English
新闻公告
More
化学进展 2021, Vol. 33 Issue (8): 1378-1389 DOI: 10.7536/PC200734 前一篇   后一篇

• 综述 •

聚合物固态锂电池电解质/负极界面

陈龙, 黄少博, 邱景义*(), 张浩*(), 曹高萍*()   

  1. 防化研究院 北京 100191
  • 收稿日期:2020-07-16 修回日期:2020-11-27 出版日期:2021-08-20 发布日期:2020-12-28
  • 通讯作者: 邱景义, 张浩, 曹高萍
  • 基金资助:
    国家自然科学基金(22075320); 国家自然科学基金(21875284); 资助,中国博士后科学基金面上项目(2020M683741)

Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery

Long Chen, Shaobo Huang, Jingyi Qiu(), Hao Zhang(), Gaoping Cao()   

  1. Research Institute of Chemical Defense, Beijing 100191, China
  • Received:2020-07-16 Revised:2020-11-27 Online:2021-08-20 Published:2020-12-28
  • Contact: Jingyi Qiu, Hao Zhang, Gaoping Cao
  • Supported by:
    National Natural Science Foundation of China(22075320); National Natural Science Foundation of China(21875284); China Postdoctoral Science Foundation(2020M683741)

动力电池领域对锂二次电池的能量密度和安全性提出了更高要求,研究高能量密度固态锂电池对发展新能源产业具有重要意义。相比传统的有机电解液锂离子电池,采用聚合物固体电解质的聚合物固态锂电池不但具有明显提升的安全性,而且能够匹配高容量电极材料,实现能量密度的有效提升。聚合物固态锂电池是最有前景的锂二次电池之一,然而聚合物固体电解质与锂负极间仍存在严重的界面副反应、锂负极表面易生长枝晶等问题。近年来,通过电解质成分调控、电解质力学性能提升、电解质/锂负极界面调控和匹配三维锂负极等手段,聚合物基固态锂电池性能明显提升。基于此,本文介绍了常见的聚合物固体电解质及其与锂负极间的界面挑战,从添加无机填料、使用高强度基底膜、分级层状结构设计、构筑界面缓冲层、交联网络设计以及固态锂负极保护等几个方面综述了提升聚合物基电解质/锂负极界面稳定性的最新研究成果,最后对解决聚合物固体电解质/锂负极界面兼容性的研发方向和发展趋势进行了展望。

The energy density and safety of lithium secondary batteries are urgently required to be improved. Research on high-energy-density solid-state lithium batteries is of great significance to development of the new energy industries. Compared with the traditional organic electrolyte lithium-ion battery, the solid-state lithium battery with polymer solid electrolyte not only has significantly improved security, but also can match with high-capacity electrode materials to effectively improve the energy density. The polymer-based solid-state lithium battery is one of the most promising lithium secondary batteries. However, there are still some problems between polymer solid electrolyte and lithium anode, such as interface side reaction and lithium dendrites. In recent years, various methods have been used to improve the performance of solid-state lithium battery, including electrolyte composition regulation, electrolyte mechanical properties improvement, electrolyte/lithium anode interface regulation and matching three-dimensional lithium anode. Here, the common polymer solid electrolyte and its interface challenges with lithium anode are firstly introduced. Simultaneously, the recent research progress on improving the interface stability of polymer electrolyte/lithium anode is summarized and discussed in detail, including: adding inorganic fillers, using high-strength substrate film, building hierarchical layered structure, constructing interfacial buffer layer, designing and developing electrolyte with cross-linking network structure and fabricating protected solid-state lithium anode. Finally, the research and development trend of polymer solid electrolyte/lithium anode interface compatibility are prospected.

Contents

1 Introduction

2 Polymer solid electrolytes

3 The challenges in polymer electrolyte/lithium anode interface

4 Modification strategy of polymer electrolyte/lithium anode interface

4. 1 Inorganic fillers

4. 2 High strength substrate membranes

4. 3 Design of hierarchical layered structure

4. 4 Interfacial buffer layer

4. 5 Design of structural cross-link network

4. 6 Li-protection strategy in solid-state battery

5 Conclusions and outlook

()
图1 聚合物电解质与锂负极间的界面失效示意图[9]
Fig.1 Schematic diagram of interface failure between polymer electrolyte and lithium anode[9]
图2 (a)PEO-LLZTO复合固体电解质结构示意图;(b)锂对称电池的恒流充放电曲线(0.5 mA·cm-2,55 ℃);(c)柔性软包电池安全性展示[68]
Fig. 2 (a) Schematic illustration for PEO-LLZTO composite electrolyte;(b) galvanostatic cycling curves of the lithium symmetrical cell at a current density of 0.5 mA·cm-2 at 55 ℃;(c) safety illustration of flexible pouch lithium metal cell[68]
图3 锂金属负极的电化学沉积行为示意图,(a)具有阴离子固定效果的PLL复合固体电解质;(b)阴离子运动的传统电解液[69]
Fig. 3 Schematic of the electrochemical deposition behavior of the lithium metal anode with(a) the PLL solid electrolyte with immobilized anions and(b) the routine liquid electrolyte with mobile anions[69]
图4 采用无机纳米纤维增强的PEO基复合固体电解质,(a)LLZO纳米纤维膜的结构示意图;(b)采用PEO-LLZO复合电解质的对称锂电池循环性能[71];(c)LLTO纳米纤维增强PEO基复合固体电解质的制备过程和相应对称锂电池的循环性能[74];(d)PAN-LATP纤维及其增强复合电解质在固态锂电池中的应用示意图[76]
Fig. 4 PEO based composite solid electrolyte enhanced with inorganic nano fiber,(a) schematic of LLZO nano fiber membrane;(b) cycling performance of symmetrical Li-Li cells with PEO-LLZO electrolyte[71];(c) the preparation process of PEO based composite electrolyte enhanced with LLTO nano fiber membrane, the cycling performance of symmetrical Li-Li cells with PEO-LLTO electrolyte[74];(d) schematic of PAN-LATP nano fiber, the corresponding composite electrolyte and solid-state lithium battery[76]
图5 (a)采用5 μm LLZTO、200 nm LLZTO的复合电解质和分级三明治结构复合电解质的结构示意图[85];(b)双层聚合物电解质固态锂电池的层状结构图[55];分级层状复合固体电解质结构(c)及其界面优势(d)示意图[86]
Fig. 5 (a) Schematic illustration of the polymer-in-ceramic electrolyte(5 μm LLZTO), ceramic-in-polymer electrolyte(200 nm LLZTO), and hierarchical sandwich-type composite electrolytes[85];(b) Stacking model of double-layer polymer electrolyte in an all-solid-state battery[55];Schematic illustrations for superiorities of(c) modified solid electrolyte and(d) interfacial regulation of hierarchical composite solid electrolyte[86]
图6 (a)溶液浇铸结合原子层沉积法制备Al2O3涂覆PEO-LiTFSI电解质的制备过程示意图;(b)PEO-LiTFSI和PEO-LiTFSI-Al2O3电解质的高分辨O 1s XPS图谱;(c)采用PEO-LiTFSI-Al2O3电解质组装的对称锂电池在不同电流密度下电压随时间的变化曲线[87]
Fig. 6 Schematic illustration of the successive deposition of the PEO-LiTFSI electrolyte(solvent casting) and Al2O3 layer(Atomic layer deposition);(b) high-resolution O 1s XPS spectra of PEO-LiTFSI and PEO-LiTFSI-Al2O3 electrolytes;(c) potential profiles of the symmetric cell using PEO-LiTFSI-Al2O3 at different current densities[87]
图7 (a)原位聚合双功能聚合物电解质的合成示意图;(b)锂金属在双功能电解质中电化学沉积行为;(c)双功能电解质杨氏模量的原子力显微镜图谱;(d)传统电解液和双功能电解质对应的锂沉积行为[94]
Fig. 7 Illustration of the in-situ preparation of the bifunctional cross-linking electrolyte;(b) Proposed electrochemical deposition behavior of Li metal with bifunctional electrolyte;(c) Young’s modulus mapping, and(d) illustration of the proposed Li deposition behavior using liquid and bifunctional electrolyte[94]
图8 (a)PTFE-LLZTO-SN电解质的制备过程;(b)PTFE-LLZTO-SN电解质膜分别匹配Li和Li-FEC负极的示意图;室温下,采用PTFE-LLZTO-SN电解质膜的Li对称电池和Li-FEC对称电池的(c)阻抗随时间变化和(d)恒流充放电曲线[100]
Fig. 8 (a) The preparation schematic of PTFE-LLZTO-SN electrolyte;(b) schematic of the interface on the PTFE-LLZTO-SN electrolytes respect to Li and Li-FEC anode;(c) Electrochemical impedance spectra at different storage time and (d) galvanostatic cycling curves of the symmetric Li and Li-FEC batteries at 25 ℃[100]
图9 (a)石墨烯/铜网(VGCM)集流体的结构示意图;(b)限域空间中的锂沉积示意图;(c)分别采用锂箔和VGCM@Li组装的固态锂电池循环十次对应的充放电曲线;(d)不同循环次数对应的LiNi0.5Co0.2Mn0.3O2|VGCM@Li固态锂电池的充放电曲线[105]
Fig. 9 (a) Schematic illustration of the synthetic procedure of the VGCM;(b) lithium deposition diagram in confined nanospace;(c) galvanostatic discharge/charge profile of solid-state batteries with Li or VGCM@Li anode at 0.5 C(10 cycles);(d) galvanostatic discharge/charge profile of LiNi0.5Co0.2Mn0.3O2|VGCM@Li battery at different cycles[105]
[1]
Tarascon J M, Armand M. Nature, 2001, 414(6861): 359.

doi: 10.1038/35104644     URL    
[2]
Manthiram A, Yu X W, Wang S F. Nat. Rev. Mater., 2017, 2(4): 1.
[3]
Wan J, Xie J, Mackanic D G, Burke W, Bao Z, Cui Y. Mater. Today Nano, 2018, 4: 1.
[4]
Liang J N, Luo J, Sun Q, Yang X F, Li R Y, Sun X L. Energy Storage Mater., 2019, 21: 308.
[5]
Judez X, Eshetu G G, Li C M, Rodriguez-Martinez L M, Zhang H, Armand M. Joule, 2018, 2(11): 2208.

doi: 10.1016/j.joule.2018.09.008     URL    
[6]
Sun C W, Liu J, Gong Y D, Wilkinson D P, Zhang J J. Nano Energy, 2017, 33: 363.

doi: 10.1016/j.nanoen.2017.01.028     URL    
[7]
Liu J, Bao Z N, Cui Y, Dufek E J, Goodenough J B, Khalifah P, Li Q Y, Liaw B Y, Liu P, Manthiram A, Meng Y S, Subramanian V R, Toney M F, Viswanathan V V, Whittingham M S, Xiao J, Xu W, Yang J H, Yang X Q, Zhang J G. Nat. Energy, 2019, 4(3): 180.

doi: 10.1038/s41560-019-0338-x     URL    
[8]
Xu W, Wang J L, Ding F, Chen X L, Nasybulin E, Zhang Y H, Zhang J G. Energy Environ. Sci., 2014, 7(2): 513.

doi: 10.1039/C3EE40795K     URL    
[9]
Cheng X B, Zhao C Z, Yao Y X, Liu H, Zhang Q. Chem, 2019, 5(1): 74.

doi: 10.1016/j.chempr.2018.12.002     URL    
[10]
Zhang X, Wang S, Xue C J, Xin C Z, Lin Y H, Shen Y, Li L L, Nan C W. Adv. Mater., 2019, 31(11): 1806082.
[11]
Khurana R, Schaefer J L, Archer L A, Coates G W. J. Am. Chem. Soc., 2014, 136(20): 7395.

doi: 10.1021/ja502133j     pmid: 24754503
[12]
Cui X M, Chu Y, Qin L M, Pan Q M. ACS Sustainable Chem. Eng., 2018, 6(8): 11097.
[13]
Chen L, Li W X, Fan L Z, Nan C W, Zhang Q. Adv. Funct. Mater., 2019, 29(28): 1901047.
[14]
Lopez J, Mackanic D G, Cui Y, Bao Z N. Nat. Rev. Mater., 2019, 4(5): 312.

doi: 10.1038/s41578-019-0103-6     URL    
[15]
Xue Z G, He D, Xie X L. J. Mater. Chem. A, 2015, 3(38): 19218.
[16]
Yuan F, Chen H Z, Yang H Y, Li H Y, Wang M. Mater. Chem. Phys., 2005, 89(2/3): 390.

doi: 10.1016/j.matchemphys.2004.09.032     URL    
[17]
Fan L Z, Dang Z M, Nan C W, Li M. Electrochimica Acta, 2002, 48(2): 205.

doi: 10.1016/S0013-4686(02)00603-5     URL    
[18]
Li J, Lin Y, Yao H H, Yuan C F, Liu J. ChemSusChem, 2014, 7(7): 1901.

doi: 10.1002/cssc.v7.7     URL    
[19]
Wei Z Y, Chen S J, Wang J Y, Wang Z H, Zhang Z H, Yao X Y, Deng Y H, Xu X X. J. Mater. Chem. A, 2018, 6(27): 13438.
[20]
Porcarelli L, Gerbaldi C, Bella F, Nair J R. Sci. Rep., 2016, 6(1): 1.

doi: 10.1038/s41598-016-0001-8     URL    
[21]
Pan Q W, Barbash D, Smith D M, Qi H, Gleeson S E, Li C Y. Adv. Energy Mater., 2017, 7(22): 1701231.
[22]
Li Z Y, Li A J, Zhang H R, Lin R Q, Jin T W, Cheng Q, Xiao X H, Lee W K, Ge M Y, Zhang H J, Zangiabadi A, Waluyo I, Hunt A, Zhai H W, Borovilas J J, Wang P Y, Yang X Q, Chuan X Y, Yang Y. Nano Energy, 2020, 72: 104655.
[23]
Wang C, Wang T, Wang L L, Hu Z L, Cui Z L, Li J D, Dong S M, Zhou X H, Cui G L. Adv. Sci., 2019, 6(22): 1901036.
[24]
Yang Q, Huang J, Li Y J, Wang Y, Qiu J L, Zhang J N, Yu H G, Yu X Q, Li H, Chen L Q. J. Power Sources, 2018, 388: 65.

doi: 10.1016/j.jpowsour.2018.03.076     URL    
[25]
Nie K H, Wang X L, Qiu J L, Wang Y, Yang Q, Xu J J, Yu X Q, Li H, Huang X J, Chen L Q. ACS Energy Lett., 2020, 5(3): 826.

doi: 10.1021/acsenergylett.9b02739     URL    
[26]
Kimura K, Yajima M, Tominaga Y. Electrochem. Commun., 2016, 66: 46.

doi: 10.1016/j.elecom.2016.02.022     URL    
[27]
Zhang J J, Zhao J H, Yue L P, Wang Q F, Chai J C, Liu Z H, Zhou X H, Li H, Guo Y G, Cui G L, Chen L Q. Adv. Energy Mater., 2015, 5(24): 1501082.
[28]
Zhang X, Liu T, Zhang S F, Huang X, Xu B Q, Lin Y H, Xu B, Li L L, Nan C W, Shen Y. J. Am. Chem. Soc., 2017, 139(39): 13779.
[29]
Liu W, Lee S W, Lin D C, Shi F F, Wang S, Sendek A D, Cui Y. Nat. Energy, 2017, 2(5): 1.

doi: 10.1038/ng0992-1     URL    
[30]
Zhang W Q, Nie J H, Li F, Wang Z L, Sun C W. Nano Energy, 2018, 45: 413.

doi: 10.1016/j.nanoen.2018.01.028     URL    
[31]
Baskaran R, Selvasekarapandian S, Kuwata N, Kawamura J, Hattori T. Solid State Ion., 2006, 177(26/32): 2679.

doi: 10.1016/j.ssi.2006.04.013     URL    
[32]
Zhang J J, Zang X, Wen H J, Dong T T, Chai J C, Li Y, Chen B B, Zhao J W, Dong S M, Ma J, Yue L P, Liu Z H, Guo X X, Cui G L, Chen L Q. J. Mater. Chem. A, 2017, 5(10): 4940.

doi: 10.1039/C6TA10066J     URL    
[33]
Cong L N, Li Y N, Lu W, Jie J, Liu Y L, Sun L Q, Xie H M. J. Power Sources, 2020, 446: 227365.
[34]
Wang C H, Sun Q, Liu Y L, Zhao Y, Li X, Lin X T, Banis M N, Li M S, Li W H, Adair K R, Wang D W, Liang J N, Li R Y, Zhang L, Yang R, Lu S G, Sun X L. Nano Energy, 2018, 48: 35.

doi: 10.1016/j.nanoen.2018.03.020     URL    
[35]
Lu Q W, He Y B, Yu Q P, Li B H, Kaneti Y V, Yao Y W, Kang F Y, Yang Q H. Adv. Mater., 2017, 29(13): 1604460.
[36]
Zhang B C, Chen L, Hu J K, Liu Y C, Liu Y F, Feng Q, Zhu G N, Fan L Z. J. Power Sources, 2019, 442: 227230.
[37]
Chen B, Huang Z, Chen X T, Zhao Y R, Xu Q, Long P, Chen S J, Xu X X. Electrochimica Acta, 2016, 210: 905.

doi: 10.1016/j.electacta.2016.06.025     URL    
[38]
Wang Z Q, Tan R, Wang H B, Yang L Y, Hu J T, Chen H B, Pan F. Adv. Mater., 2018, 30(2): 1704436.
[39]
Chen N, Dai Y J, Xing Y, Wang L L, Guo C, Chen R J, Guo S J, Wu F. Energy Environ. Sci., 2017, 10(7): 1660.

doi: 10.1039/C7EE00988G     URL    
[40]
Zhou W D, Gao H C, Goodenough J B. Adv. Energy Mater., 2016, 6(1): 1501802.
[41]
Li X, Wang D H, Wang H C, Yan H F, Gong Z L, Yang Y. ACS Appl. Mater. Interfaces, 2019, 11(25): 22745.
[42]
Zhou W D, Wang S F, Li Y T, Xin S, Manthiram A, Goodenough J B. J. Am. Chem. Soc., 2016, 138(30): 9385.

doi: 10.1021/jacs.6b05341     URL    
[43]
Lin D C, Liu Y Y, Cui Y. Nat. Nanotechnol., 2017, 12(3): 194.

doi: 10.1038/nnano.2017.16     URL    
[44]
Harry K J, Liao X X, Parkinson D Y, Minor A M, Balsara N P. J. Electrochem. Soc., 2015, 162(14): A2699.

doi: 10.1149/2.0321514jes     URL    
[45]
Brissot C, Rosso M, Chazalviel J N, Lascaud S. J. Power Sources, 1999,(81/82): 925.
[46]
Dollé M, Sannier L, Beaudoin B, Trentin M, Tarascon J M. Electrochem. Solid-State Lett., 2002, 5(12): A286.

doi: 10.1149/1.1519970     URL    
[47]
He Z J, Chen L, Zhang B C, Liu Y C, Fan L Z. J. Power Sources, 2018, 392: 232.

doi: 10.1016/j.jpowsour.2018.05.006     URL    
[48]
Chen L, Qiu X M, Bai Z M, Fan L Z. J. Energy Chem., 2021, 52: 210.

doi: 10.1016/j.jechem.2020.03.052     URL    
[49]
Granvalet-Mancini M L, Hanrath T, Teeters D. Solid State Ionics, 2000, 135: 283.

doi: 10.1016/S0167-2738(00)00448-3     URL    
[50]
Aurbach D, Daroux M L, Faguy P W, Yeager E. J. Electrochem. Soc., 1988, 135(8): 1863.

doi: 10.1149/1.2096170     URL    
[51]
Tikekar M D, Choudhury S, Tu Z Y, Archer L A. Nat. Energy, 2016, 1(9): 1.

doi: 10.1038/ng0492-1     URL    
[52]
Yao P C, Zhu B, Zhai H W, Liao X B, Zhu Y X, Xu W H, Cheng Q, Jayyosi C, Li Z, Zhu J, Myers K M, Chen X, Yang Y. Nano Lett., 2018, 18(10): 6113.

doi: 10.1021/acs.nanolett.8b01421     URL    
[53]
Zhao Y, Yan J H, Cai W P, Lai Y M, Song J, Yu J Y, Ding B. Energy Storage Mater., 2019, 23: 306.
[54]
Ma Q, Zeng X X, Yue J P, Yin Y X, Zuo T T, Liang J Y, Deng Q, Wu X W, Guo Y G. Adv. Energy Mater., 2019, 9(13): 1803854.
[55]
Zhou W D, Wang Z X, Pu Y, Li Y T, Xin S, Li X F, Chen J F, Goodenough J B. Adv. Mater., 2019, 31(4): 1805574.
[56]
Lee J, Howell T, Rottmayer M, Boeckl J, Huang H. J. Electrochem. Soc., 2019, 166(2): A416.

doi: 10.1149/2.1321902jes     URL    
[57]
Zhang J X, Zhao N, Zhang M, Li Y Q, Chu P K, Guo X X, Di Z F, Wang X, Li H. Nano Energy, 2016, 28: 447.

doi: 10.1016/j.nanoen.2016.09.002     URL    
[58]
Wan Z,. Lei D, Yang W, Liu C, Shi K, Hao X, Shen L, Lv W, Li B, Yang Q H, Kang F, He Y B. Adv. Funct. Mater., 2019, 29: 1805301.
[59]
Zhu Q Y, Wang X M, Miller J D. ACS Appl. Mater. Interfaces, 2019, 11(9): 8954.

doi: 10.1021/acsami.8b13735     URL    
[60]
Chen X Z, He W J, Ding L X, Wang S Q, Wang H H. Energy Environ. Sci., 2019, 12(3): 938.

doi: 10.1039/C8EE02617C     URL    
[61]
Huang H J, Ding F, Zhong H, Li H, Zhang W G, Liu X J, Xu Q. J. Mater. Chem. A, 2018, 6(20): 9539.

doi: 10.1039/C8TA03061H     URL    
[62]
Tominaga Y, Yamazaki K. Chem. Commun., 2014, 50(34): 4448.

doi: 10.1039/C3CC49588D     URL    
[63]
Yang T, Zheng J, Cheng Q, Hu Y Y, Chan C K. ACS Appl. Mater. Interfaces, 2017, 9(26): 21773.
[64]
Yang L Y, Wang Z J, Feng Y C, Tan R, Zuo Y X, Gao R T, Zhao Y, Han L, Wang Z Q, Pan F. Adv. Energy Mater., 2017, 7(22): 1701437.
[65]
Pan K C, Zhang L, Qian W W, Wu X K, Dong K, Zhang H T, Zhang S J. Adv. Mater., 2020, 32(17): 2000399.
[66]
Wang X, Zhai H W, Qie B Y, Cheng Q, Li A J, Borovilas J, Xu B Q, Shi C M, Jin T W, Liao X B, Li Y B, He X D, Du S Y, Fu Y K, Dontigny M, Zaghib K, Yang Y. Nano Energy, 2019, 60: 205.

doi: 10.1016/j.nanoen.2019.03.051    
[67]
Lin D C, Yuen P Y, Liu Y Y, Liu W, Liu N, Dauskardt R H, Cui Y. Adv. Mater., 2018, 30(32): 1802661.
[68]
Chen L, Li Y T, Li S P, Fan L Z, Nan C W, Goodenough J B. Nano Energy, 2018, 46: 176.

doi: 10.1016/j.nanoen.2017.12.037     URL    
[69]
Zhao C Z, Zhang X Q, Cheng X B, Zhang R, Xu R, Chen P Y, Peng H J, Huang J Q, Zhang Q. PNAS, 2017, 114(42): 11069.
[70]
Li Y, Zhang W, Dou Q Q, Wong K W, Ng K M. J. Mater. Chem. A, 2019, 7(7): 3391.

doi: 10.1039/C8TA11449H     URL    
[71]
Fu K K, Gong Y, Dai J, Gong A, Han X, Yao Y, Wang C, Wang Y, Chen Y, Yan C, Li Y, Wachsman E D, Hu L. Proc. Natl. Acad. Sci. USA, 2016, 113: 7094.

doi: 10.1073/pnas.1600422113     URL    
[72]
Li B Y, Su Q M, Yu L T, Wang D, Ding S K, Zhang M, Du G H, Xu B S. ACS Appl. Mater. Interfaces, 2019, 11(45): 42206.
[73]
Zhu P, Yan C Y, Dirican M, Zhu J D, Zang J, Selvan R K, Chung C C, Jia H, Li Y, Kiyak Y, Wu N Q, Zhang X W. J. Mater. Chem. A, 2018, 6(10): 4279.

doi: 10.1039/C7TA10517G     URL    
[74]
Wang X Z, Zhang Y B, Zhang X, Liu T, Lin Y H, Li L L, Shen Y, Nan C W. ACS Appl. Mater. Interfaces, 2018, 10(29): 24791.
[75]
Famprikis T, Canepa P, Dawson J A, Islam M S, Masquelier C. Nat. Mater., 2019, 18(12): 1278.

doi: 10.1038/s41563-019-0431-3     URL    
[76]
Li D, Chen L, Wang T S, Fan L Z. ACS Appl. Mater. Interfaces, 2018, 10(8): 7069.

doi: 10.1021/acsami.7b18123     URL    
[77]
Bae J, Li Y T, Zhang J, Zhou X Y, Zhao F, Shi Y, Goodenough J B, Yu G H. Angew. Chem. Int. Ed., 2018, 57(8): 2007.

doi: 10.1002/anie.v57.8     URL    
[78]
Bae J, Li Y T, Zhao F, Zhou X Y, Ding Y, Yu G H. Energy Storage Mater., 2018, 15: 46.
[79]
Li Z, Sha W X, Guo X. ACS Appl. Mater. Interfaces, 2019, 11(30): 26920.
[80]
Wan J Y, Xie J, Kong X, Liu Z, Liu K, Shi F F, Pei A, Chen H, Chen W, Chen J, Zhang X K, Zong L Q, Wang J Y, Chen L Q, Qin J, Cui Y. Nat. Nanotechnol., 2019, 14(7): 705.

doi: 10.1038/s41565-019-0465-3     URL    
[81]
Hu J K, He P G, Zhang B C, Wang B Y, Fan L Z. Energy Storage Mater., 2020, 26: 283.
[82]
Chen L, Fan L Z. Energy Storage Mater., 2018, 15: 37.
[83]
Duan H, Fan M, Chen W P, Li J Y, Wang P F, Wang W P, Shi J L, Yin Y X, Wan L J, Guo Y G. Adv. Mater., 2019, 31(12): 1807789.
[84]
Tao X Y, Liu Y Y, Liu W, Zhou G M, Zhao J, Lin D C, Zu C X, Sheng O W, Zhang W K, Lee H W, Cui Y. Nano Lett., 2017, 17(5): 2967.

doi: 10.1021/acs.nanolett.7b00221     URL    
[85]
Huo H Y, Chen Y, Luo J, Yang X F, Guo X X, Sun X L. Adv. Energy Mater., 2019, 9(17): 1804004.
[86]
Sun J Q, He C H, Yao X M, Song A Q, Li Y G, Zhang Q H, Hou C Y, Shi Q W, Wang H Z. Adv. Funct. Mater., 2021, 31(1): 2006381.
[87]
Fan Z J, Ding B, Zhang T F, Lin Q Y, Malgras V, Wang J, Dou H, Zhang X G, Yamauchi Y. Small, 2019, 15(46): 1903952.
[88]
Guo H L, Sun H, Jiang Z L, Hu J Y, Luo C S, Gao M Y, Cheng J Y, Shi W K, Zhou H J, Sun S G. ACS Appl. Mater. Interfaces, 2019, 11(50): 46783.
[89]
Gai J L, Ma F R, Zhang Z Q, Sun D Y, Jin Y C, Guo Y J, Kim W. ACS Sustainable Chem. Eng., 2019, 7(19): 15896.
[90]
Duan H, Yin Y X, Shi Y, Wang P F, Zhang X D, Yang C P, Shi J L, Wen R, Guo Y G, Wan L J. J. Am. Chem. Soc., 2018, 140(1): 82.

doi: 10.1021/jacs.7b10864     pmid: 29232123
[91]
Chai J C, Chen B B, Xian F, Wang P, Du H P, Zhang J J, Liu Z H, Zhang H R, Dong S M, Zhou X H, Cui G L. Small, 2018, 14(37): 1802244.
[92]
Pan Q W, Smith D M, Qi H, Wang S J, Li C Y. Adv. Mater., 2015, 27(39): 5995.

doi: 10.1002/adma.201502059     URL    
[93]
Lin Z Y, Guo X W, Yu H J. Nano Energy, 2017, 41: 646.

doi: 10.1016/j.nanoen.2017.10.021     URL    
[94]
Zeng X X, Yin Y X, Li N W, Du W C, Guo Y G, Wan L J. J. Am. Chem. Soc., 2016, 138(49): 15825.
[95]
Duan H, Yin Y X, Zeng X X, Li J Y, Shi J L, Shi Y, Wen R, Guo Y G, Wan L J. Energy Storage Mater., 2018, 10: 85.
[96]
Chi S S, Liu Y C, Zhao N, Guo X X, Nan C W, Fan L Z. Energy Storage Mater., 2019, 17: 309.
[97]
Liu Y Y, Lin D C, Jin Y, Liu K, Tao X Y, Zhang Q H, Zhang X K, Cui Y. Sci. Adv., 2017, 3(10): eaao0713.

doi: 10.1126/sciadv.aao0713     URL    
[98]
Zhou F, Li Z, Lu Y Y, Shen B, Guan Y, Wang X X, Yin Y C, Zhu B S, Lu L L, Ni Y, Cui Y, Yao H B, Yu S H. Nat. Commun., 2019, 10(1): 1.

doi: 10.1038/s41467-018-07882-8     URL    
[99]
Fan X L, Ji X, Han F D, Yue J, Chen J, Chen L, Deng T, Jiang J J, Wang C S. Sci. Adv., 2018, 4(12): eaau9245.

doi: 10.1126/sciadv.aau9245     URL    
[100]
Jiang T L, He P G, Wang G X, Shen Y, Nan C W, Fan L Z. Adv. Energy Mater., 2020, 10(12): 2070052.
[101]
Chi S S, Liu Y C, Song W L, Fan L Z, Zhang Q. Adv. Funct. Mater., 2017, 27(24): 1700348.
[102]
Liu S F, Xia X H, Zhong Y, Deng S J, Yao Z J, Zhang L Y, Cheng X B, Wang X L, Zhang Q, Tu J P. Adv. Energy Mater., 2018, 8(8): 1702322.
[103]
Zhang H M, Liao X B, Guan Y P, Xiang Y, Li M, Zhang W F, Zhu X Y, Ming H, Lu L, Qiu J Y, Huang Y Q, Cao G P, Yang Y S, Mai L Q, Zhao Y, Zhang H. Nat. Commun., 2018, 9(1): 1.

doi: 10.1038/s41467-017-02088-w     URL    
[104]
Chi S S, Wang Q R, Han B, Luo C, Jiang Y D, Wang J, Wang C Y, Yu Y, Deng Y H. Nano Lett., 2020, 20(4): 2724.

doi: 10.1021/acs.nanolett.0c00352     URL    
[105]
Huang S B, Yang H, Hu J K, Liu Y C, Wang K X, Peng H L, Zhang H, Fan L Z. Small, 2019, 15(43): 1904216.
[1] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[2] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[3] 唐森林, 高欢, 彭颖, 李明光, 陈润锋, 黄维. 钙钛矿光伏电池的非辐射复合损耗及调控策略[J]. 化学进展, 2022, 34(8): 1706-1722.
[4] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[5] 孔祥瑞, 窦静, 陈淑贞, 汪冰冰, 吴志军. 同步辐射技术在大气科学领域的研究进展[J]. 化学进展, 2022, 34(4): 963-972.
[6] 卢明龙, 张晓云, 杨帆, 王 练, 王育乔. 表界面调控电催化析氧反应[J]. 化学进展, 2022, 34(3): 547-556.
[7] 岳昕阳, 包戬, 马萃, 吴晓京, 周永宁. 热熔灌输法制备三维骨架支撑金属锂复合负极[J]. 化学进展, 2022, 34(3): 683-695.
[8] 郭驰, 张望, 涂吉, 陈盛锐, 梁济元, 郭向可. 三维铜基集流体的构筑及在锂金属电池中的应用[J]. 化学进展, 2022, 34(2): 370-383.
[9] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[10] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.
[11] 吕苏叶, 邹亮, 管寿梁, 李红变. 石墨烯在神经电信号检测中的应用[J]. 化学进展, 2021, 33(4): 568-580.
[12] 杨琪, 邓南平, 程博闻, 康卫民. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12): 2270-2282.
[13] 吴贤文, 龙凤妮, 向延鸿, 蒋剑波, 伍建华, 熊利芝, 张桥保. 中性或弱酸性体系下锌基水系电池负极材料研究进展[J]. 化学进展, 2021, 33(11): 1983-2001.
[14] 徐佑森, 张振, 唐彪, 周国富. 基于Ti3C2-MXene的太阳能界面水汽转换[J]. 化学进展, 2021, 33(11): 2033-2055.
[15] 程淑敏, 杜林, 张秀辉, 葛茂发. Langmuir单分子膜在海洋飞沫气溶胶表面特性研究中的应用[J]. 化学进展, 2021, 33(10): 1721-1730.