English
新闻公告
More
化学进展 2021, Vol. 33 Issue (9): 1665-1678 DOI: 10.7536/PC201215 前一篇   

• 综述 •

碳基材料修饰聚烯烃隔膜提高锂硫电池性能研究

刘新叶1, 梁智超1, 王山星1, 邓远富1,*(), 陈国华2   

  1. 1 华南理工大学化学化工学院 广东省燃料电池技术重点实验室 广州 510641
    2 香港理工大学机械工程系 香港九龙
  • 收稿日期:2020-12-09 修回日期:2021-01-19 出版日期:2021-09-20 发布日期:2021-03-04
  • 通讯作者: 邓远富
  • 基金资助:
    国家自然科学基金-香港RGC项目(21661162002); 国家自然科学基金-香港RGC项目(N_HKUST601/16); 广东省重点研究计划项目(2019B090908001)

Carbon-Based Materials for Modification of Polyolefin Separators to Improve the Performance of Lithium-Sulfur Batteries

Xinye Liu1, Zhichao Liang1, Shanxing Wang1, Yuanfu Deng1(), Guohua Chen2   

  1. 1 The Key Laboratory of Fuel Cell for Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology,Guangzhou 510641, China
    2 Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Hom Kowloon, China
  • Received:2020-12-09 Revised:2021-01-19 Online:2021-09-20 Published:2021-03-04
  • Contact: Yuanfu Deng
  • Supported by:
    NSFC-RGC Joint Research Scheme(21661162002); NSFC-RGC Joint Research Scheme(N_HKUST601/16); Guangdong Key R&D Program of China(2019B090908001)

采用硫单质作正极和金属锂为负极组成的锂硫(Li-S)电池具有很高的理论比能量(2600 Wh·kg-1),被认为是一种具有广泛应用前景的二次电池。其中,正极硫具有高的理论比容量(1675 mAh·g-1),储量丰富且环境友好。然而,硫较差的导电性、多硫化物的穿梭效应和锂枝晶生长等导致了Li-S电池在循环过程中容量衰减快、库仑效率低和安全隐患等问题,严重阻碍了其大规模应用。通过隔膜修饰提高Li-S电池的性能是一种有效的方法,近年来取得了很大进展。碳材料是较常见的一种隔膜修饰材料,本文综述了近年来常见碳材料及碳基复合材料用于修饰Li-S电池隔膜进而改善电池性能方面的研究进展,重点介绍了修饰层的设计及提升Li-S电池容量的机理。

Owing to their great theoretical energy density (2600 Wh·kg-1), lithium-sulfur (Li-S) batteries are one of the most promising candidates of the next generation energy storage devices. Moreover, the high theoretical specific capacity (1675 mAh·g-1), good eco-friendliness, abundant natural resource and low cost of cathode sulfur are also good for the cheap cost and low environmental pollution of Li-S batteries. However, the practical applications of Li-S batteries are severely impeded by several key challenges, such as the low practical specific capacities, low coulomb efficiencies and fast capacity decay, which resulting from the poor electronic conductivity of sulfur and final products Li2S2/Li2S, the shuttle effects of lithium polysulfides and the growth of lithium dendrite during the electrochemical cycling. It is noted that the modification of the polyolefin separators is one of the effective methods to obviously improve the performances of Li-S batteries. In particular, various carbons and their composites are widely used materials for separator modification because of their unique properties, also, many advancements have been achieved. Herein, the research progresses of the various carbons and their composites for separator modification are reviewed, which will provide guidance for the future research on improving the performance of Li-S batteries by separator modification method.

Contents

1 Introduction

2 Carbon materials for separator modification

3 Carbon-based composite materials for separator modification

4 Conclusion and outlook

()
图1 (a)Li-S电池充放电曲线[5];(b)穿梭效应示意图[6]
Figure 1 (a) An ideal charge-discharge profile of Li-S batteries[5]. Copyright 2013, Royal Society of Chemistry. (b) Schematic illustration of the parasitic polysulfide shuttle effect in a liquid electrolyte based Li-S batteries[6]. Copyright 2014, Elsevier
表1 利用碳材料修饰的隔膜组装的Li-S电池的性能对比
Table 1 Detailed information of Li-S batteries with modified separators by carbon-based materials
图2 (a)采用多孔碳纸作为中间层阻止多硫化物扩散的示意图[20];(b)采用石墨烯修饰的PP隔膜组装成的Li-S电池的示意图[26];(c)多孔氧化镁模板上采用CVD法制备PG的示意图和PG隔膜抑制穿梭效应原理的示意图[27];(d)用不同氧化程度的GO改性的复合膜的Li-S电池的循环性能图[34];(e)G@PC/PP隔膜合成的示意图[44];(f)由蟹壳合成N掺杂多孔碳步骤图以及修饰隔膜捕获多硫化锂的原理示意图[53]
Fig. 2 (a) Schematic configuration of a Li-S cell with a bifunctional microporous carbon interlayer inserted between the sulfur cathode and the separator[20]; Copyright 2012, Nature. (b) Schematic of the electrode configuration using an integrated structure of sulfur and G@PP separator and the corresponding battery assembly[26]; Copyright 2015, Wiley. (c) Schematic illustration of PG fabrication though methane CVD on porous MgO templates and schematic illustration of difference between PP and PG separators in effecting cathode/separator interfaces[27]; Copyright 2017, Elsevier. (d) Cycling stability of cell with different GO modified separator[34]; (e) Schematic illustration of the synthesis of the G@PC/PP separator in Li-S batteries[44]; Copyright 2018, Elsevier. (f) Synthesis of the N-MIMEC from crab shells and the LiPS-trapping mechanisms of the N-MIMEC-coated separator during discharge/charge process[53]. Copyright 2017, Royal Society of Chemistry
图3 (a)使用MTO-CNTs中间层的锂电池结构示意图[63];(b)使用rGO@MoS2修饰隔膜用于Li-S电池示意图和rGO@MoS2的扫描电镜图[71];(c)多硫化物在TiN, TiO2和TiO2-TiN异质结构表面的转换过程示意图[73];(d)Mo2C@NG的制备和作用机理示意图[78]
Fig. 3 (a) Schematic cell configuration of Li-S batteries using MTO-CNTs interlayer[63]; Copyright 2019, Elsevier. (b) The schematic Li-S cell with rGO@MoS2 coated separator, and SEM image of rGO@MoS2 composite[71]; Copyright 2017, Royal Society of Chemistry. (c) Schematic of LiPS conversion processes on TiN, TiO2 and the TiO2-TiN heterostructure surface[73]; Copyright 2016, Royal Society of Chemistry. (d) Schematic illustration of the preparation of Mo2C@NG nanocomposite[78]. Copyright 2020, Elsevier
图4 (a)合成N-Ti3C2/C纳米片改性PP隔膜示意图[81];(b)合成Ni@NG及其结构示意图[90];(c)采用双层rGO-PVDF/PVDF修饰隔膜的示意图[98];(d)采用g-C3N4/GS中间层用于正极表面的Li-S电池示意图[99]
Fig. 4 (a) Schematic illustration for the synthesis of N-Ti3C2/C nanosheets and the modified PP separator for Li-S batteries[81]; Copyright 2019, Elsevier. (b) Schematic illustration of the preparation of Ni@NG with the Ni-N4 sites[90]; Copyright 2016, Wiley. (c) Schematic illustration of bifunctional double layer rGO-PVDF/PVDF membrane separator[98]; Copyright 2017, Royal Society of Chemistry. (d) Schematic of cell configuration with a laminated structure g-C3N4/GS cathode interlayer[99]. Copyright 2019, Wiley
表2 利用复合材料修饰隔膜组装的Li-S电池的性能对比
Table 2 Detailed information of Li-S batteries with modified separators by composite materials
[1]
Ma Z, Wang F F, Dou M, Yao Q N, Wu F, Kan E J. Appl. Surf. Sci., 2019, 495: 143534.

doi: 10.1016/j.apsusc.2019.143534     URL    
[2]
Chung S H, Manthiram A. Adv. Mater., 2019, 31(27): 1901125.

doi: 10.1002/adma.v31.27     URL    
[3]
Shao Q J, Wu Z S, Chen J. Energy Storage Mater., 2019, 22: 284.
[4]
Cha E, Patel M, Bhoyate S, Prasad V, Choi W. Nanoscale Horiz., 2020, 5(5): 808.

doi: 10.1039/C9NH00730J     URL    
[5]
Wang D W, Zeng Q C, Zhou G M, Yin L C, Li F, Cheng H M, Gentle I R, Lu G Q M. J. Mater. Chem. A, 2013, 1(33): 9382.

doi: 10.1039/c3ta11045a     URL    
[6]
Busche M R, Adelhelm P, Sommer H, Schneider H, Leitner K, Janek J. J. Power Sources, 2014, 259: 289.

doi: 10.1016/j.jpowsour.2014.02.075     URL    
[7]
Hu Y X, Zhu X B, Wang L Z. ChemSusChem, 2020, 13(6): 1366.

doi: 10.1002/cssc.v13.6     URL    
[8]
Ji X L, Lee K T, Nazar L F. Nat. Mater., 2009, 8(6): 500.

doi: 10.1038/nmat2460     URL    
[9]
Wu Q P, Zhou X J, Xu J, Cao F H, Li C L. J. Energy Chem., 2019, 38: 94.

doi: 10.1016/j.jechem.2019.01.005     URL    
[10]
Yuan Z, Peng H J, Hou T Z, Huang J Q, Chen C M, Wang D W, Cheng X B, Wei F, Zhang Q. Nano Lett., 2016, 16(1): 519.

doi: 10.1021/acs.nanolett.5b04166     pmid: 26713782
[11]
Liang X, Wen Z Y, Liu Y, Wu M F, Jin J, Zhang H, Wu X W. J. Power Sources, 2011, 196(22): 9839.

doi: 10.1016/j.jpowsour.2011.08.027     URL    
[12]
Wang L N, Liu J Y, Yuan S Y, Wang Y G, Xia Y Y. Energy Environ. Sci., 2016, 9(1): 224.

doi: 10.1039/C5EE02837J     URL    
[13]
Ma L B, Chen R P, Hu Y, Zhang W J, Zhu G Y, Zhao P Y, Chen T, Wang C X, Yan W, Wang Y R, Wang L, Tie Z X, Liu J, Jin Z. Energy Storage Mater., 2018, 14: 258.
[14]
Yang H J, Guo C, Naveed A, Lei J Y, Yang J, Nuli Y N, Wang J L. Energy Storage Mater., 2018, 14: 199.
[15]
Deng N P, Liu Y, Li Q X, Yan J, Lei W W, Wang G, Wang L Y, Liang Y Y, Kang W M, Cheng B W. Energy Storage Mater., 2019, 23: 314.
[16]
Xin S, Gu L, Zhao N H, Yin Y X, Zhou L J, Guo Y G, Wan L J. J. Am. Chem. Soc., 2012, 134(45): 18510.

doi: 10.1021/ja308170k     URL    
[17]
Zhang Z, Lai Y, Zhang Z, Li J. Solid State Ionics, 2015, 278:166.

doi: 10.1016/j.ssi.2015.06.018     URL    
[18]
Zhao D, Qian X Y, Jin L N, Yang X L, Wang S W, Shen X Q, Yao S S, Rao D W, Zhou Y Y, Xi X M. RSC Adv., 2016, 6(17): 13680.

doi: 10.1039/C5RA26476F     URL    
[19]
Feng J N, Qin X J, Ma Z P, Yang J, Yang W, Shao G J. Electrochimica Acta, 2016, 190: 426.

doi: 10.1016/j.electacta.2016.01.017     URL    
[20]
Su Y S, Manthiram A. Nat. Commun., 2012, 3: 1166.

doi: 10.1038/ncomms2163     URL    
[21]
Chung S H, Manthiram A. Adv. Funct. Mater., 2014, 24(33): 5299.

doi: 10.1002/adfm.v24.33     URL    
[22]
Zhao D. Master's Dissertation of Jiangsu University, 2017.
(赵迪. 江苏大学硕士论文, 2017.).
[23]
Xu H, Deng Y F, Shi Z C, Qian Y X, Meng Y Z, Chen G H. J. Mater. Chem. A, 2013, 1(47): 15142.

doi: 10.1039/c3ta13541a     URL    
[24]
Zhou G M, Pei S F, Li L, Wang D W, Wang S G, Huang K, Yin L C, Li F, Cheng H M. Adv. Mater., 2014, 26(4): 625.

doi: 10.1002/adma.201302877     URL    
[25]
Du Z Z, Guo C K, Wang L J, Hu A J, Jin S, Zhang T M, Jin H C, Qi Z K, Xin S, Kong X H, Guo Y G, Ji H X, Wan L J. ACS Appl. Mater. Interfaces, 2017, 9(50): 43696.

doi: 10.1021/acsami.7b14195     URL    
[26]
Zhou G M, Li L, Wang D W, Shan X Y, Pei S F, Li F, Cheng H M. Adv. Mater., 2015, 27(4): 641.

doi: 10.1002/adma.201404210     URL    
[27]
Zhai P Y, Peng H J, Cheng X B, Zhu L, Huang J Q, Zhu W C, Zhang Q. Energy Storage Mater., 2017, 7: 56.
[28]
Ji L W, Rao M M, Zheng H M, Zhang L, Li Y C, Duan W H, Guo J H, Cairns E J, Zhang Y G. J. Am. Chem. Soc., 2011, 133(46): 18522.

doi: 10.1021/ja206955k     URL    
[29]
Song M K, Zhang Y G, Cairns E J. Nano Lett., 2013, 13(12): 5891.

doi: 10.1021/nl402793z     URL    
[30]
Zeng Q R, Leng X, Wu K H, Gentle I R, Wang D W. Carbon, 2015, 93: 611.

doi: 10.1016/j.carbon.2015.05.095     URL    
[31]
Du X Y, Zhang X L, Guo J L, Zhao S P, Zhang F X. J. Alloy. Compd., 2017, 714: 311.

doi: 10.1016/j.jallcom.2017.04.258     URL    
[32]
Shaibani M, Akbari A, Sheath P, Easton C D, Banerjee P C, Konstas K, Fakhfouri A, Barghamadi M, Musameh M M, Best A S, Rüther T, Mahon P J, Hill M R, Hollenkamp A F, Majumder M. ACS Nano, 2016, 10(8): 7768.

doi: 10.1021/acsnano.6b03285     URL    
[33]
Zhuang T Z, Huang J Q, Peng H J, He L Y, Cheng X B, Chen C M, Zhang Q. Small, 2016, 12(3): 381.

doi: 10.1002/smll.201503133     URL    
[34]
Zhu P, Zang J, Zhu J D, Lu Y, Chen C, Jiang M J, Yan C Y, Dirican M, Selvan R K, Kim D, Zhang X W. Carbon, 2018, 126: 594.

doi: 10.1016/j.carbon.2017.10.063     URL    
[35]
Balach J, Jaumann T, Klose M, Oswald S, Eckert J, Giebeler L. J. Power Sources, 2016, 303: 317.

doi: 10.1016/j.jpowsour.2015.11.018     URL    
[36]
Pang Q, Liang X, Kwok C Y, Nazar L F. Nat. Energy, 2016, 1(9): 16132.

doi: 10.1038/nenergy.2016.132     URL    
[37]
Xu H, Deng Y F, Zhao Z X, Xu H J, Qin X S, Chen G H. Chem. Commun., 2014, 50(72): 10468.

doi: 10.1039/C4CC04868G     URL    
[38]
Zhou X Y, Liao Q C, Bai T, Yang J. J. Electroanal. Chem., 2017, 791: 167.

doi: 10.1016/j.jelechem.2017.03.004     URL    
[39]
Zhang Z A, Wang G C, Lai Y Q, Li J, Zhang Z Y, Chen W. J. Power Sources, 2015, 300: 157.

doi: 10.1016/j.jpowsour.2015.09.067     URL    
[40]
Zhou X Y, Liao Q C, Tang J J, Bai T, Chen F, Yang J. J. Electroanal. Chem., 2016, 768: 55.

doi: 10.1016/j.jelechem.2016.02.037     URL    
[41]
Zhang L L, Wan F, Wang X Y, Cao H M, Dai X, Niu Z Q, Wang Y J, Chen J. ACS Appl. Mater. Interfaces, 2018, 10(6): 5594.

doi: 10.1021/acsami.7b18894     URL    
[42]
Yuan X Q, Wu L S, He X L, Zeinu K, Huang L, Zhu X L, Hou H J, Liu B C, Hu J P, Yang J K. Chem. Eng. J., 2017, 320: 178.

doi: 10.1016/j.cej.2017.03.022     URL    
[43]
Han P, Manthiram A. J. Power Sources, 2017, 369: 87.

doi: 10.1016/j.jpowsour.2017.10.005     URL    
[44]
Pei F, Lin L L, Fu A, Mo S G, Ou D H, Fang X L, Zheng N F. Joule, 2018, 2(2): 323.

doi: 10.1016/j.joule.2017.12.003     URL    
[45]
Yuan H D, Liu T F, Liu Y J, Nai J W, Wang Y, Zhang W K, Tao X Y. Chem. Sci., 2019, 10(32): 7484.

doi: 10.1039/C9SC02743B     URL    
[46]
Li S Q, Ren G F, Hoque M N F, Dong Z H, Warzywoda J, Fan Z Y. Appl. Surf. Sci., 2017, 396: 637.

doi: 10.1016/j.apsusc.2016.10.208     URL    
[47]
Liu T, Sun S M, Song W, Sun X L, Niu Q H, Liu H, Ohsaka T, Wu J F. J. Mater. Chem. A, 2018, 6(46): 23486.

doi: 10.1039/C8TA08521H     URL    
[48]
Huang Y, Zheng M B, Lin Z X, Zhao B, Zhang S T, Yang J Z, Zhu C L, Zhang H, Sun D P, Shi Y. J. Mater. Chem. A, 2015, 3(20): 10910.

doi: 10.1039/C5TA01515D     URL    
[49]
Li S Q, Mou T, Ren G F, Warzywoda J, Wei Z D, Wang B, Fan Z Y. J. Mater. Chem. A, 2017, 5(4): 1650.

doi: 10.1039/C6TA09841J     URL    
[50]
Yang J, Chen F, Li C, Bai T, Long B, Zhou X Y. J. Mater. Chem. A, 2016, 4(37): 14324.

doi: 10.1039/C6TA06250D     URL    
[51]
Wang S X, Zou K X, Qian Y X, Deng Y F, Zhang L, Chen G H. Carbon, 2019, 144: 745.

doi: 10.1016/j.carbon.2018.12.113     URL    
[52]
Wang S X, Liu X Y, Zou K X, Deng Y F, Chen G H. J. Electroanal. Chem., 2020, 858: 113797.

doi: 10.1016/j.jelechem.2019.113797     URL    
[53]
Shao H Y, Ai F, Wang W K, Zhang H, Wang A B, Feng W, Huang Y Q. J. Mater. Chem. A, 2017, 5(37): 19892.

doi: 10.1039/C7TA05192A     URL    
[54]
Majumder S, Shao M H, Deng Y F, Chen G H. J. Electrochem. Soc., 2019, 166(3): A5386.

doi: 10.1149/2.0501903jes     URL    
[55]
Majumder S, Shao M H, Deng Y F, Chen G H. J. Power Sources, 2019, 431: 93.

doi: 10.1016/j.jpowsour.2019.05.045     URL    
[56]
Yang L Q, Li G C, Jiang X, Zhang T R, Lin H B, Lee J Y. J. Mater. Chem. A, 2017, 5(24): 12506.

doi: 10.1039/C7TA01352C     URL    
[57]
Xu G Y, Yuan J R, Tao X Y, Ding B, Dou H, Yan X H, Xiao Y, Zhang X G. Nano Res., 2015, 8(9): 3066.

doi: 10.1007/s12274-015-0812-0     URL    
[58]
Xu Q, Hu G C, Bi H L, Xiang H F. Ionics, 2015, 21(4): 981.

doi: 10.1007/s11581-014-1263-4     URL    
[59]
Luo Y F, Luo N N, Kong W B, Wu H C, Wang K, Fan S S, Duan W H, Wang J P. Small, 2018, 14(8): 1702853.

doi: 10.1002/smll.201702853     URL    
[60]
Yan L J, Luo N N, Kong W B, Luo S, Wu H C, Jiang K L, Li Q Q, Fan S S, Duan W H, Wang J P. J. Power Sources, 2018, 389: 169.

doi: 10.1016/j.jpowsour.2018.04.015     URL    
[61]
Xiang M W, Wu H, Liu H, Huang J, Zheng Y F, Yang L, Jing P, Zhang Y, Dou S X, Liu H K. Adv. Funct. Mater., 2017, 27(37):1702573.

doi: 10.1002/adfm.v27.37     URL    
[62]
Yang Y B, Zhang L T, Xu H, Qin X S, Deng Y F, Chen G H. ACS Sustainable Chem. Eng., 2018, 6(12): 17099.

doi: 10.1021/acssuschemeng.8b04468     URL    
[63]
Li N, Chen Z X, Chen F, Hu G J, Wang S G, Sun Z H, Sun X D, Li F. Carbon, 2019, 143: 523.

doi: 10.1016/j.carbon.2018.11.064     URL    
[64]
Liu T, Sun S M, Hao J L, Song W, Niu Q H, Sun X L, Wu Y, Song D P, Wu J F. ACS Appl. Mater. Interfaces, 2019, 11(17): 15607.

doi: 10.1021/acsami.9b02136     URL    
[65]
Yang Y B, Xu H, Wang S X, Deng Y F, Qin X Y, Qin X S, Chen G H. Electrochimica Acta, 2019, 297: 641.

doi: 10.1016/j.electacta.2018.12.009     URL    
[66]
Fang D, Wang Y, Liu X, Yu J, Qian C, Chen S, Wang X, Zhang S. ACS Nano, 2019, 13:1563.
[67]
Sun W, Ou X G, Yue X Y, Yang Y X, Wang Z H, Rooney D, Sun K N. Electrochimica Acta, 2016, 207: 198.

doi: 10.1016/j.electacta.2016.04.135     URL    
[68]
Hu N N, Lv X, Dai Y, Fan L L, Xiong D B, Li X F. ACS Appl. Mater. Interfaces, 2018, 10(22): 18665.

doi: 10.1021/acsami.8b03255     URL    
[69]
Xiao Z B, Yang Z, Wang L, Nie H G, Zhong M E, Lai Q Q, Xu X J, Zhang L J, Huang S M. Adv. Mater., 2015, 27(18): 2891.

doi: 10.1002/adma.v27.18     URL    
[70]
Yi R W, Liu C G, Zhao Y C, Hardwick L J, Li Y Q, Geng X W, Zhang Q, Yang L, Zhao C Z. Electrochimica Acta, 2019, 299: 479.

doi: 10.1016/j.electacta.2019.01.015     URL    
[71]
Tan L, Li X H, Wang Z X, Guo H J, Wang J X. ACS Appl. Mater. Interfaces, 2018, 10(4): 3707.

doi: 10.1021/acsami.7b18645     URL    
[72]
He J R, Hartmann G, Lee M, Hwang G S, Chen Y F, Manthiram A. Energy Environ. Sci., 2019, 12(1): 344.

doi: 10.1039/C8EE03252A     URL    
[73]
Zhou T H, Lv W, Li J, Zhou G M, Zhao Y, Fan S X, Liu B L, Li B H, Kang F Y, Yang Q H. Energy Environ. Sci., 2017, 10(7): 1694.

doi: 10.1039/C7EE01430A     URL    
[74]
Fan Y, Yang Z, Hua W X, Liu D, Tao T, Rahman M M, Lei W W, Huang S M, Chen Y. Adv. Energy Mater., 2017, 7(13): 1602380.

doi: 10.1002/aenm.v7.13     URL    
[75]
Zhou T H, Zhao Y, Zhou G M, Lv W, Sun P J, Kang F Y, Li B H, Yang Q H. Nano Energy, 2017, 39: 291.

doi: 10.1016/j.nanoen.2017.07.012     URL    
[76]
Babu G, Masurkar N, Al Salem H, Arava L M R. J. Am. Chem. Soc., 2017, 139(1): 171.

doi: 10.1021/jacs.6b08681     URL    
[77]
Wei Y H, Wang Y C, Zhang X M, Wang B Y, Wang Q, Wu N T, Zhang Y, Wu H. ACS Appl. Mater. Interfaces, 2020, 12(31): 35058.

doi: 10.1021/acsami.0c10047     URL    
[78]
Yu B, Chen D J, Wang Z G, Qi F, Zhang X J, Wang X Q, Hu Y, Wang B, Zhang W L, Chen Y F, He J R, He W D. Chem. Eng. J., 2020, 399: 125837.

doi: 10.1016/j.cej.2020.125837     URL    
[79]
Ma Q Y, Hu M F, Yuan Y, Pan Y K, Chen M Q, Zhang Y Y, Long D H. J. Colloid Interface Sci., 2020, 566: 11.

doi: 10.1016/j.jcis.2020.01.066     URL    
[80]
Du M, Li Q, Zhao Y, Liu C S, Pang H. Coord. Chem. Rev., 2020, 416: 213341.

doi: 10.1016/j.ccr.2020.213341     URL    
[81]
Jiang G Y, Zheng N, Chen X, Ding G Y, Li Y H, Sun F G, Li Y S. Chem. Eng. J., 2019, 373: 1309.

doi: 10.1016/j.cej.2019.05.119     URL    
[82]
Song C L, Li G H, Yang Y, Hong X J, Huang S, Zheng Q F, Si L P, Zhang M, Cai Y P. Chem. Eng. J., 2020, 381: 122701.

doi: 10.1016/j.cej.2019.122701     URL    
[83]
Skoda D, Kazda T, Munster L, Hanulikova B, Styskalik A, Eloy P, Debecker D P, Vyroubal P, Simonikova L, Kuritka I. J. Mater. Sci., 2019, 54(22): 14102.

doi: 10.1007/s10853-019-03871-4     URL    
[84]
Zhou, Li, Fang , Zhao , Wang , Zhang , Zhou ,. Nanomaterials, 2019, 9(11): 1574.

doi: 10.3390/nano9111574     URL    
[85]
Qiao B T, Wang A Q, Yang X F, Allard L F, Jiang Z, Cui Y T, Liu J Y, Li J, Zhang T. Nat. Chem., 2011, 3(8): 634.

doi: 10.1038/nchem.1095     URL    
[86]
Li Z, Ji S F, Liu Y W, Cao X, Tian S B, Chen Y J, Niu Z Q, Li Y D. Chem. Rev., 2020, 120(2): 623.

doi: 10.1021/acs.chemrev.9b00311     URL    
[87]
Du Z Z, Chen X J, Hu W, Chuang C H, Xie S, Hu A J, Yan W S, Kong X H, Wu X J, Ji H X, Wan L J. J. Am. Chem. Soc., 2019, 141(9): 3977.

doi: 10.1021/jacs.8b12973     URL    
[88]
Li Y J, Wu J B, Zhang B, Wang W, Zhang G Q, Seh Z W, Zhang N, Sun J, Huang L, Jiang J J, Zhou J, Sun Y M. Energy Storage Mater., 2020, 30: 250.
[89]
Shi H D, Ren X M, Lu J M, Dong C, Liu J, Yang Q H, Chen J, Wu Z S. Adv. Energy Mater., 2020, 10(39): 2002271.

doi: 10.1002/aenm.v10.39     URL    
[90]
Zhang L L, Liu D B, Muhammad Z, Wan F, Xie W, Wang Y J, Song L, Niu Z Q, Chen J. Adv. Mater., 2019, 31(40): 1903955.

doi: 10.1002/adma.v31.40     URL    
[91]
Li Y J, Lin S Y, Wang D D, Gao T T, Song J W, Zhou P, Xu Z K, Yang Z H, Xiao N, Guo S J. Adv. Mater., 2020, 32(8): 1906722.

doi: 10.1002/adma.v32.8     URL    
[92]
Zhang K, Chen Z X, Ning R Q, Xi S B, Tang W, Du Y H, Liu C B, Ren Z Y, Chi X, Bai M H, Shen C, Li X, Wang X W, Zhao X X, Leng K, Pennycook S J, Li H P, Xu H, Loh K P, Xie K Y. ACS Appl. Mater. Interfaces, 2019, 11(28): 25147.

doi: 10.1021/acsami.9b05628     URL    
[93]
Chung S H, Manthiram A. Adv. Mater., 2014, 26(43): 7352.

doi: 10.1002/adma.v26.43     URL    
[94]
Zhuang T Z, Huang J Q, Peng H J, He L Y, Cheng X B, Chen C M, Zhang Q. Small, 2016, 12(3): 381.

doi: 10.1002/smll.201503133     URL    
[95]
Chang C H, Chung S H, Manthiram A. J. Mater. Chem. A, 2015, 3(37): 18829.

doi: 10.1039/C5TA05053G     URL    
[96]
Wang A X, Xu G Y, Ding B, Chang Z, Wang Y, Dou H, Zhang X G. ChemElectroChem, 2017, 4(2): 362.

doi: 10.1002/celc.201600579     URL    
[97]
Fu X W, Wang Y, Scudiero L, Zhong W H. Energy Storage Mater., 2018, 15: 447.
[98]
Zhu P, Zhu J D, Zang J, Chen C, Lu Y, Jiang M J, Yan C Y, Dirican M, Kalai Selvan R, Zhang X W. J. Mater. Chem. A, 2017, 5(29): 15096.

doi: 10.1039/C7TA03301J     URL    
[99]
Qu L, Liu P, Yi Y K, Wang T, Yang P, Tian X L, Li M T, Yang B L, Dai S. ChemSusChem, 2019, 12(1): 213.

doi: 10.1002/cssc.v12.1     URL    
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[7] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[8] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[9] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[10] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[11] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[12] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[13] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[14] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[15] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.