English
新闻公告
More
化学进展 2023, Vol. 35 Issue (3): 390-406 DOI: 10.7536/PC220913 前一篇   后一篇

• 综述 •

聚丙烯腈在锂金属电池电解质中的应用

于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华*()   

  1. 防化研究院 先进化学蓄电技术与材料北京市重点实验室 北京 100191
  • 收稿日期:2022-09-15 修回日期:2023-01-14 出版日期:2023-03-24 发布日期:2023-02-16
  • 作者简介:

    文越华 博士,研究员。从事化学电源及其关键材料的研究工作,已承担国防创新基金、国家自然科学基金、国家863项目、国家重点基础研究发展计划(973计划)、国家重点研发计划等项目。发表学术论文60余篇,申请专利40余项,已授权10余项。获军队科技进步二等奖1项(排名3)。

  • 基金资助:
    国家自然科学基金项目(21975284)

Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery

Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua()   

  1. Research Institute of Chemical Defense, Beijing Key Laboratory of Advanced Chemical Energy Storage Technology and Materials,Beijing 100191, China
  • Received:2022-09-15 Revised:2023-01-14 Online:2023-03-24 Published:2023-02-16
  • Contact: *e-mail: wen_yuehua@126.com
  • Supported by:
    National Natural Science Foundation of China(21975284)

随着便携式电子设备、电动汽车和智能电网等快速发展,人们对高能量密度锂金属电池的关注日益增多。锂金属表面不均匀的剥落或沉积会导致锂枝晶生长,锂枝晶容易刺穿隔膜,存在引发电池短路的风险,而且高反应活性的锂金属会与电解液不断反应被消耗,生成不稳定的固体电解质界面(SEI)膜,造成不可逆的容量损失,因此兼顾高能量密度与高安全性是锂金属电池发展应用中亟需解决的关键科学问题。具有强吸电子基团(C≡N)的聚丙烯腈(PAN)聚合物与碳酸酯溶剂中C=O的相互作用能形成更稳定的SEI膜,PAN作为锂负极涂层还能抑制锂枝晶的生长;另外,PAN具有较低的最低未占据分子轨道、较高的电化学稳定性和较宽的电化学窗口,能作为锂金属电池的聚合物电解质,并匹配高电压正极,兼具高能量密度和高安全性,故PAN聚合物在锂金属电池的电解质中有着很大的应用潜力。本文从电解质的不同状态(液态、凝胶、固态)介绍了PAN聚合物在液态电解质中作为隔膜、锂负极保护层以及在凝胶电解质、固态电解质的最新研究成果,并对PAN聚合物在锂金属电池电解质中的发展趋势进行展望。

With the rapid development of portable electronic devices, electric vehicles, and smart grids, there is an increasing interest in high-energy-density lithium metal batteries. Uneven Li stripping or deposition on the surface of lithium metal will lead to the growth of lithium dendrites, which can easily pierce the separator and cause the short circuit in the battery. Moreover, the highly reactive lithium metal will continue to react with the electrolyte, resulting in an unstable solid electrolyte. interfacial (SEI) film and irreversible capacity loss. Taking high-energy-density and high safety into account is a key scientific problem that needs to be solved urgently in the development and application of lithium metal batteries. The interaction of strong electron withdrawing group (C≡N) in polyacrylonitrile (PAN) polymer and C=O in carbonate solvent can form a more stable SEI film. As a lithium anode coating, PAN can also inhibit the growth of lithium dendrites. In addition, due to the low lowest unoccupied molecular orbital, high electrochemical stability and wide electrochemical window, PAN can be regard as polymer electrolytes for lithium metal batteries, and matched with a high-voltage cathode to achieve both high energy density and safety. Thus, PAN polymer has significant potential application in electrolytes for lithium metal batteries. This review mainly starts from the different states of electrolytes (liquid, gel, and solid state). Recent research development of PAN polymer as separators and lithium anode protective layers in liquid electrolytes, as well as its application in gel electrolytes and solid-state electrolytes are presented. Finally, the review prospects the development trend of PAN polymer in lithium metal battery electrolytes.

Contents

1 Introduction

2 The application of PAN in liquid state electrolytes

2.1 As separator

2.2 As lithium anode protective layers

3 The application of PAN in gel electrolytes

4 The application of PAN in solid-state electrolyte

4.1 Monolayer electrolytes containing PAN

4.2 Heterogeneous multilayer electrolytes containing PAN

4.3 PAN electrospinning fiber membrane

5 Conclusion and outlook

()
表1 基于PAN聚合物的隔膜的物理性质
Table 1 The PAN-based separators and their physical performance
图1 基于(a)传统PP(Celgard)隔膜和(b)氨化PAN隔膜的Li-S电池示意图;(c)不同隔膜的对称电池的电压分布[44]
Fig. 1 Illustration of Li-S batteries with (a) conventional PP (Celgard) separator and (b) APANF separator; (c) Voltage profiles of symmetrical cells with different separators[44]. Copyright 2020, Elsevier
图2 (a)基于PBA@PAN隔膜的锂金属电池的优点;(b)FeFe-PB、(c)NiFe-PBA和(d)NiCo-PBA的SEM图像及晶体结构[46]
Fig. 2 (a) The merits of a PBA@PAN separator in Li metal batteries; The SEM images and crystalline structures of (b) FeFe-PB, (c) NiFe-PBA, and (d) NiCo-PBA[46]. Copyright 2022, American Chemical Society
图3 (a)在1 mV·s-1扫描速率下的阴极线性扫描曲线;(b)在5 M LiFSI 电解质中、1 mA·cm-2下,不含/含AN添加剂的恒电流锂沉积曲线;(c)代表性Li+溶剂化结构的计算还原电位;(d)Li+-AN、Li+-EC、Li+-DEC和Li+-FSI-对的计算还原电位[51]
Fig. 3 (a) Cathodic linear sweep at 1 mV·s-1 scan rate; (b) Galvanostatic Li deposition curves at 1 mA·cm-2 in 5 M LiFSI electrolytes without and with AN additive; (c) Calculated reduction potential of the representative Li+ solvation structures; (d) Calculated reduction potential of Li+-AN, Li+-EC, Li+-DEC, and Li+-FSI- pairs[51]. Copyright 2021, Elsevier
图4 (a)PAN和EC的静电势图;(b)PAN的C≡N基团和EC的C=O基团之间的偶极-偶极相互作用的示意图;(c)5 mA· cm-2下循环后的裸锂和具有极性聚合物网络涂层的锂片的截面及表面形貌[55];(d)两种聚合物和溶剂分子之间的结合能;(e)在锂锂对称电池中循环5次后的Li/ELPAN和Li/ELPS[56]
Fig. 4 (a) Electrostatic potential maps of PAN and EC; (b) Schematic illustration of the dipole-dipole interaction between the C≡N group of PAN and the C=O group of EC; (c) Cross-sectional and surface SEM morphologies of bare Li and Li sheets coated with polar polymer network after cycling under 5 mA·cm-2 [55]. Copyright 2019, Royal Society of Chemistry (d) Binding energy between the two polymers and solvent molecules; (e) Li/ELPAN and Li/ELPS after 5 cycles in a Li-Li symmetric battery[56]. Copyright 2022, Elsevier
表2 不同填料的PAN聚合物固态电解质
Table 2 Solid electrolyte based on blending PAN polymer with different fillers
图5 (a)PAN内的原位水解路线;(b)带有SiO2网络的复合SPE示意图[22]
Fig. 5 ( a ) Synthetic routes of the PAN in situ; ( b ) Schematic illustration of the composite SPE with SiO2 networks[22]. Copyright 2022, Elsevier
图6 (a)用PAN修饰的SCN改性LLZTO电解质界面相的作用机理[94]。(b)PAN及不同LLZTO含量的PAN的1H NMR谱;(c)锂离子在复合电解质中粒子间传输的示意图[95]
Fig. 6 ( a ) The function mechanism of PAN-modified SCN electrolyte interphase on the surface of LLZTO electrolyte[94]. Copyright 2021, Wiley ( b )1H NMR spectra of PAN and PAN with different amounts of LLZTO; ( c ) Schematic illustration showing the interparticle Li+ transport in the bulk of the composite electrolyte[95]. Copyright 2021, American Chemical Society
图7 (a)非均质多层固体电解质示意图[96];(b)具有原始LATP和DPCE的固体全电池示意图[97];(c)NCM622‖非均质双层电解质膜‖Li电池原理图[98];(d)SPE膜的制备工艺示意图[99];(e)双层UFF/ PEO/PAN/LiTFSI SPE膜的制备图[100]
Fig. 7 (a) Schematic diagram of the heterogeneous multilayered solid electrolyte[96]. Copyright 2019, Wiley (b) Illustrations of the solid full battery with pristine LATP and DPCE[97]. Copyright 2019, American Chemical Society. (c) Schematic diagram of the NCM622‖heterogeneous dual-layered electrolyte membrane‖Li battery[98]. Copyright 2021, Elsevier. (d) Schematic illustration of the preparation process for SPE membrane[99]. Copyright 2021, Elsevier. (e) The preparation diagram of the double-layer UFF/ PEO/PAN/LiTFSI SPE[100]. Copyright 2021, Wiley
图8 固态电池微润湿设计示意图,SPE是薄而高强度的注入PEO/LiTFSI电解质的PAN膜(PLN)。(a)电池组件示意图;(b)液体电解质的位置和蒸气产生过程;(c)在PLN内部和PAN/PEO界面形成快速离子传输通道的混合溶剂;(d)PAN网络对TFSI-离子的吸附;(e)在阳极/电解液界面处产生的电解液蒸气分解产物LiPO2 F 2 [103]
Fig. 8 Schematic illustrations of the micro-wetting design in a solid- state battery using thin and high-strength PAN network infused with PEO/LiTFSI electrolyte (PLN). (a) A schematic diagram of the battery assembly; (b) the position of the liquid electrolyte and the vapor generation process; (c) the mixed solvent forming fast-ion-transport channels at the internal PAN/PEO interface inside PLN; (d) the adsorption of TFSI- anions by the PAN network; (e) LiPO2F2, as the decomposition product of the electrolyte vapor, is generated at the external anode/electrolyte interface[103]. Copyright 2021, Royal Society of Chemistry
[1]
Fan L, Wei S Y, Li S Y, Li Q, Lu Y Y. Adv. Energy Mater., 2018, 8(11): 1702657.
[2]
Cui Y, Wan J Y, Ye Y S, Liu K, Chou L Y, Cui Y,. Nano Lett., 2020, 20(3): 1686.

doi: 10.1021/acs.nanolett.9b04815     pmid: 32020809
[3]
Zhang D C, Xu X J, Qin Y L, Ji S M, Huo Y P, Wang Z S, Liu Z B, Shen J D, Liu J. Chem. Eur. J., 2020, 26(8): 1720.

doi: 10.1002/chem.v26.8     URL    
[4]
Fan L Z, He H C, Nan C W. Nat. Rev. Mater., 2021, 6(11): 1003.

doi: 10.1038/s41578-021-00320-0    
[5]
Manthiram A, Yu X W, Wang S F. Nat. Rev. Mater., 2017, 2(4): 16103.

doi: 10.1038/natrevmats.2016.103    
[6]
Su A Y, Guo P L, Li J, Kan D X, Pang Q, Li T Q, Sun J Q, Chen G, Wei Y J. J. Mater. Chem. A, 2020, 8(9): 4775.

doi: 10.1039/C9TA05804D     URL    
[7]
Fu C Y, Homann G, Grissa R, Rentsch D, Zhao W G, Gouveia T, Falgayrat A, Lin R Y, Fantini S, Battaglia C. Adv. Energy Mater., 2022, 12(27): 2200412.
[8]
Guan X Z, Wang A X, Liu S, Li G J, Liang F, Yang Y W, Liu X J, Luo J Y. Small, 2018, 14(37): 1801423.
[9]
Chang C H, Chung S H, Manthiram A. Adv. Sustainable Syst., 2017, 1(1/2): 1600034.
[10]
Lin D C, Liu Y Y, Cui Y. Nat. Nanotechnol., 2017, 12(3): 194.

doi: 10.1038/nnano.2017.16    
[11]
Zhang H, Eshetu G G, Judez X, Li C M, Rodriguez-Martínez L M, Armand M. Angew. Chem. Int. Ed., 2018, 57(46): 15002.

doi: 10.1002/anie.201712702     pmid: 29442418
[12]
Yang P, Gao X W, Tian X L, Shu C Y, Yi Y K, Liu P, Wang T, Qu L, Tian B B, Li M T, Tang W, Yang B L, Goodenough J B. ACS Energy Lett., 2020, 5(5): 1681.

doi: 10.1021/acsenergylett.0c00412     URL    
[13]
Jiang T L, He P G, Wang G X, Shen Y, Nan C W, Fan L Z. Adv. Energy Mater., 2020, 10(12): 2070052.
[14]
Yang X F, Jiang M, Gao X J, Bao D N, Sun Q, Holmes N, Duan H, Mukherjee S, Adair K, Zhao C T, Liang J W, Li W H, Li J J, Liu Y, Huang H, Zhang L, Lu S G, Lu Q W, Li R Y, Singh C V, Sun X L. Energy Environ. Sci., 2020, 13(5): 1318.

doi: 10.1039/D0EE00342E     URL    
[15]
Hu P, Chai J C, Duan Y L, Liu Z H, Cui G L, Chen L Q. J. Mater. Chem. A, 2016, 4(26): 10070.

doi: 10.1039/C6TA02907H     URL    
[16]
Wang J, Yang J, Xie J, Xu N. Adv. Mater., 2002, 14(13/14): 963.

doi: 10.1002/(ISSN)1521-4095     URL    
[17]
Ahmed M S, Lee S, Agostini M, Jeong M G, Jung H G, Ming J, Sun Y K, Kim J, Hwang J Y. Adv. Sci., 2021, 8(21): 2101123.
[18]
Luo L, Xu Y L, Zhang H, Han X N, Dong H, Xu X, Chen C, Zhang Y, Lin J H. ACS Appl. Mater. Interfaces, 2016, 8(12): 8154.

doi: 10.1021/acsami.6b03046     URL    
[19]
Chen Y, Liu S J, Cheng S K, Gao S Y, Chai J C, Jiang Q Y, Liu Z H, Liu X Q, Liu J Y, Xie M, Dai W B. ACS Appl. Energy Mater., 2022, 5(3): 3072.

doi: 10.1021/acsaem.1c03692     URL    
[20]
Song Z B, Wang L, Yang K, Gong Y, Yang L Y, Liu X H, Pan F. Mater. Today Energy, 2022, 30: 101153.
[21]
Ma Y, Ma J, Cui G L. Energy Storage Mater., 2019, 20: 146.
[22]
Yao M, Ruan Q Q, Yu T H, Zhang H T, Zhang S J. Energy Storage Mater., 2022, 44: 93.
[23]
Tsutsumi H, Doi S, Onimura K, Oishi T. Electrochemistry, 2002, 70(2): 94.

doi: 10.5796/electrochemistry.70.94     URL    
[24]
Gopalan A, Santhosh P, Manesh K, Nho J, Kim S, Hwang C, Lee K. J. Membr. Sci., 2008, 325(2): 683.

doi: 10.1016/j.memsci.2008.08.047     URL    
[25]
Cho T H, Tanaka M, Onishi H, Kondo Y, Nakamura T, Yamazaki H, Tanase S, Sakai T. J. Power Sources, 2008, 181(1): 155.

doi: 10.1016/j.jpowsour.2008.03.010     URL    
[26]
Cho T H, Sakai T, Tanase S, Kimura K, Kondo Y, Tarao T, Tanaka M. Electrochem. Solid-State Lett., 2007, 10(7): A159.

doi: 10.1149/1.2730727     URL    
[27]
Yuan X T, Razzaq A A, Chen Y J, Lian Y B, Zhao X H, Peng Y, Deng Z. Chin. Chemical Lett., 2021, 32(2): 890.

doi: 10.1016/j.cclet.2020.07.008     URL    
[28]
Yuan F, Chen H Z, Yang H Y, Li H Y, Wang M. Mater. Chem. Phys., 2005, 89(2/3): 390.

doi: 10.1016/j.matchemphys.2004.09.032     URL    
[29]
Lee Y M, Kim J W, Choi N S, Lee J A, Seol W H, Park J K. J. Power Sources, 2005, 139(1/2): 235.

doi: 10.1016/j.jpowsour.2004.06.055     URL    
[30]
Zhang S S. J. Power Sources, 2007, 164(1): 351.

doi: 10.1016/j.jpowsour.2006.10.065     URL    
[31]
Wang J Q, Zhang P, Liang B, Liu Y X, Xu T, Wang L F, Cao B, Pan K. ACS Appl. Mater. Interfaces, 2016, 8(9): 6211.

doi: 10.1021/acsami.5b12723     URL    
[32]
Woo Y C, Tijing L D, Park M J, Yao M W, Choi J S, Lee S, Kim S H, An K J, Shon H K. Desalination, 2017, 403: 187.

doi: 10.1016/j.desal.2015.09.009     URL    
[33]
Ma X J, Kolla P, Yang R D, Wang Z, Zhao Y, Smirnova A L, Fong H. Electrochimica Acta, 2017, 236: 417.

doi: 10.1016/j.electacta.2017.03.205     URL    
[34]
Lopez J, Pei A, Oh J Y, Wang G J N, Cui Y, Bao Z N. J. Am. Chem. Soc., 2018, 140(37): 11735.

doi: 10.1021/jacs.8b06047     URL    
[35]
Abraham K M, Alamgir M. J. Electrochem. Soc., 1990, 137(5): 1657.

doi: 10.1149/1.2086749    
[36]
Lee J H, Manuel J, Choi H, Park W H, Ahn J H. Polymer, 2015, 68: 335.

doi: 10.1016/j.polymer.2015.04.055     URL    
[37]
Gao Y, Sang X, Chen Y F, Li Y, Liu B B, Sheng J L, Feng Y, Li L, Liu H Q, Wang X W, Kuang C X, Zhai Y Y. J. Mater. Sci., 2020, 55(8): 3549.

doi: 10.1007/s10853-019-04218-9    
[38]
Wang A A, Sun Z H, Ning R X, Liang J, Li L, Zhou X S. AIP Adv., 2019, 9(8): 085027.

doi: 10.1063/1.5116286     URL    
[39]
Chen W P, Wang X, Liang J Y, Chen Y, Ma W, Zhang S Y. Membranes, 2022, 12(2): 124.

doi: 10.3390/membranes12020124     URL    
[40]
Chen D X, Wang X, Liang J Y, Zhang Z, Chen W P. Membranes, 2021, 11(4): 267.

doi: 10.3390/membranes11040267     URL    
[41]
Gong W Z, Zhang Z, Wei S Y, Ruan S L, Shen C Y, Turng L S. J. Electrochem. Soc., 2020, 167(2): 020509.

doi: 10.1149/1945-7111/ab615f     URL    
[42]
Yusuf A, Avvaru V S, Dirican M, Sun C C, Wang D Y. Appl. Mater. Today, 2020, 20: 100675.
[43]
Kang S H, Jang J K, Jeong H Y, So S, Hong S K, Hong Y T, Yoon S J, Yu D M. ACS Appl. Energy Mater., 2022, 5(2): 2452.

doi: 10.1021/acsaem.1c03948     URL    
[44]
Hu M F, Ma Q Y, Yuan Y, Pan Y K, Chen M Q, Zhang Y Y, Long D H. Chem. Eng. J., 2020, 388: 124258.
[45]
Zhang L P, Feng G H, Li X L, Cui S Z, Ying S W, Feng X M, Mi L W, Chen W H. J. Membr. Sci., 2019, 577: 137.

doi: 10.1016/j.memsci.2019.02.002     URL    
[46]
Du M C, Peng Z H, Long X, Huang Z J, Lin Z W, Yang J H, Ding K, Chen L Y, Hong X J, Cai Y P, Zheng Q F. Nano Lett., 2022, 22(12): 4861.

doi: 10.1021/acs.nanolett.2c01243     URL    
[47]
Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X W. Energy Environ. Sci., 2014, 7(12): 3857.

doi: 10.1039/C4EE01432D     URL    
[48]
Zhang R, Li N W, Cheng X B, Yin Y X, Zhang Q, Guo Y G. Adv. Sci., 2017, 4(3): 1600445.
[49]
Cheng X B, Zhang R, Zhao C Z, Wei F, Zhang J G, Zhang Q. Adv. Sci., 2016, 3(3): 1500213.
[50]
Cheng X B, Zhang R, Zhao C Z, Zhang Q. Chem. Rev., 2017, 117(15): 10403.

doi: 10.1021/acs.chemrev.7b00115     URL    
[51]
Zhang J, Zhou M S, Shi J Y, Zhao Y F, Wen X Y, Su C C, Wu J Z, Guo J C. Nano Energy, 2021, 88: 106298.

doi: 10.1016/j.nanoen.2021.106298     URL    
[52]
Xu H Y, Li Q, Pan H Y, Qiu J L, Cao W Z, Yu X Q, Li H. Chin. Phys. B, 2019, 28(7): 078202.
[53]
Xu K. Chem. Rev., 2014, 114(23): 11503.

doi: 10.1021/cr500003w     URL    
[54]
Wang C, Sun X L, Yang L, Song D P, Wu Y, Ohsaka T, Matsumoto F, Wu J F. Adv. Mater. Interfaces, 2021, 8(1): 2001698.
[55]
Bae J, Qian Y M, Li Y T, Zhou X Y, Goodenough J B, Yu G H. Energy Environ. Sci., 2019, 12(11): 3319.

doi: 10.1039/C9EE02558H     URL    
[56]
Shi P, Liu Z Y, Zhang X Q, Chen X, Yao N, Xie J, Jin C B, Zhan Y X, Ye G, Huang J Q, Ifan E L S, Maria-Magdalena T, Zhang Q. J. Energy Chem., 2022, 64: 172.

doi: 10.1016/j.jechem.2021.04.045     URL    
[57]
Wang D D, Liu H X, Liu F, Ma G R, Yang J, Gu X D, Zhou M, Chen Z. Nano Lett., 2021, 21(11): 4757.

doi: 10.1021/acs.nanolett.1c01241     URL    
[58]
Manuel Stephan A. Eur. Polym. J., 2006, 42(1): 21.

doi: 10.1016/j.eurpolymj.2005.09.017     URL    
[59]
Cheng X L, Pan J, Zhao Y, Liao M, Peng H S. Adv. Energy Mater., 2018, 8(7): 1702184.
[60]
Yang Q, Deng N P, Cheng B W, Kang W M. Progress in Chemistry, 2021, 33(12): 2270.

doi: 10.7536/PC201145    
(杨琪, 邓南平, 程博闻, 康卫民. 化学进展, 2021, 33(12): 2270.).

doi: 10.7536/PC201145    
[61]
Wang S H, Kuo P L, Hsieh C T, Teng H. ACS Appl. Mater. Interfaces, 2014, 6(21): 19360.

doi: 10.1021/am505448a     URL    
[62]
Sun X X, Sun G W, Wang X H. Polymer, 2017, 108: 432.

doi: 10.1016/j.polymer.2016.12.026     URL    
[63]
Wu Q Y, Liang H Q, Gu L, Yu Y, Huang Y Q, Xu Z K. Polymer, 2016, 107: 54.

doi: 10.1016/j.polymer.2016.11.008     URL    
[64]
He C, Liu J, Li J, Zhu F, Zhao H. J. Memb. Sci., 2018, 560: 30.

doi: 10.1016/j.memsci.2018.05.013     URL    
[65]
Li S S, Ren W H, Huang Y, Zhou Q G, Luo C, Li Z Z, Li X, Wang M S, Cao H J. Electrochimica Acta, 2021, 391: 138950.

doi: 10.1016/j.electacta.2021.138950     URL    
[66]
Wang X L, Hao X J, Xia Y, Liang Y F, Xia X H, Tu J P. J. Membr. Sci., 2019, 582: 37.

doi: 10.1016/j.memsci.2019.03.048     URL    
[67]
Zhou D, He Y B, Liu R L, Liu M, Du H D, Li B H, Cai Q, Yang Q H, Kang F Y. Adv. Energy Mater., 2015, 5(15): 1500353.
[68]
Jeon Y M, Kim S, Lee M, Lee W B, Park J H. Adv. Energy Mater., 2020, 10(47): 2003114.
[69]
Zhang X, Zhao S, Fan W, Wang J, Li C. Electrochim. Acta, 2019, 301: 304.

doi: 10.1016/j.electacta.2019.01.156     URL    
[70]
Wang X Y, Fang Y J, Yan X D, Liu S L, Zhao X Y, Zhang L Z. Polymer, 2021, 230: 124038.
[71]
Cheng H, Yan C Y, Orenstein R, Dirican M, Wei S Z, Subjalearndee N, Zhang X W. Adv. Fiber Mater., 2022, 4(3): 532.

doi: 10.1007/s42765-021-00128-1    
[72]
Yang X F, Adair K R, Gao X J, Sun X L. Energy Environ. Sci., 2021, 14(2): 643.

doi: 10.1039/D0EE02714F     URL    
[73]
Zheng Y, Yao Y Z, Ou J H, Li M, Luo D, Dou H Z, Li Z Q, Amine K, Yu A P, Chen Z W. Chem. Soc. Rev., 2020, 49(23): 8790.

doi: 10.1039/d0cs00305k     pmid: 33107869
[74]
Tang W J, Tang S, Zhang C J, Ma Q T, Xiang Q, Yang Y W, Luo J Y. Adv. Energy Mater., 2018, 8(24): 1800866.
[75]
Zhang T F, He W J, Zhang W, Wang T, Li P, Sun Z M, Yu X B. Chem. Sci., 2020, 11(33): 8686.

doi: 10.1039/D0SC03121F     URL    
[76]
Barbosa J, Dias J, Lanceros-MÉndez S, Costa C. Membranes, 2018, 8(3): 45.

doi: 10.3390/membranes8030045     URL    
[77]
Oudenhoven J F M, Baggetto L, Notten P H L. Adv. Energy Mater., 2011, 1(1): 10.

doi: 10.1002/aenm.201000002     URL    
[78]
Li J Z, Huang X J, Chen L Q. J. Electrochem. Soc., 2000, 147(7): 2653.

doi: 10.1149/1.1393585     URL    
[79]
Zhang J X, Zhao N, Zhang M, Li Y Q, Chu P K, Guo X X, Di Z F, Wang X, Li H. Nano Energy, 2016, 28: 447.

doi: 10.1016/j.nanoen.2016.09.002     URL    
[80]
Yue L P, Ma J, Zhang J J, Zhao J W, Dong S M, Liu Z H, Cui G L, Chen L Q. Energy Storage Mater., 2016, 5: 139.
[81]
Yang T, Zheng J, Cheng Q, Hu Y Y, Chan C K. ACS Appl. Mater. Interfaces, 2017, 9(26): 21773.

doi: 10.1021/acsami.7b03806     URL    
[82]
Tran H K, Wu Y S, Chien W C, Wu S H, Jose R, Lue S J, Yang C C. ACS Appl. Energy Mater., 2020, 3(11): 11024.

doi: 10.1021/acsaem.0c02018     URL    
[83]
Hu S, Du L L, Zhang G, Zou W Y, Zhu Z, Xu L, Mai L Q. ACS Appl. Mater. Interfaces, 2021, 13(11): 13183.

doi: 10.1021/acsami.0c22635     URL    
[84]
Zhang X, Xu B Q, Lin Y H, Shen Y, Li L L, Nan C W. Solid State Ion., 2018, 327: 32.

doi: 10.1016/j.ssi.2018.10.023     URL    
[85]
Jia W S, Li Z L, Wu Z R, Wang L P, Wu B, Wang Y H, Cao Y, Li J Z. Solid State Ion., 2018, 315: 7.

doi: 10.1016/j.ssi.2017.11.026     URL    
[86]
Gao H C, Grundish N S, Zhao Y J, Zhou A J, Goodenough J B. Energy Mater. Adv., 2021, 2021: 1932952.
[87]
Liu L, Cai Y H, Zhao Z K, Ma C W, Li C L, Mu D B. Mater. Chem. Front., 2022, 6(4): 430.

doi: 10.1039/D1QM01508G     URL    
[88]
Liu C H, Sacci R L, Sahore R, Veith G M, Dudney N J, Chen X C. J. Power Sources, 2022, 527: 231165.
[89]
Ferry A, Edman L, Forsyth M, MacFarlane D R, Sun J Z. J. Appl. Phys., 1999, 86(4): 2346.

doi: 10.1063/1.371053     URL    
[90]
Wu B, Wang L P, Li Z L, Zhao M J, Chen K H, Liu S H, Pu Y Q, Li J Z. J. Electrochem. Soc., 2016, 163(10): A2248.

doi: 10.1149/2.0531610jes     URL    
[91]
Chen Y T, Chuang Y C, Su J H, Yu H C, Chen-Yang Y W. J. Power Sources, 2011, 196(5): 2802.

doi: 10.1016/j.jpowsour.2010.11.058     URL    
[92]
Pignanelli F, Romero M, Esteves M, Fernández-Werner L, Faccio R, Mombrú A W. Ionics, 2019, 25(6): 2607.

doi: 10.1007/s11581-018-2768-z    
[93]
Liu W, Liu N, Sun J, Hsu P C, Li Y Z, Lee H W, Cui Y. Nano Lett., 2015, 15(4): 2740.

doi: 10.1021/acs.nanolett.5b00600     URL    
[94]
Yang Y N, Jiang F L, Li Y Q, Wang Z X, Zhang T. Angewandte Chemie Int. Ed., 2021, 60(45): 23922.

doi: 10.1002/anie.v60.45     URL    
[95]
Chen W P, Duan H, Shi J L, Qian Y M, Wan J, Zhang X D, Sheng H, Guan B, Wen R, Yin Y X, Xin S, Guo Y G, Wan L J. J. Am. Chem. Soc., 2021, 143(15): 5717.

doi: 10.1021/jacs.0c12965     pmid: 33843219
[96]
Duan H, Fan M, Chen W P, Li J Y, Wang P F, Wang W P, Shi J L, Yin Y X, Wan L J, Guo Y G. Adv. Mater., 2019, 31(12): 1807789.
[97]
Liang J Y, Zeng X X, Zhang X D, Zuo T T, Yan M, Yin Y X, Shi J L, Wu X W, Guo Y G, Wan L J. J. Am. Chem. Soc., 2019, 141(23): 9165.

doi: 10.1021/jacs.9b03517     URL    
[98]
Mu S, Huang W L, Sun W H, Zhao N, Jia M Y, Bi Z J, Guo X X. J. Energy Chem., 2021, 60: 162.

doi: 10.1016/j.jechem.2020.12.026     URL    
[99]
Li B Y, Su Q M, Liu C K, Wang Q S, Zhang M, Ding S K, Du G H, Xu B S. J. Power Sources, 2021, 496: 229835.
[100]
He F, Tang W J, Zhang X Y, Deng L J, Luo J Y. Adv. Mater., 2021, 33(45): 2105329.
[101]
Li D, Chen L, Wang T S, Fan L Z. ACS Appl. Mater. Interfaces, 2018, 10(8): 7069.

doi: 10.1021/acsami.7b18123     URL    
[102]
Gao L, Li J X, Sarmad B, Cheng B W, Kang W M, Deng N P. Nanoscale, 2020, 12(26): 14279.

doi: 10.1039/d0nr04244g     pmid: 32609141
[103]
Shi P R, Ma J B, Huang Y F, Fu W B, Li S, Wang S W, Zhang D F, He Y B, Kang F Y. J. Mater. Chem. A, 2021, 9(25): 14344.

doi: 10.1039/D1TA03059K     URL    
[104]
Ma Y X, Wan J Y, Yang Y F, Ye Y S, Xiao X, Boyle D T, Burke W, Huang Z J, Chen H, Cui Y, Yu Z A, Oyakhire S T, Cui Y,. Adv. Energy Mater., 2022, 12(15): 2103720.
[105]
Zhang Z S, Zhang L, Liu Y Y, Yang T T, Wang Z W, Yan X L, Yu C. J. Mater. Chem. A, 2019, 7(40): 23173.

doi: 10.1039/C9TA08415K     URL    
[106]
Zhang D C, Xu X J, Ji S M, Wang Z S, Liu Z B, Shen J D, Hu R Z, Liu J, Zhu M. ACS Appl. Mater. Interfaces, 2020, 12(19): 21586.

doi: 10.1021/acsami.0c02291     URL    
[1] 岳昕阳, 包戬, 马萃, 吴晓京, 周永宁. 热熔灌输法制备三维骨架支撑金属锂复合负极[J]. 化学进展, 2022, 34(3): 683-695.
[2] 刘新叶, 梁智超, 王山星, 邓远富, 陈国华. 碳基材料修饰聚烯烃隔膜提高锂硫电池性能研究[J]. 化学进展, 2021, 33(9): 1665-1678.
[3] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[4] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[5] 李祥业, 白天娇, 翁昕, 张冰, 王珍珍, 何铁石. 电纺纤维在超级电容器中的应用[J]. 化学进展, 2021, 33(7): 1159-1174.
[6] 郭林莉, 张新, 肖敏, 王拴紧, 韩东梅, 孟跃中. 二维材料修饰隔膜抑制锂硫电池穿梭效应策略[J]. 化学进展, 2021, 33(7): 1212-1220.
[7] 丁宇森, 张璞, 黎洪, 朱文欢, 魏浩. 锂硒电池的研究现状与展望[J]. 化学进展, 2021, 33(4): 610-632.
[8] 张一, 张萌, 佟一凡, 崔海霞, 胡攀登, 黄苇苇. 多羰基共价有机骨架在二次电池中的应用[J]. 化学进展, 2021, 33(11): 2024-2032.
[9] 刘秋艳, 王雪锋, 王兆翔, 陈立泉. 高陶瓷含量复合固态电解质[J]. 化学进展, 2021, 33(1): 124-135.
[10] 孙皓, 宋程威, 庞越鹏, 郑时有. 锂硫电池隔膜功能化设计[J]. 化学进展, 2020, 32(9): 1402-1411.
[11] 李栋, 郑育英, 南皓雄, 方岩雄, 刘全兵, 张强. 高安全、高比能固态锂硫电池电解质[J]. 化学进展, 2020, 32(7): 1003-1014.
[12] 王惠亚, 赵立敏, 张芳, 何丹农. 高性能锂离子二次电池隔膜[J]. 化学进展, 2019, 31(9): 1251-1262.
[13] 杨凯, 章胜男, 韩东梅, 肖敏, 王拴紧*, 孟跃中*. 多功能锂硫电池隔膜[J]. 化学进展, 2018, 30(12): 1942-1959.
[14] 程新兵, 张强*. 金属锂枝晶生长机制及抑制方法[J]. 化学进展, 2018, 30(1): 51-72.
[15] 龚雪, 杨金龙, 姜玉林, 木士春. 静电纺丝技术在锂离子动力电池中的应用[J]. 化学进展, 2014, 26(01): 41-47.