English
新闻公告
More
化学进展 2022, Vol. 34 Issue (3): 683-695 DOI: 10.7536/PC210343 前一篇   后一篇

• 综述 •

热熔灌输法制备三维骨架支撑金属锂复合负极

岳昕阳, 包戬, 马萃, 吴晓京, 周永宁*()   

  1. 复旦大学材料科学系 上海 200433
  • 收稿日期:2021-03-29 修回日期:2021-06-05 出版日期:2021-07-29 发布日期:2021-07-29
  • 通讯作者: 周永宁
  • 基金资助:
    国家自然科学基金项目(52071085)

Three-Dimension Skeleton Supported Lithium Metal Composite Anodes through Thermal Infusing Strategy

Xinyang Yue, Jian Bao, Cui Ma, Xiaojing Wu, Yongning Zhou()   

  1. Departmant of Materials Science, Fudan University, Shanghai 200344, China
  • Received:2021-03-29 Revised:2021-06-05 Online:2021-07-29 Published:2021-07-29
  • Contact: Yongning Zhou
  • Supported by:
    National Natural Science Foundation of China(52071085)

金属锂因具有极高的理论比容量(3860 mAh/g)和最低的电化学势(相对于标准氢电极为-3.04 V),被认为是下一代高比能锂离子电池的首选负极材料。然而,金属锂负极在电池循环过程中发生的刺状枝晶生长和体积变化等问题严重阻碍了其产业化应用进程。近年来研究表明,通过在金属锂中引入具有三维(3D)结构的宿主骨架,不但能有效抑制锂枝晶的生长,而且可以缓解金属锂负极的体积变化,从而提高金属锂电池的循环性能与安全性。因此,设计3D骨架/金属锂复合负极被认为是一种能有效解决金属锂问题的新兴策略。本文综述了热熔灌输法制备3D骨架/金属锂复合负极的研究进展。首先讨论了当前基于3D骨架的预存金属锂技术,然后着重分析了热熔灌输策略中3D骨架锂润湿性的影响因素,以及不同3D骨架修饰特征和改性方法。最后对3D骨架/金属锂复合负极和热熔灌输策略现存问题进行了总结并提出未来的发展方向。

Lithium metal is regarded as the most promising anode material for the next-generation lithium batteries due to its high theoretical specific capacity (3860 mAh/g) and lowest electrochemical potential (-3.04 V vs SHE). However, dendrite growth and volume changes in Li metal anodes during battery cycles hinder the industrialization of Li metal anodes severely. Recent research progress has shown that introducing 3D host in Li metal can not only suppress dendrite growth, but also relieve volume changes of Li anode, thus improving cycle performance and safety of lithium metal batteries. Therefore, designing 3D host/Li metal composite anodes is regarded as an emerging strategy that can solve the problem of Li metal anodes effectively. This review summaries the recent progress on 3D host/Li metal composite anodes prepared by thermal infusion strategy. We firstly discuss prelithiation methods of 3D host and analyze influencing factors of host lithiophilicity in thermal molten infusing. Afterwards, different 3D host framework and their features are discussed followed by the improved strategies. Finally, we summarize existing problems of 3D host/Li metal composite anodes and give their future prospects.

Contents

1 Introduction

2 Thermal infusion method for preparing Li composite anodes

2.1 The impact factors of Li wettability of 3D frameworks

2.2 Metal- and carbon-based 3D frameworks

2.3 Strategies of improving Li wettability

2.4 Problems of the thermal infusion method

3 Conclusion and prospects

()
图1 热熔灌输法制备3D骨架/金属锂复合电极[39]
Fig.1 Preparation of 3D host/Li metal composite electrode via thermal molten infusing method[39]. Copyright 2016, NAS
图2 (a)液态锂对基底锂润湿性的测试示意图;(b)不同基底材质与液态锂的接触角随温度变化的照片[44]
Fig.2 (a) Schematic diagram of the Li wettability testing; (b) Contact angle images of molten Li on different substrates as a function of temperature[44]. Copyright 2018, Elsevier
图3 骨架表面CuO修饰层厚度对液态锂润湿性的影响
Fig.3 Effect of the thickness of CuO modified layer on liquid Li wettability
图4 具有(a)颗粒状ZnO、(b)花瓣状ZnO和(c)针刺状ZnO形貌的CFZO骨架的SEM照片和锂注入过程照片[51]
Fig.4 SEM images and Li infusion process of CFZO hosts with (a) irregular particle, (b) petaloid and (c) acicular surface morphology[51]. Copyright 2020, Elsevier
图5 (a)Li-Ni复合负极的制备示意图,泡沫镍骨架和Li-Ni负极的数码照片,以及电化学性能对比[52];(b)CuO-Ni和Cu-CuO-Ni骨架的SEM照片,预存锂的数码照片和调节锂沉积/溶解行为的示意图[53];(c)CONF骨架的锂注入过程照片和CONF-Li电极的SEM照片[54]
Fig.5 (a) Preparation of the Li-Ni composite anode, digital photos of Ni foam and Li-Ni anode, and comparison of electrochemical performance[52], Copyright 2017, Wiley; (b) SEM images of CuO-Ni and Cu-CuO-Ni skeleton, digital photo of the host during the Li infusion, and illustration of Li deposition/dissolution behavior[53], Copyright 2017, Wiley; (c) Photographs of CONF host during the Li infusing, and the SEM images of CONF-Li electrode[54].Copyright 2018, Elsevier
图6 (a)CuFG@Li复合电极的制备示意图[55];(b)Li@CF复合电极的制备示意图[56];(c)Li-Cu@Ni复合电极调节锂沉积/溶解过程的示意图[57]
Fig.6 (a) Preparation of CuFG@Li electrode[55], Copyright 2019, Elsevier ; (b) Preparation of Li@CF electrode[56], Copyright 2019, RSC; (c) Illustration of Li-Cu@Ni composite electrode in regulating Li deposition/dissolution behavior[57]. Copyright 2017, Elsevier
图7 非对称结构MLF电极的制备示意图以及COMSOL模拟图[58]
Fig.7 Preparation diagram of the asymmetric MLF electrode and the corresponding COMSOL simulations[58]. Copyright 2019, Wiley
图8 (a)Li-rGO复合金属锂负极的制备示意图[59];(b)锂沉积容量与电极厚度变化之间的关系[60];(c)OCCu-Li复合电极的制备示意图和不同倍率下循环后的SEM照片[61]
Fig.8 (a) Preparation of Li-rGO composite anode[59], Copyright 2016, Springer; (b) Relationship between Li deposition capacity and electrode thickness[60], Copyright 2018, Wiley; (c) Preparation of OCCu-Li electrode, and the SEM images of the electrode after cycling at different rates[61]. Copyright 2020, Elsevier
图9 (a)锂润湿性修饰前后的碳布对液态锂的浸润性对比[62];(b)Li-CF电极的热熔灌输制备照片[63];(c)Li/C-Wood电极的合成示意图[64]
Fig.9 (a) Comparison in Li wettability of carbon cloth before and after modification[62], Copyright 2019, ACS; (b) Photos of the Li-CF electrode during the thermal infusing process[63], Copyright 2018, Wiley; (c) Preparation of Li/C-Wood electrode[64]. Copyright 2017, NAS
表1 氧化物修饰层提高3D骨架锂润湿性的方案
Table 1 Oxide modified layer to improve the Li wettability for 3D host
图10 (a)Co3O4与液态锂反应的吉布斯自由能计算和对称电池循环测试[65];(b)CCOF-Li电极的SEM照片[78];(c)BNL负极中锂在Li22Si5(001)和Li(001)晶面扩散的最小能量路径和壁垒[66]
Fig.10 (a) Gibbs free energy change of the reaction between Co3O4 and molten Li and symmetrical cell testing[65], Copyright 2019, Wiley; (b) SEM images of CCOF-Li[78], Copyright 2020, Elsevier; (c) Minimum energy path and diffusion barriers for Li on Li22Si5 (001) and Li (001) crystal planes[66]. Copyright 2019, Wiley
表2 单质修饰层提高骨架锂润湿性相关报道
Table 2 Simple substance modified layer to improve the Li wettability for host
图11 元素周期表中对应的元素单质与液态锂发生反应的吉布斯自由能[80]
Fig.11 Gibbs free energy change of elements in the periodic table that reacted with the molten Li[80]. Copyright 2019, Springer
图12 (a)Li/C复合电极中碳纤维和Si/碳纤维的TEM照片,以及预存锂前后的数码照片[39];(b)CF/Ag骨架的锂润湿性测试,以及Li与C或LiAg合金之间的结合能计算[81]
Fig.12 (a) TEM images of carbon fiber and Si/carbon fiber and photos before and after Li infusion[39], Copyright 2016, NAS; (b) Li wettability of CF/Ag host and the binding energy calculations[81]. Copyright 2018, Elsevier
图13 NG-Li复合电极的制备示意图、首次电压-容量曲线(电流密度为0.2 C)和倍率性能[86]
Fig.13 Preparation of NG-Li composite electrode, voltage-capacity curves (at a current density of 0.2 C) and rate performance[86]. Copyright 2016, Wiley
表3 官能团(缺陷)改善3D骨架锂润湿性的系列方案
Table 3 Modification of functional groups (defects) for improving the Li wettability of the 3D host
[1]
Armand M, Tarascon J M. Nature, 2008, 451(7179): 652.

doi: 10.1038/451652a     URL    
[2]
Tarascon J M. Nat. Chem., 2010, 2(6): 510.

doi: 10.1038/nchem.680     URL    
[3]
Service R F. Science, 2019, 366(6463): 292.

doi: 10.1126/science.366.6463.292     pmid: 31624191
[4]
Chiang Y M. Science, 2010, 330(6010): 1485.

doi: 10.1126/science.1198591     URL    
[5]
Evarts E C. Nature, 2015, 526(7575): S93.

doi: 10.1038/526S93a     URL    
[6]
Whittingham M S. Science, 1976, 192(4244): 1126.

pmid: 17748676
[7]
Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Energy Environ. Sci., 2011, 4(9): 3243.

doi: 10.1039/c1ee01598b     URL    
[8]
Nitta N, Wu F X, Lee J T, Yushin G. Mater. Today, 2015, 18(5): 252.

doi: 10.1016/j.mattod.2014.10.040     URL    
[9]
Lin D C, Liu Y Y, Cui Y. Nat. Nanotechnol., 2017, 12(3): 194.

doi: 10.1038/nnano.2017.16     URL    
[10]
Cheng X B, Zhang R, Zhao C Z, Zhang Q. Chem. Rev., 2017, 117(15): 10403.

doi: 10.1021/acs.chemrev.7b00115     URL    
[11]
Tikekar M D, Choudhury S, Tu Z Y, Archer L A. Nat. Energy, 2016, 1(9): 1.

doi: 10.1038/ng0492-1     URL    
[12]
Liu G Y, Lu W. J. Electrochem. Soc., 2017, 164(9): A1826.
[13]
Aurbach D, Zinigrad E, Cohen Y, Teller H. Solid State Ionics, 2002, 148: 405.

doi: 10.1016/S0167-2738(02)00080-2     URL    
[14]
Chen K H, Wood K N, Kazyak E, LePage W S, Davis A L, Sanchez A J, Dasgupta N P. J. Mater. Chem. A, 2017, 5(23): 11671.

doi: 10.1039/C7TA00371D     URL    
[15]
Ding F, Xu W, Graff G L, Zhang J, Sushko M L, Chen X L, Shao Y Y, Engelhard M H, Nie Z M, Xiao J, Liu X J, Sushko P V, Liu J, Zhang J G. J. Am. Chem. Soc., 2013, 135(11): 4450.

doi: 10.1021/ja312241y     pmid: 23448508
[16]
Wang T Y, Li Y B, Zhang J Q, Yan K, Jaumaux P, Yang J, Wang C Y, Shanmukaraj D, Sun B, Armand M, Cui Y, Wang G X. Nat. Commun., 2020, 11(1): 5429.

doi: 10.1038/s41467-020-19246-2     URL    
[17]
Yu Z A, Wang H S, Kong X, Huang W, Tsao Y, Mackanic D G, Wang K C, Wang X C, Huang W X, Choudhury S, Zheng Y, Amanchukwu C V, Hung S T, Ma Y T, Lomeli E G, Qin J, Cui Y, Bao Z N. Nat. Energy, 2020, 5(7): 526.

doi: 10.1038/s41560-020-0634-5     URL    
[18]
Kang D M, Xiao M Y, Lemmon J P. Batteries Supercaps, 2021, 4(3): 445.

doi: 10.1002/batt.202000225     URL    
[19]
Zhou Y G, Zhang X, Ding Y, Zhang L Y, Yu G H. Adv. Mater., 2020, 32(48): 2005763.

doi: 10.1002/adma.202005763     URL    
[20]
Li F, He J, Liu J D, Wu M G, Hou Y Y, Wang H P, Qi S H, Liu Q H, Hu J W, Ma J M. Angew. Chem. Int. Ed., 2021, 60(12): 6600.

doi: 10.1002/anie.202013993     URL    
[21]
Zhang K, Liu W, Gao Y L, Wang X W, Chen Z X, Ning R Q, Yu W, Li R L, Li L, Li X, Yuan K, Ma L, Li N, Shen C, Huang W, Xie K Y, Loh K P. Adv. Mater., 2021, 33(5): 2006323.

doi: 10.1002/adma.202006323     URL    
[22]
Karimi N, Zarrabeitia M, Mariani A, Gatti D, Varzi A, Passerini S. Adv. Energy Mater., 2021, 11(4): 2003521.

doi: 10.1002/aenm.202003521     URL    
[23]
Pan L H, Luo Z F, Zhang Y T, Chen W L, Zhao Z H, Li Y Y, Wan J, Yu D D, He H Y, Wang D Y. ACS Appl. Mater. Interfaces, 2019, 11(47): 44383.

doi: 10.1021/acsami.9b17108     URL    
[24]
Liu M, Wang C, Cheng Z, Ganapathy S, Haverkate L A, Unnikrishnan S, Wagemaker M. ACS Mater. Lett., 2020, 2(7): 665.
[25]
Wang H, Wu J Y, Yuan L X, Li Z, Huang Y H. ACS Appl. Mater. Interfaces, 2020, 12(25): 28337.

doi: 10.1021/acsami.0c08029     URL    
[26]
Zu C X, Manthiram A. J. Phys. Chem. Lett., 2014, 5(15): 2522.

doi: 10.1021/jz501352e     URL    
[27]
Shen F, Zhang F, Zheng Y J, Fan Z Y, Li Z H, Sun Z T, Xuan Y Y, Zhao B, Lin Z Q, Gui X C, Han X G, Cheng Y H, Niu C M. Energy Storage Mater., 2018, 13: 323.
[28]
Liu L, Yin Y X, Li J Y, Li N W, Zeng X X, Ye H, Guo Y G, Wan L J. Joule, 2017, 1(3): 563.

doi: 10.1016/j.joule.2017.06.004     URL    
[29]
Hong B, Fan H L, Cheng X B, Yan X L, Hong S, Dong Q Y, Gao C H, Zhang Z A, Lai Y Q, Zhang Q. Energy Storage Mater., 2019, 16: 259.
[30]
Chen H, Pei A, Wan J Y, Lin D C, Vilá R, Wang H X, Mackanic D, Steinrück H G, Huang W, Li Y Z, Yang A K, Xie J, Wu Y C, Wang H S, Cui Y. Joule, 2020, 4(4): 938.

doi: 10.1016/j.joule.2020.03.008     URL    
[31]
Fang Y T, Cai W L, Zhu S S, Xu K L, Zhu M G, Xiao G N, Zhu Y C. J. Energy Chem., 2021, 54: 105.

doi: 10.1016/j.jechem.2020.05.067     URL    
[32]
Park H, Kwon J, Song T, Paik U. J. Power Sources, 2020, 477: 228776.

doi: 10.1016/j.jpowsour.2020.228776     URL    
[33]
Huang G X, Guo P M, Wang J, Chen S R, Liang J Y, Tao R M, Tang S, Zhang X F, Cheng S J, Cao Y C, Dai S. Chem. Eng. J., 2020, 384: 123313.

doi: 10.1016/j.cej.2019.123313     URL    
[34]
Liu H, Chen X, Cheng X B, Li B Q, Zhang R, Wang B, Chen X, Zhang Q. Small Methods, 2019, 3(9): 1800354.

doi: 10.1002/smtd.201800354     URL    
[35]
He J R, Manthiram A. Adv. Energy Mater., 2020, 10(41): 2002654.

doi: 10.1002/aenm.202002654     URL    
[36]
Liu F F, Jin Z Z, Hu Z X, Zhang Z W, Liu W, Yu Y. Chem. Asian J., 2020, 15(7): 1057.

doi: 10.1002/asia.201901668     URL    
[37]
Pei F, Fu A, Ye W B, Peng J, Fang X L, Wang M S, Zheng N F. ACS Nano, 2019, 13(7): 8337.

doi: 10.1021/acsnano.9b03784     URL    
[38]
Zhang D, Dai A, Wu M, Shen K, Xiao T, Hou G Y, Lu J, Tang Y P. ACS Energy Lett., 2020, 5(1): 180.

doi: 10.1021/acsenergylett.9b01987     URL    
[39]
Liang Z, Lin D C, Zhao J, Lu Z D, Liu Y Y, Liu C, Lu Y Y, Wang H T, Yan K, Tao X Y, Cui Y. Proc. Natl. Acad. Sci. U.S.A., 2016, 113(11): 2862.

doi: 10.1073/pnas.1518188113     URL    
[40]
Zuo G Z, Ren J, Meng X C, Sun Z, Xu W, Huang M, Li C L, Tritz K, Deng H Q, Hu J S, Li J G. Fusion Eng. Des., 2018, 137: 420.

doi: 10.1016/j.fusengdes.2018.10.023     URL    
[41]
Li X W, Chao Y H, Chen L L, Chen W, Luo J, Wang C, Wu P W, Li H M, Zhu W S. Chem. Eng. J., 2020, 392: 123731.

doi: 10.1016/j.cej.2019.123731     URL    
[42]
Ito Y, Minami K, Nagashima A. Int. J. Thermophys., 1989, 10(1): 173.

doi: 10.1007/BF00500717     URL    
[43]
Fiflis P, Press A, Xu W, Andruczyk D, Curreli D, Ruzic D N. Fusion Eng. Des., 2014, 89(12): 2827.
[44]
Wang J Y, Wang H S, Xie J, Yang A K, Pei A, Wu C L, Shi F F, Liu Y Y, Lin D C, Gong Y J, Cui Y. Energy Storage Mater., 2018, 14: 345.
[45]
Meier A, Javernick D A, Edwards G R. JOM, 1999, 51(2): 44.
[46]
Aksay I A, Hoge C E, Pask J A. J. Phys. Chem., 1974, 78(12): 1178.

doi: 10.1021/j100605a009     URL    
[47]
Kritsalis P, Coudurier L, Eustathopoulos N. J. Mater. Sci., 1991, 26(12): 3400.

doi: 10.1007/BF01124693     URL    
[48]
Dezellus O, Eustathopoulos N. J. Mater. Sci., 2010, 45(16): 4256.

doi: 10.1007/s10853-009-4128-x     URL    
[49]
Bai P, Li J, Brushett F R, Bazant M Z. Energy Environ. Sci., 2016, 9(10): 3221.

doi: 10.1039/C6EE01674J     URL    
[50]
Pasandideh-Fard M, Qiao Y M, Chandra S, Mostaghimi J. Phys. Fluids, 1996, 8(3): 650.
[51]
Yue X Y, Bao J, Yang S Y, Luo R J, Wang Q C, Wu X J, Shadike Z, Yang X Q, Zhou Y N. Nano Energy, 2020, 71: 104614.

doi: 10.1016/j.nanoen.2020.104614     URL    
[52]
Chi S S, Liu Y C, Song W L, Fan L Z, Zhang Q. Adv. Funct. Mater., 2017, 27(24): 1700348.

doi: 10.1002/adfm.201700348     URL    
[53]
Wu S L, Zhang Z Y, Lan M H, Yang S R, Cheng J Y, Cai J J, Shen J H, Zhu Y, Zhang K L, Zhang W J. Adv. Mater., 2018, 30(9): 1705830.

doi: 10.1002/adma.201705830     URL    
[54]
Yue X Y, Wang W W, Wang Q C, Meng J K, Zhang Z Q, Wu X J, Yang X Q, Zhou Y N. Energy Storage Mater., 2018, 14: 335.
[55]
Zhu W H, Deng W, Zhao F, Liang S S, Zhou X F, Liu Z P. Energy Storage Mater., 2019, 21: 107.
[56]
Ma Y, Gu Y T, Yao Y Z, Jin H D, Zhao X H, Yuan X T, Lian Y B, Qi P W, Shah R, Peng Y, Deng Z. J. Mater. Chem. A, 2019, 7(36): 20926.

doi: 10.1039/C9TA08687K     URL    
[57]
Lu L L, Zhang Y, Pan Z, Yao H B, Zhou F, Yu S H. Energy Storage Mater., 2017, 9: 31.
[58]
Yue X Y, Li X L, Bao J, Qiu Q Q, Liu T C, Chen D, Yuan S S, Wu X J, Lu J, Zhou Y N. Adv. Energy Mater., 2019, 9(35): 1901491.

doi: 10.1002/aenm.201901491     URL    
[59]
Lin D C, Liu Y Y, Liang Z, Lee H W, Sun J, Wang H T, Yan K, Xie J, Cui Y. Nat. Nanotechnol., 2016, 11(7): 626.

doi: 10.1038/nnano.2016.32     URL    
[60]
Sun Z W, Jin S, Jin H C, Du Z Z, Zhu Y W, Cao A Y, Ji H X, Wan L J. Adv. Mater., 2018, 30(32): 1800884.

doi: 10.1002/adma.201800884     URL    
[61]
Yue X Y, Bao J, Qiu Q Q, Luo R J, Wang Q C, Wu X J, Zhou Y N. Chem. Eng. J., 2020, 391: 123516.

doi: 10.1016/j.cej.2019.123516     URL    
[62]
Go W, Kim M H, Park J, Lim C H, Joo S H, Kim Y, Lee H W. Nano Lett., 2019, 19(3): 1504.

doi: 10.1021/acs.nanolett.8b04106     URL    
[63]
Zhang Y, Wang C W, Pastel G, Kuang Y D, Xie H, Li Y J, Liu B Y, Luo W, Chen C J, Hu L B. Adv. Energy Mater., 2018, 8(18): 1800635.

doi: 10.1002/aenm.201800635     URL    
[64]
Zhang Y, Luo W, Wang C, Li Y, Chen C, Song J, Dai J, Hitz E M, Xu S, Yang C, Wang Y, Hu L B. Proc. Natl. Acad. Sci. U. S. A., 2017, 114: 3584.

doi: 10.1073/pnas.1618871114     pmid: 28320936
[65]
Li S Y, Liu Q L, Zhou J J, Pan T, Gao L N, Zhang W D, Fan L, Lu Y Y. Adv. Funct. Mater., 2019, 29(19): 1808847.

doi: 10.1002/adfm.201808847     URL    
[66]
Liu S, Deng L J, Guo W Q, Zhang C Y, Liu X J, Luo J Y. Adv. Mater., 2019, 31(15): 1807585.

doi: 10.1002/adma.201807585     URL    
[67]
Yu B Z, Tao T, Mateti S, Lu S G, Chen Y. Adv. Funct. Mater., 2018, 28(36): 1803023.

doi: 10.1002/adfm.201803023     URL    
[68]
Liu Y Y, Lin D C, Liang Z, Zhao J, Yan K, Cui Y. Nat. Commun., 2016, 7(1): 1.
[69]
Wang X S, Pan Z H, Wu Y, Ding X Y, Hong X J, Xu G G, Liu M N, Zhang Y G, Li W S. Nano Res., 2019, 12(3): 525.

doi: 10.1007/s12274-018-2245-z     URL    
[70]
Deng W, Zhou X F, Fang Q L, Liu Z P. Adv. Energy Mater., 2018, 8(12): 1703152.

doi: 10.1002/aenm.201703152     URL    
[71]
Wang L Y, Zhu X Y, Guan Y P, Zhang J L, Ai F, Zhang W F, Xiang Y, Vijayan S, Li G D, Huang Y Q, Cao G P, Yang Y S, Zhang H. Energy Storage Mater., 2018, 11: 191.
[72]
Fan L, Li S Y, Liu L, Zhang W D, Gao L N, Fu Y, Chen F, Li J, Zhuang H L, Lu Y Y. Adv. Energy Mater., 2018, 8(33): 1802350.

doi: 10.1002/aenm.201802350     URL    
[73]
Sun C Z, Li Y P, Jin J, Yang J H, Wen Z Y. J. Mater. Chem. A, 2019, 7(13): 7752.

doi: 10.1039/C9TA00862D     URL    
[74]
Huang G X, Lou P, Xu G H, Zhang X F, Liang J Y, Liu H H, Liu C, Tang S, Cao Y C, Cheng S J. J. Alloys Compd., 2020, 817: 152753.

doi: 10.1016/j.jallcom.2019.152753     URL    
[75]
Huang X, Feng X Y, Zhang B, Zhang L, Zhang S C, Gao B, Chu P K, Huo K F. ACS Appl. Mater. Interfaces, 2019, 11(35): 31824.

doi: 10.1021/acsami.9b08438     URL    
[76]
Park G K, Kang H, Lee J W. J. Alloys Compd., 2019, 790: 847.

doi: 10.1016/j.jallcom.2019.03.281     URL    
[77]
Chen L, Fan X L, Ji X, Chen J, Hou S, Wang C S. Joule, 2019, 3(3): 732.

doi: 10.1016/j.joule.2018.11.025     URL    
[78]
Yue X Y, Wang W W, Wang Q C, Meng J K, Wang X X, Song Y, Fu Z W, Wu X J, Zhou Y N. Energy Storage Mater., 2019, 21: 180.
[79]
Yue X Y, Li X L, Wang W W, Chen D, Qiu Q Q, Wang Q C, Wu X J, Fu Z W, Shadike Z, Yang X Q, Zhou Y N. Nano Energy, 2019, 60: 257.

doi: 10.1016/j.nanoen.2019.03.057     URL    
[80]
Wang S H, Yue J P, Dong W, Zuo T T, Li J Y, Liu X L, Zhang X D, Liu L, Shi J L, Yin Y X, Guo Y G. Nat. Commun., 2019, 10(1): 4930.

doi: 10.1038/s41467-019-12938-4     URL    
[81]
Zhang R, Chen X, Shen X, Zhang X Q, Chen X R, Cheng X B, Yan C, Zhao C Z, Zhang Q. Joule, 2018, 2(4): 764.

doi: 10.1016/j.joule.2018.02.001     URL    
[82]
Zhao J, Zhou G M, Yan K, Xie J, Li Y Z, Liao L, Jin Y, Liu K, Hsu P C, Wang J Y, Cheng H M, Cui Y. Nat. Nanotechnol., 2017, 12(10): 993.

doi: 10.1038/nnano.2017.129     pmid: 28692059
[83]
Yang C P, Yao Y G, He S M, Xie H, Hitz E, Hu L B. Adv. Mater., 2017, 29(38): 1702714.

doi: 10.1002/adma.201702714     URL    
[84]
Yang C P, Xie H, Ping W W, Fu K, Liu B Y, Rao J C, Dai J Q, Wang C W, Pastel G, Hu L B. Adv. Mater., 2019, 31(3): 1804815.

doi: 10.1002/adma.201804815     URL    
[85]
Kong L L, Wang L, Ni Z C, Liu S, Li G R, Gao X P. Adv. Funct. Mater., 2019, 29(13): 1808756.

doi: 10.1002/adfm.201808756     URL    
[86]
Huang G, Han J H, Zhang F, Wang Z Q, Kashani H, Watanabe K, Chen M W. Adv. Mater., 2019, 31(2): 1805334.

doi: 10.1002/adma.201805334     URL    
[87]
Wang H, Lin D, Liu Y, Li Y, Cui Y. Sci. Adv., 2017, 3: e1701301.

doi: 10.1126/sciadv.1701301     URL    
[88]
Shi H D, Zhang C J, Lu P F, Dong Y F, Wen P C, Wu Z S. ACS Nano, 2019, 13(12): 14308.

doi: 10.1021/acsnano.9b07710     URL    
[89]
Kong L, Zhang Q. J. Energy Chem., 2019, 33: 167.

doi: 10.1016/j.jechem.2018.08.003     URL    
[1] 刘振东, 潘嘉杰, 刘全兵. 机器学习在设计高性能锂电池正极材料与电解质中的应用[J]. 化学进展, 2023, 35(4): 577-592.
[2] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[3] 杨琪, 邓南平, 程博闻, 康卫民. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12): 2270-2282.
[4] 刘秋艳, 王雪锋, 王兆翔, 陈立泉. 高陶瓷含量复合固态电解质[J]. 化学进展, 2021, 33(1): 124-135.
[5] 陈嘉苗, 熊靖雯, 籍少敏, 霍延平, 赵经纬, 梁亮. 锂电池用全固态聚合物电解质[J]. 化学进展, 2020, 32(4): 481-496.
[6] 程新兵, 张强*. 金属锂枝晶生长机制及抑制方法[J]. 化学进展, 2018, 30(1): 51-72.
[7] 张恒, 郑丽萍, 聂进, 黄学杰, 周志彬. 锂单离子导电固态聚合物电解质[J]. 化学进展, 2014, 26(06): 1005-1020.
[8] 冯旭,何向明,蒲薇华,万春荣,姜长印. 锂电池正极材料FeS2[J]. 化学进展, 2008, 20(0203): 396-404.
[9] 程琥 李涛 杨勇 . 锂/聚合物电解质电化学固/固界面的研究[J]. 化学进展, 2006, 18(05): 542-549.
[10] 赵峰,钱新明,汪尔康,董绍俊. 离子导电聚合物电解质的研究*[J]. 化学进展, 2002, 14(05): 374-.