Nano, 2016, 10(9): 8289.

URL     pmid: 27522865
[103]
Li X N, Liang J W, Zhang K L, Hou Z G, Zhang W Q, Zhu Y C, Qian Y T. Energy Environ. Sci., 2015, 8(11): 3181.
[104]
Im H S, Lim Y R, Cho Y J, Park J, Cha E H, Kang H S. J. Phys. Chem. C, 2014, 118(38): 21884.
[105]
Zeng L C, Li W H, Jiang Y, Yu Y. Rare Met., 2017, 36(5): 339.
[106]
Xu J T, Ma J M, Fan Q H, Guo S J, Dou S X. Adv. Mater., 2017, 29(28): 1606454.
[107]
Babu D B, Ramesha K. Electrochimica Acta, 2016, 219: 295.
[108]
Wu C, Yuan L X, Li Z, Yi Z Q, Zeng R, Li Y R, Huang Y H. Sci. China Mater., 2015, 58(2): 91.
[109]
Cui Y J, Abouimrane A, Sun C J, Ren Y, Amine K. Chem. Commun., 2014, 50(42): 5576.
[110]
Jiang S F, Zhang Z A, Lai Y Q, Qu Y H, Wang X W, Li J. J. Power Sources, 2014, 267: 394.
[111]
Lee J T, Kim H, Oschatz M, Lee D C, Wu F X, Lin H T, Zdyrko B, Cho W I, Kaskel S, Yushin G. Adv. Energy Mater., 2015, 5(1): 1400981.

doi: 10.1002/aenm.201400981     URL    
[112]
Eftekhari A, Liu Y, Chen P. J. Power Sources, 2016, 334: 221.

doi: 10.1016/j.jpowsour.2016.10.025     URL    
[113]
Jin Y, Liu K, Lang J L, Jiang X, Zheng Z K, Su Q H, Huang Z Y, Long Y Z, Wang C A, Wu H, Cui Y. Joule, 2020, 4(1): 262.

doi: 10.1016/j.joule.2019.09.003     URL    
[114]
Luo C, Zhu Y J, Wen Y, Wang J J, Wang C S. Adv. Funct. Mater., 2014, 24(26): 4082.

doi: 10.1002/adfm.201303909     URL    
[115]
Xu G L, Sun H, Luo C, Estevez L, Zhuang M H, Gao H, Amine R, Wang H, Zhang X Y, Sun C J, Liu Y Z, Ren Y, Heald S M, Wang C S, Chen Z H, Amine K. Adv. Energy Mater., 2019, 9(2): 1802235.

doi: 10.1002/aenm.201802235     URL    
[116]
Luo C, Xu Y H, Zhu Y J, Liu Y H, Zheng S Y, Liu Y, Langrock A, Wang C S. ACS Nano, 2013, 7(9): 8003.

URL     pmid: 23944942
[117]
Zhang Z A, Zhang Z Y, Zhang K, Yang X, Li Q. RSC Adv., 2014, 4(30): 15489.

doi: 10.1039/C4RA00446A     URL    
[118]
Yang Z W, Zhu K J, Dong Z H, Jia D D, Jiao L F. ACS Appl. Mater. Interfaces, 2019, 11(43): 40069.

doi: 10.1021/acsami.9b14215     URL     pmid: 31580051
[119]
Yang Y, Hong X J, Song C L, Li G H, Zheng Y X, Zhou D D, Zhang M, Cai Y P, Wang H X. J. Mater. Chem. A, 2019, 7(27): 16323.

doi: 10.1039/C9TA04614C     URL    
[120]
Zhang S S. J. Power Sources, 2007, 164(1): 351.

doi: 10.1016/j.jpowsour.2006.10.065     URL    
[121]
Zeng L C, Zeng W C, Jiang Y, Wei X, Li W H, Yang C L, Zhu Y W, Yu Y. Adv. Energy Mater., 2015, 5(4): 1401377.

doi: 10.1002/aenm.201401377     URL    
[122]
Yang C P, Xin S, Yin Y X, Ye H, Zhang J, Guo Y G. Angew. Chem. Int. Ed., 2013, 52(32): 8363.

doi: 10.1002/anie.v52.32     URL    
[123]
Luo C, Wang J J, Suo L M, Mao J F, Fan X L, Wang C S. J. Mater. Chem. A, 2015, 3(2): 555.

doi: 10.1039/C4TA04611K     URL    
[124]
Arora P, White R E, Doyle M. J. Electrochem. Soc., 1998, 145(10): 3647.

doi: 10.1149/1.1838857     URL    
[125]
Yao M, Okuno K, Iwaki T, Tanase S, Harada K, Kato M, Emura K, Sakai T. J. Power Sources, 2007, 171(2): 1033.

doi: 10.1016/j.jpowsour.2007.06.211     URL    
[126]
Yao M, Okuno K, Iwaki T, Kato M, Tanase S, Emura K, Sakai T. J. Power Sources, 2007, 173(1): 545.

doi: 10.1016/j.jpowsour.2007.08.014     URL    
[127]
Liu S, Hou H, Hu W, Liu X, Duan J, Meng R. Bulletin of the Chinese Creamic Society, 2015, 34(9): 2562.
[128]
Kundu D P, Krumeich F, Nesper R. J. Power Sources, 2013, 236: 112.

doi: 10.1016/j.jpowsour.2013.02.050     URL    
[129]
Yang C P, Yin Y X, Zhang S F, Li N W, Guo Y G. Nat. Commun., 2015, 6: 8058.

URL     pmid: 26299379
[130]
Zeng L C, Wei X, Wang J Q, Jiang Y, Li W H, Yu Y. J. Power Sources, 2015, 281: 461.

doi: 10.1016/j.jpowsour.2015.02.029     URL    
[131]
Huang X L, Deng J H, Qi Y R, Liu D Y, Wu Y K, Gao W, Zhong W, Zhang F, Bao S J, Xu M W. Inorg. Chem. Front., 2020, 7(5): 1182.

doi: 10.1039/C9QI01506J     URL    
[132]
Huang X L, Wang W, Deng J H, Gao W, Liu D Y, Ma Q R, Xu M W. Inorg. Chem. Front., 2019, 6(8): 2118.

doi: 10.1039/C9QI00437H     URL    
[133]
Li J, Zhang C, Tao Y, Ling G, Yang Q. New Carbon Mater., 2016, 31: 459.
[1] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[2] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[3] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[4] 戚琦, 徐佩珠, 田志东, 孙伟, 刘杨杰, 胡翔. 钠离子混合电容器电极材料的研究进展[J]. 化学进展, 2022, 34(9): 2051-2062.
[5] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[6] 王许敏, 李书萍, 何仁杰, 余创, 谢佳, 程时杰. 准固相转化机制硫正极[J]. 化学进展, 2022, 34(4): 909-925.
[7] 岳昕阳, 包戬, 马萃, 吴晓京, 周永宁. 热熔灌输法制备三维骨架支撑金属锂复合负极[J]. 化学进展, 2022, 34(3): 683-695.
[8] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[9] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[10] 刘新叶, 梁智超, 王山星, 邓远富, 陈国华. 碳基材料修饰聚烯烃隔膜提高锂硫电池性能研究[J]. 化学进展, 2021, 33(9): 1665-1678.
[11] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[12] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[13] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[14] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[15] 郭林莉, 张新, 肖敏, 王拴紧, 韩东梅, 孟跃中. 二维材料修饰隔膜抑制锂硫电池穿梭效应策略[J]. 化学进展, 2021, 33(7): 1212-1220.
阅读次数
全文


摘要

锂硒电池的研究现状与展望