English
新闻公告
More
化学进展 2022, Vol. 34 Issue (9): 2051-2062 DOI: 10.7536/PC220121 前一篇   后一篇

• 综述 •

钠离子混合电容器电极材料的研究进展

戚琦1,*(), 徐佩珠1, 田志东2, 孙伟2, 刘杨杰2, 胡翔2,*()   

  1. 1 赣南师范大学化学化工学院 赣州 341000
    2 中国科学院福建物质结构研究所 福州 350002
  • 收稿日期:2022-01-18 修回日期:2022-02-17 出版日期:2022-09-20 发布日期:2022-04-01
  • 作者简介:

    戚琦 副教授,2000年于北京师范大学化学学院获硕士学位。目前就职于赣南师范大学化学化工学院。研究方向为光谱分析,纳米材料的设计合成及其应用, 电传感新方法的研究等,参与完成国家自然基金课题4项,专利1项,发表论文近20余篇。

    胡翔 博士,2021年于福州大学材料科学与工程学院获博士学位。目前为中国科学院福建物质结构研究所特别研究助理。研究方向为新型碳基复合材料的设计合成及其在电化学储能器件中的应用,包括锂、钠、钾离子电池及金属离子混合电容器等,研究成果在Energy Environ. Sci.Nat. Commun.Adv. Energy Mater.Adv. Funct. Mater.ACS NanoEnergy Storage Mater.Nano-Micro Lett.SmallJ. Mater. Chem. A等能源及材料期刊发表论文30余篇,其中第一/通讯作者15篇。

  • 基金资助:
    国家自然科学基金项目(21875253); 中国科学院科研装备开发项目(YJKYYQ20190007); 中国科学院国际合作局国际伙伴计划(121835KYSB20200039); 中国博士后科学基金(2021TQ0331); 中国博士后科学基金(2021M700147)

Recent Advances of the Electrode Materials for Sodium-Ion Capacitors

Qi Qi1(), Peizhu Xu1, Zhidong Tian2, Wei Sun2, Yangjie Liu2, Xiang Hu2()   

  1. 1 School of Chemistry and Chemical Engineering, Gannan Normal University,Ganzhou 341000, China
    2 Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences,Fuzhou 350002, China
  • Received:2022-01-18 Revised:2022-02-17 Online:2022-09-20 Published:2022-04-01
  • Contact: *e-mail: qiqichem@163.com(Qi Qi);huxiang@fjirsm.ac.cn(Xiang Hu)
  • Supported by:
    National Natural Science Foundation of China(21875253); Scientific Research and Equipment Development Project of CAS(YJKYYQ20190007); CAS-Commonwealth Scientific and Industrial Research Organization (CSIRO) Joint Research Projects(121835KYSB20200039); China Postdoctoral Science Foundation(2021TQ0331); China Postdoctoral Science Foundation(2021M700147)

钠离子混合电容器(SIHCs)因其资源丰富和价格低廉等优点,同时具有与锂相似的物理化学性质,被认为是最具有发展前景的电化学储能器件之一。通常,SIHCs由高能量密度的阳极和高功率密度的阴极组成,可在钠离子电池和超级电容器之间搭建能量和功率的桥梁。然而,电容型正极材料和电池型负极材料之间的动力学和容量的不平衡问题成为实现其规模化应用的主要瓶颈。本文概述了SIHCs相关的工作原理和各类正、负极材料研究进展,从材料结构的可控制备和改性处理等方面对SIHCs发展趋势进行了重点评述,并讨论了SIHCs发展过程中遇到的主要挑战,最后对该领域在未来的研究方向进行了展望。

Sodium ion hybrid capacitors (SIHCs) have been considered to be one of the most promising electrochemical energy storage devices because of the abundant and low cost of sodium resources, and their similar physical and chemical properties to that of the lithium. SIHCs are usually assembled with high-energy anode and high-power cathode, which can bridge the energy and power gaps between sodium-ion batteries and supercapacitors. However, their large-scale application is strongly impeded by the kinetics and capacity imbalance between capacitive-type cathode and battery-type anode. In this paper, the working principle of SIHCs and the research progress of various anode and cathode materials are summarized. The development trend of SIHCs is reviewed emphatically from the aspects of controlled preparation and modification of material structure. The main challenges encountered in the development of SIHCs are discussed and the future research direction of the electrode materials in this field is prospected.

Contents

1 Introduction

2 Operating principle

3 Cathode materials

3.1 Activated carbon

3.2 Carbon nanotube

3.3 Graphene

3.4 MXene

4 Anode materials

4.1 Intercalation materials

4.2 Conversion materials

4.3 Alloying materials

5 Conclusion and outlook

()
图1 钠离子混合电容器的工作原理图
Fig. 1 Working principle illustration of typical SIHCs
图2 (a,b)ANCN的TEM和元素分布图[26];(c)N/S-HCNs的TEM图;(d,e)HCN,N-HCN,S-HCN,和N/S-HCN对离子的吸附能对比以及对PF6-吸附的电荷密度差异[27]
Fig.2 (a, b) TEM and elemental mapping images of the ANCN[26]; (c) TEM image of the N/S-HCNs, (d, e) the comparison of ion adsorption energy for HCN, N-HCN, S-HCN and N/S-HCN, and the charge density difference for PF6-[27]
表1 各类正极材料的电化学性能比较
Table 1 The electrochemical performance comparison of different cathode materials
图3 (a)V2CTx的合成示意图及嵌钠机理图,(b)HC/V2CTx构成的SIHCs机理图及(c)不同电流密度下充放电曲线图[37]
Fig. 3 (a) Schematic illustration of the synthesis of V2CTx and its sodium intercalation, (b) schematic illustration of the charge-storage mechanisms for HC/V2CTx SIHCs device and (c) galvanostatic charge-discharge profiles at different current densities[37]
图4 (a)钠离子在TiO2@PBC中扩散机理图,(b)TiO2@PBC//AC SIHCs装置在不同电流密度下的充放电曲线图[50]; (c)TiO2@CNT@C的SEM图,插图为其TEM图,(d)TiO2@CNT@C//BAC构成的SIHCs装置与其他储能装置的性能对比,(e)TiO2@CNT@C//BAC构成的SIHCs长循环性能[51]
Fig. 4 (a) Schematic diagram of Na+ diffusion in TiO2. (b) Galvanostatic charge-discharge profiles at different current densities of TiO2@PBC//AC SIHCs device[50];(c) SEM and TEM images of the TiO2@CNT@C, (d) performance comparison for the TiO2@CNT@C//BAC SIHCs device and currently available energy-storage systems, (e) long-term cycle performance of TiO2@CNT@C//BAC SIHCs device[51]
图5 (a, b) 3D-IO FeS-QDs@NC的SEM和TEM图[57]; (c, d) SnS2/GCA的SEM图[59]; (e, f) MoSe2/G的SEM和TEM图[13]
Fig. 5 (a, b) SEM and TEM images of the 3D-IO FeS-QDs@NC[57]; (c, d) SEM images of the SnS2/GCA[59]; (e, f) TEM images of the MoSe2/G[13]
图6 能量与功率密度对比Ragone曲线图
Fig. 6 Ragone plots of the SIHCs device compared with previously reported SIHCs
表2 不同负极/正极构成的钠离子混合电容器电化学性能比较
Table 2 The electrochemical performance comparison based on different anode/cathode SHICs devices
[1]
Tarascon J M, Armand M. Nature, 2001, 414(6861): 359.

doi: 10.1038/35104644     URL    
[2]
Sun H T, Mei L, Liang J F, Zhao Z P, Lee C, Fei H L, Ding M N, Lau J, Li M F, Wang C, Xu X, Hao G L, Papandrea B, Shakir I, Dunn B, Huang Y, Duan X F. Science, 2017, 356(6338): 599.

doi: 10.1126/science.aam5852     URL    
[3]
Ge J M, Fan L, Rao A M, Zhou J, Lu B G. Nat. Sustain., 2022, 5(3): 225.

doi: 10.1038/s41893-021-00810-7     URL    
[4]
Cai K D, Yan S, Xu T Y, Lang X S, Wang Z H. Prog. Chem., 2021, 33(8): 1404.
( 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 化学进展, 2021, 33 (8): 1404.).

doi: 10.7536/PC200764    
[5]
Dubal D P, Ayyad O, Ruiz V, GÓmez-Romero P. Chem. Soc. Rev., 2015, 44(7): 1777.

doi: 10.1039/c4cs00266k     pmid: 25623995
[6]
Amatucci G G, Badway F, du Pasquier A, Zheng T. J. Electrochem. Soc., 2001, 148(8): A930.

doi: 10.1149/1.1383553     URL    
[7]
Ding J, Hu W B, Paek E, Mitlin D. Chem. Rev., 2018, 118(14): 6457.

doi: 10.1021/acs.chemrev.8b00116     pmid: 29953230
[8]
Cai P, Zou K Y, Deng X L, Wang B W, Zheng M, Li L H, Hou H S, Zou G Q, Ji X B. Adv. Energy Mater., 2021, 11(16): 2003804.

doi: 10.1002/aenm.202003804     URL    
[9]
Chen Z, Augustyn V, Jia X L, Xiao Q F, Dunn B, Lu Y F. ACS Nano, 2012, 6(5): 4319.

doi: 10.1021/nn300920e     URL    
[10]
Yuan Y, Wang C C, Lei K X, Li H X, Li F J, Chen J. ACS Cent. Sci., 2018, 4(9): 1261.

doi: 10.1021/acscentsci.8b00437     URL    
[11]
Wang X G, Li Q C, Zhang L, Hu Z L, Yu L H, Jiang T, Lu C, Yan C L, Sun J Y, Liu Z F. Adv. Mater., 2018, 30(26): 1800963.

doi: 10.1002/adma.201800963     URL    
[12]
Li Y Z, Wang H W, Huang B J, Wang L B, Wang R, He B B, Gong Y S, Hu X L. J. Mater. Chem. A, 2018, 6(30): 14742.

doi: 10.1039/C8TA04597F     URL    
[13]
Zhao X, Cai W, Yang Y, Song X D, Neale Z, Wang H E, Sui J H, Cao G Z. Nano Energy, 2018, 47: 224.

doi: 10.1016/j.nanoen.2018.03.002     URL    
[14]
Yuan J, Hu X, Liu Y J, Zhong G B, Yu B, Wen Z H. Chem. Commun., 2020, 56(90): 13933.

doi: 10.1039/D0CC05476C     URL    
[15]
Su F, Qin J Q, Das P, Zhou F, Wu Z S. Energy Environ. Sci., 2021, 14(4): 2269.

doi: 10.1039/D1EE00317H     URL    
[16]
Liu S D, Kang L, Zhang J, Jun S C, Yamauchi Y. ACS Energy Lett., 2021, 6(11): 4127.

doi: 10.1021/acsenergylett.1c01855     URL    
[17]
Wang T, Sun Y, Zhang L L, Li K Q, Yi Y K, Song S Y, Li M T, Qiao Z A, Dai S. Adv. Mater., 2019, 31(16): 1807876.

doi: 10.1002/adma.201807876     URL    
[18]
Zhang L P, Wang W A, Lu S F, Xiang Y. Adv. Energy Mater., 2021, 11(11): 2003640.

doi: 10.1002/aenm.202003640     URL    
[19]
Yang B J, Chen J T, Lei S L, Guo R S, Li H X, Shi S Q, Yan X B. Adv. Energy Mater., 2018, 8(10): 1702409.

doi: 10.1002/aenm.201702409     URL    
[20]
Li H X, Lang J W, Lei S L, Chen J T, Wang K J, Liu L Y, Zhang T Y, Liu W S, Yan X B. Adv. Funct. Mater., 2018, 28(30): 1800757.

doi: 10.1002/adfm.201800757     URL    
[21]
Liu L T, Sun X Y, Dong Y, Wang D K, Wang Z, Jiang Z J, Li A, Chen X H, Song H H. J. Power Sources, 2021, 506: 230170.

doi: 10.1016/j.jpowsour.2021.230170     URL    
[22]
Hu X, Wang G X, Li J W, Huang J H, Liu Y J, Zhong G B, Yuan J, Zhan H B, Wen Z H. Energy Environ. Sci., 2021, 14(8): 4564.

doi: 10.1039/D1EE00370D     URL    
[23]
Kim J, Choi M S, Shin K H, Kota M, Kang Y B, Lee S, Lee J Y, Park H S. Adv. Mater., 2019, 31(34): 1803444.

doi: 10.1002/adma.201803444     URL    
[24]
Futaba D N, Hata K J, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S. Nat. Mater., 2006, 5(12): 987.

pmid: 17128258
[25]
Kim B, Chung H, Kim W. J. Phys. Chem. C, 2010, 114(35): 15223.

doi: 10.1021/jp105498d     URL    
[26]
Li Y J, Yang Y, Zhou J H, Lin S Y, Xu Z K, Xing Y, Zhang Y L, Feng J R, Mu Z J, Li P H, Chao Y G, Guo S J. Energy Storage Mater., 2019, 23: 530.
[27]
Cui C Y, Wang H, Wang M, Ou X W, Wei Z X, Ma J M, Tang Y B. Small, 2019, 15(34): 1902659.

doi: 10.1002/smll.201902659     URL    
[28]
Li D, Müller M B, Gilje S, Kaner R B, Wallace G G. Nat. Nanotechnol., 2008, 3(2): 101.

doi: 10.1038/nnano.2007.451     URL    
[29]
Hu X, Zeng G, Chen J X, Lu C Z, Wen Z H. J. Mater. Chem. A, 2017, 5(9): 4535.

doi: 10.1039/C6TA10301D     URL    
[30]
Dong S Y, Xu Y L, Wu L Y, Dou H, Zhang X G. Energy Storage Mater., 2018, 11: 8.
[31]
Hummers W S Jr, Offeman R E. J. Am. Chem. Soc., 1958, 80(6): 1339.

doi: 10.1021/ja01539a017     URL    
[32]
Wang F X, Wang X W, Chang Z, Wu X W, Liu X, Fu L J, Zhu Y S, Wu Y P, Huang W. Adv. Mater., 2015, 27(43): 6962.

doi: 10.1002/adma.201503097     URL    
[33]
Zhao M Q, Xie X Q, Ren C G, Makaryan T, Anasori B, Wang G X, Gogotsi Y. Adv. Mater., 2017, 29(37): 1702410.

doi: 10.1002/adma.201702410     URL    
[34]
Pomerantseva E, Gogotsi Y. Nat. Energy, 2017, 2(7): 17089.

doi: 10.1038/nenergy.2017.89     URL    
[35]
Zhu K, Zhang H Y, Ye K, Zhao W B, Yan J, Cheng K, Wang G L, Yang B F, Cao D X. ChemElectroChem, 2017, 4(11): 3018.

doi: 10.1002/celc.201700523     URL    
[36]
Li Y, Pan C P, Kamdem P, Jin X J. Energy Fuels, 2020, 34(8): 10120.

doi: 10.1021/acs.energyfuels.0c01352     URL    
[37]
Dall’Agnese Y, Taberna P L, Gogotsi Y, Simon P. J. Phys. Chem. Lett., 2015, 6(12): 2305.

doi: 10.1021/acs.jpclett.5b00868     URL    
[38]
Park G D, Park J S, Kim J K, Kang Y C. Adv. Energy Mater., 2021, 11(27): 2003058.

doi: 10.1002/aenm.202003058     URL    
[39]
Chu C X, Li R, Cai F P, Bai Z C, Wang Y X, Xu X, Wang N N, Yang J, Dou S X. Energy Environ. Sci., 2021, 14: 4318.

doi: 10.1039/D1EE01341F     URL    
[40]
Li Z P, Zhu K J, Liu P, Jiao L F. Adv. Energy Mater., 2022, 12(4): 2100359.

doi: 10.1002/aenm.202100359     URL    
[41]
Rojo T, Hu Y S, Forsyth M, Li X L. Adv. Energy Mater., 2018, 8(17): 1800880.

doi: 10.1002/aenm.201800880     URL    
[42]
Cao Y L, Xiao L F, Sushko M L, Wang W, Schwenzer B, Xiao J, Nie Z M, Saraf L V, Yang Z G, Liu J. Nano Lett., 2012, 12(7): 3783.

doi: 10.1021/nl3016957     URL    
[43]
Ding J, Wang H L, Li Z, Cui K, Karpuzov D, Tan X H, Kohandehghan A, Mitlin D. Energy Environ. Sci., 2015, 8(3): 941.

doi: 10.1039/C4EE02986K     URL    
[44]
Wang H L, Mitlin D, Ding J, Li Z, Cui K. J. Mater. Chem. A, 2016, 4(14): 5149.

doi: 10.1039/C6TA01392A     URL    
[45]
Li D D, Ye C, Chen X Z, Wang S Q, Wang H H. J. Power Sources, 2018, 382: 116.

doi: 10.1016/j.jpowsour.2018.02.036     URL    
[46]
Zou K Y, Cai P, Liu C, Li J Y, Gao X, Xu L Q, Zou G Q, Hou H S, Liu Z M, Ji X B. J. Mater. Chem. A, 2019, 7(22): 13540.

doi: 10.1039/C9TA03797G     URL    
[47]
Xia Q B, Lin Z H, Lai W H, Wang Y F, Ma C, Yan Z C, Gu Q F, Wei W F, Wang J Z, Zhang Z Q, Liu H K, Dou S X, Chou S L. Angew. Chem. Int. Ed., 2019, 58(40): 14125.

doi: 10.1002/anie.201907189     URL    
[48]
Xu Y, Memarzadeh Lotfabad E, Wang H L, Farbod B, Xu Z W, Kohandehghan A, Mitlin D. Chem. Commun., 2013, 49(79): 8973.

doi: 10.1039/c3cc45254a     URL    
[49]
Que L F, Yu F D, Wang Z B, Gu D M. Small, 2018, 14(17): 1704508.

doi: 10.1002/smll.201704508     URL    
[50]
Huang L C, Zeng L C, Zhu J H, Sun L N, Yao L, Deng L B, Zhang P X. J. Power Sources, 2021, 493: 229678.

doi: 10.1016/j.jpowsour.2021.229678     URL    
[51]
Zhu Y E, Yang L P, Sheng J, Chen Y N, Gu H C, Wei J P, Zhou Z. Adv. Energy Mater., 2017, 7(22): 1701222.

doi: 10.1002/aenm.201701222     URL    
[52]
Zhang P P, Zhao X, Liu Z C, Wang F X, Huang Y, Li H Y, Li Y, Wang J H, Su Z Q, Wei G, Zhu Y S, Fu L J, Wu Y P, Huang W. NPG Asia Mater., 2018, 10(5): 429.

doi: 10.1038/s41427-018-0049-y     URL    
[53]
Niu J, Liang J J, Gao A, Dou M L, Zhang Z P, Lu X, Wang F. J. Mater. Chem. A, 2019, 7(38): 21711.

doi: 10.1039/C9TA06964J     URL    
[54]
Liu B B, Liu Y J, Hu X, Zhong G B, Li J W, Yuan J, Wen Z H. Adv. Funct. Mater., 2021, 31(31): 2101066.

doi: 10.1002/adfm.202101066     URL    
[55]
Hu X, Jia J C, Wang G X, Chen J X, Zhan H B, Wen Z H. Adv. Energy Mater., 2018, 8(25): 1801452.

doi: 10.1002/aenm.201801452     URL    
[56]
Yang C, Xin S, Mai L Q, You Y. Adv. Energy Mater., 2021, 11(2): 2000974.

doi: 10.1002/aenm.202000974     URL    
[57]
Hu X, Liu Y J, Chen J X, Jia J C, Zhan H B, Wen Z H. J. Mater. Chem. A, 2019, 7(3): 1138.

doi: 10.1039/C8TA10468A     URL    
[58]
Liu J, Xu Y G, Kong L B. Ionics, 2021, 27(4): 1781.

doi: 10.1007/s11581-021-03948-8     URL    
[59]
Cui J, Yao S S, Lu Z H, Huang J Q, Chong W G, Ciucci F, Kim J K. Adv. Energy Mater., 2018, 8(10): 1702488.

doi: 10.1002/aenm.201702488     URL    
[60]
Li Y J, Yang Y, Zhou P, Gao T T, Xu Z K, Lin S Y, Chen H, Zhou J H, Guo S J. Matter, 2019, 1(4): 893.

doi: 10.1016/j.matt.2019.04.003     URL    
[61]
Tang Y C, Wei Y, Hollenkamp A F, Musameh M, Seeber A, Jin T, Pan X, Zhang H, Hou Y N, Zhao Z B, Hao X J, Qiu J S, Zhi C Y. Nano Micro Lett., 2021, 13(1): 178.

doi: 10.1007/s40820-021-00686-4     URL    
[62]
Dong X T, Zhang W, Zhao S, Liu X L, Wang Y X. Prog. Chem., 2021, 33 (12): 2173.
( 董秀婷, 张文, 赵颂, 刘新磊, 王宇新. 化学进展, 2021, 33 (12): 2173.).

doi: 10.7536/PC201053    
[63]
Wu H Y, Xu N, Jiang Z H, Zheng A Y, Shi Q F, Lv R G, Ni L B, Diao G W, Chen M. Chem. Eng. J., 2022, 427: 131002.

doi: 10.1016/j.cej.2021.131002     URL    
[64]
Gao J W, Zhang M X, Zhang X, Bai R J, Xin G Q, Wang G K. Chem. Eng. J., 2022, 433: 133521.

doi: 10.1016/j.cej.2021.133521     URL    
[65]
Zheng T T, Zhong X, Li M Q, Yan F, Cai S, Zhang W, Liu L Q, Wang D. J. Power Sources, 2021, 515: 230638.

doi: 10.1016/j.jpowsour.2021.230638     URL    
[1] 彭诚, 吴乐云, 徐志建, 朱维良. 副本交换分子动力学[J]. 化学进展, 2022, 34(2): 384-396.
[2] 丁朝, 杨维结, 霍开富, Leon Shaw. LiBH4储氢热力学和动力学调控[J]. 化学进展, 2021, 33(9): 1586-1597.
[3] 张维佳, 邵学广, 蔡文生. 抗冻蛋白抗冻机制的分子模拟研究[J]. 化学进展, 2021, 33(10): 1797-1811.
[4] 潘志君, 庄巍, 王鸿飞. 凝聚态化学研究中的动力学振动光谱理论与技术[J]. 化学进展, 2020, 32(8): 1203-1218.
[5] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[6] 顾婷婷, 顾坚, 张喻, 任华. 金属硼氢化物基固态储氢体系[J]. 化学进展, 2020, 32(5): 665-686.
[7] 陈淏川, 付浩浩, 邵学广, 蔡文生. 重要性采样方法与自由能计算[J]. 化学进展, 2018, 30(7): 921-931.
[8] 张宁, 厉英. 富锂层状氧化物正极材料:结构、容量产生机理及改性[J]. 化学进展, 2017, 29(4): 373-387.
[9] 王建东, 许家喜. 含邻手性碳原子双键亲电加成反应的立体选择性模型[J]. 化学进展, 2016, 28(6): 784-800.
[10] 明海, 明军, 邱景义, 余仲宝, 李萌, 郑军伟. 基于非锂金属负极的锂离子全电池[J]. 化学进展, 2016, 28(2/3): 204-218.
[11] 李超, 范美强, 陈海潮, 陈达, 田光磊, 舒康颖. Li-Mg-N-H体系储氢材料的热力学和动力学调控[J]. 化学进展, 2016, 28(12): 1788-1797.
[12] 陈军, 丁能文, 李之峰, 张骞, 钟盛文. 锂离子电池有机正极材料[J]. 化学进展, 2015, 27(9): 1291-1301.
[13] 刘新, 吴川, 吴锋, 白莹. 轻金属配位氢化物储氢体系[J]. 化学进展, 2015, 27(9): 1167-1181.
[14] 王霄, 许吉英, 陈义. 生物分子相互作用动力学的表面等离子体共振研究方法[J]. 化学进展, 2015, 27(5): 550-558.
[15] 蒋斌波, 袁世岭, 陈楠, 王海波, 王靖岱, 黄正梁. VPO催化氧化正丁烷反应动力学[J]. 化学进展, 2015, 27(11): 1679-1688.