English
新闻公告
More
化学进展 2022, Vol. 34 Issue (4): 909-925 DOI: 10.7536/PC210635 前一篇   后一篇

• 综述 •

准固相转化机制硫正极

王许敏1,2, 李书萍1, 何仁杰1,2, 余创1, 谢佳1,*(), 程时杰1   

  1. 1 华中科技大学电气与电子工程学院 武汉 430000
    2 华中科技大学材料科学与工程学院 武汉 430000
  • 收稿日期:2021-06-30 修回日期:2021-09-03 出版日期:2022-04-24 发布日期:2021-12-02
  • 通讯作者: 谢佳
  • 基金资助:
    国家自然科学基金面上项目(21975087); 中国博士后面上基金(2020M672337)

Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes

Xumin Wang1,2, Shuping Li1, Renjie He1,2, Chuang Yu1, Jia Xie1(), Shijie Cheng1   

  1. 1 School of Electrical and Electronic Engineering, Huazhong University of Science and Technology,Wuhan 430000, China
    2 School of Materials Science and Engineering, Huazhong University of Science and Technology,Wuhan 430000, China
  • Received:2021-06-30 Revised:2021-09-03 Online:2022-04-24 Published:2021-12-02
  • Contact: Jia Xie
  • Supported by:
    National Natural Science Foundation of China(21975087); China Postdoctoral General Foundation(2020M672337)

随着电动汽车及便携式电子产品的迅速发展,对于高能量密度电池体系的需求越来越迫切,然而传统锂离子电池正极材料的能量密度发展逼近理论极限,因此发展下一代电池体系迫在眉睫。硫正极具有理论比容量高、来源广泛和成本低廉等优点,成为研究热点之一。硫正极在常规醚类电解液中为溶解-沉积机制,会产生“穿梭效应”,造成活性物质不可逆损失、电池库仑效率低和循环寿命短等问题。为了缓解“穿梭效应”,通常采用物理限域、化学吸附和反应加速剂等方式,但都没有从根本解决该问题。准固相转化机制可以彻底避免多硫化物溶解流失,受到研究者的广泛关注。本文综述了微孔碳、正极表面SEI膜和电解液调控等途径构建准固相转化机制硫正极的代表性工作,总结了研究意义和电化学特征;针对准固相转化硫正极本征动力学慢的问题,提出加快反应动力学的方案;有助于提高长循环性能,从而促进锂硫电池实用化。

With the rapid development of electric vehicles and portable electronic products, the demand for high-energy-density battery systems is becoming more and more urgent. However, the energy density of traditional lithium-ion battery cathode materials is approaching the theoretical limit, thus it is urgent to develop the next-generation battery system with higher energy density. Sulfur cathodes possess lots of advantages, such as high energy density, natural abundance, and low cost, achieving extensive research attention. For the conventional dissolution-deposition mechanism, sulfur cathodes suffer from “shuttle effect”, resulting in irreversible loss of active material, low coulomb efficiency, and poor cycle life. To alleviate the “shuttle effect”, a series of strategies are usually adopted, for instance, physical confinement, chemical adsorption, and reaction accelerators, but none of them can fundamentally solve these problems. Recently, the quasi-solid-state conversion reaction of sulfur cathodes has attracted wide attention. This review discusses these approaches for constructing quasi-solid-state conversion reaction of sulfur cathodes, including the designs of microporous carbon structure, the formation of a solid electrolyte interface (SEI) on the sulfur surface, and electrolyte engineering. The research significance is highlighted and electrochemical behaviors of the quasi-solid-state conversion reaction of sulfur cathodes are summarized. Enhancing the reactivity of sulfur cathode is an effective strategy to alleviate the intrinsic sluggish kinetics of sulfur cathodes. These strategies for quasi-solid-state conversion mechanism of sulfur cathodes are beneficial to cyclability, enabling the practical development of high-performance Li-S batteries.

Contents

1 Introduction

2 Microporous carbon structure

2.1 Electrochemical reaction characteristics

2.2 Building strategy

3 Solid electrolyte interface on the sulfur cathode

3.1 In-situ SEI

3.2 Ex-situ SEI

4 Electrolyte engineering

4.1 Concentrated electrolyte

4.2 Diluted concentrated electrolyte

5 Conclusion and outlook

()
图1 硫正极的发展时间轴线图(蓝色部分为准固相转化机制硫正极,橙色为溶解-沉积机制的硫正极)
Fig. 1 The development time axis diagram of sulfur cathode (The blue part is sulfur cathode of the quasi-solid-state conversion reaction, and orange one is sulfur cathode of the dissolution-deposition mechanism)
图2 (a) 传统溶解-沉积机制示意图[10];(b) 准固相转化机制示意图[10]
Fig. 2 (a) Schematic illustration of traditional dissolution-deposition mechanism[10]; (b) Schematic illustration of quasi-solid-state conversion reaction[10]
图3 (a) C-S-3复合正极的充放电机理示意图[51];(b) C-S复合正极在335 mA·g-1的长循环性能[51];(c) S/FMNCN-900正极在2C循环的电化学性能及合成示意图[52]
Fig. 3 (a) Discharge and charge mechanism of C-S-3 hybrid cathode[51]; (b) Cycling performance of C-S hybrids at 335 mA·g-1[51]; (c) Cycling stability of S/FMNCN-900 cathode at 2 C and the schematic for preparation of S/FMNCN composites[52]
图4 (a) PVDF一步热解制备S/UMC示意图[57];(b) S/UMC复合正极在0.1 C的循环性能[57];(c) 煅烧坚果壳制备c-MNS/S示意图[59];(d) c-MNS/S在0.1 C的循环性能[59]
Fig. 4 (a) Schematic illustration of the preparation of S/UMC by one-step pyrolysis treatment of PVDF powder[57]; (b) Cycle performances of the S/UMC composite electrodes at 0.1 C[57]; (c) The preparation process of c-MNS/S composites by the calcination of macadamia nut shell[59]; (d) Cycling performances of c-MNS/S at 0.1 C[59]
图5 (a) S2-4充放电结构变化示意图[62];(b) FDU/S-60和FDU/S-40电极在碳酸盐电解液中400 mA·g-1的循环性能[62];(c) 气相渗透法合成碳气凝胶的示意图[65];(d)微孔碳材料在碳酸盐电解质中0.3 C时的长循环性能[65]
Fig. 5 (a) Schematic illustration of the structural evolution of the S2-4 molecules during charging/discharging processes[62]; (b) The cycle performance of FDU/S-60 and FDU/S-40 electrode at 400 mA·g-1 with the carbonate-based electrolyte[62]; (c) Schematic illustration of the Carbon aerogels synthesis through gas-infiltration method[65]; (d) Cycling performance of the carbon aerogels at 0.3 C in the carbonate electrolyte[65]
图6 (a) 溶解-沉积机制和准固相转化机理示意图[75];(b) 醚类/酯类共溶电解液在硫正极原位形成SEI示意图[26];(c) 硫碳正极在100 mA·g-1的长循环性能[26]
Fig. 6 (a) Schematic illustration of the dissolution-deposition mechanism and the quasi-solid-state conversion reaction mechanism of S-C electrodes[75]; (b) Schematic illustration of the in-situ formation of an SEI film on the sulfur surfaces in the carbonate/ether co-solvent electrolyte[26]; (c) Cycle performance of the S/C cathode at 100 mA·g-1[26]
图7 (a) FEC还原形成SEI示意图及在C/5的电化学性能[79];(b) 双盐电解液原位形成SEI示意图及电化学性能[80]
Fig. 7 (a) Schematic illustration of the SEI formation by reduction of FEC and the cycling performance at the C/5 rate[79]; (b) Schematic illustration of the in-situ SEI in the high-concentration dual-salt electrolyte and the electrochemical performances[80]
图8 (a) Se-S正极在HFE基和DME基电解质中的机理示意图[83];(b) S5Se2/KB正极在不同电解液中的电化学性能[83];(c) CMK-3/S-Te-1与CMK-3/S的倍率性能比较[84];(d) CMK-3/S-Te-1与CMK-3/S在0.1 C的长循环性能比较[84];(e) S@PAN/S7Se正极在循环前后的结构示意图[85];(f) 5 mg·cm-2的S@PAN/S7Se在0.2 A·g-1下的循环性能[85]
Fig. 8 (a) Schematic illustration for different lithiation mechanism of Se-S cathodes in HFE-based and DME-based electrolytes[83]; (b) Cycling performance of S5Se2/KB cathode in the three electrolytes[83]; (c) The rate performance comparison of CMK-3/S-Te-1 and CMK-3/S cathodes[84]; (d) The cycle performance comparison of CMK-3/S-Te-1 and CMK-3/S cathodes at 0.1 C[84]; (e) Schematic illustration of the S@PAN/S7Se cathode before and after electrochemical cycling[85]; (f) Cycling performance of S@PAN/S7Se electrodes with high loadings of 5 mg·cm-2 at 0.2 A·g-1[85]
图9 (a) 在C-S正极上分子层沉积的新型氧化铝复合膜示意图[86];(b) 铝基膜C-S正极在55 ℃的性能比较[86];(c) 铝基薄膜包覆的不同载量C-S正极的电化学性能[87];(d) 氧化铝原子层沉积和无包覆的C-S正极的SEM图及在0.2 C的电化学性能[88]
Fig. 9 (a) Schematic of alucone coating on C-S electrode via molecular layer deposition[86]; (b) The electrochemical performances of alucone coated C-S electrodes under 55 ℃[86]; (c) Long cycling of alucone-coated C-S electrodes with various loadings[87]; (d) The SEM images of alumina-containing and uncoated electrodes and the electrochemical performances at 0.2 C[88]
图10 (a) PVDF及PEO包覆C/S正极的机理原理图[89];(b) PVDF包覆正极材料的电化学性能[89]
Fig. 10 (a) Schematic illustration for the proposed mechanism of PVDF- and PEO-coated C/S cathodes[89]; (b) The electrochemical performances of PVDF-coated cathodes[89]
图11 (a) 硫正极在高浓电解液中反应示意图[25];(b) ACN:HFE (1:1)中的硫正极的GITT曲线[25];(c) G2:LiTFSI (0.8:1)电解液结构示意图[97];(d) 不同比例G2:LiTFSI电解质中硫正极的平衡电压变化[97];(e) 硫正极在浓缩硅氧烷电解质中的反应机理示意图[93];(f) 在浓硅氧烷电解质中硫正极的首圈充放电曲线[93]
Fig. 11 (a) Concept of sulfur cathode reaction mechanism in high concentration electrolyte[25]; (b) GITT curveofsulfurcathode experiments in ACN:HFE (1:1)[25]; (c) Structure illustration of the G2:LiTFSI (0.8:1) electrolytes[97]; (d) The equilibrium voltage curves of sulfur cathodes in different G2:LiTFSI electrolytes[97]; (e) Schematic illustration of sulfur cathode in concentrated siloxane electrolytes[93]; (f) First charge/discharge curve ofsulfurcathode in the concentrated siloxane electrolytes[93]
图12 (a) 局部高浓电解液的结构示意图[101];(b) 硫正极在不同电解液中0.2 C的循环性能[101];(c) 稀释电解液中的多硫化物结构示意图[102];(d) 在1 M LiFSI/HFE+DME电解液中的硫正极充放电曲线[102];(e) 在1 M LiFSI/OFE + DME5电解液中硫正极的GITT曲线[103];(f) 硫正极在1 M LiFSI/OFE + DME50电解液的GITT曲线[103]
Fig. 12 (a) The solvation structure for the pseudo-concentrated electrolyte[101]; (b) Cycling performance of sulfur cathode at 0.2C in different electrolytes[101]; (c) Schematic illustration of polysulfide state in dilute electrolyte[102]; (d) Charge/discharge curves of sulfur cathode in the 1 M LiFSI/HFE+DME electrolyte[102]; (e) GITT curve of sulfur cathode in 1 M LiFSI/OFE + DME5 electrolyte[103]; (f) GITT curves of sulfur cathode in 1 M LiFSI/OFE + DME50 electrolyte[103]
图13 实现硫正极准固相转换的路径[25,51,87]
Fig. 13 Potential pathways of a quasi-solid-state conversion reaction sulfur cathode[25,51,87]
[1]
Fang R P, Zhao S Y, Sun Z H, Wang D W, Cheng H M, Li F. Adv. Mater., 2017, 29(48): 1606823.

doi: 10.1002/adma.201606823     URL    
[2]
Dirlam P T, Glass R S, Char K, Pyun J. J. Polym. Sci. A: Polym. Chem., 2017, 55(10): 1635.

doi: 10.1002/pola.28551     URL    
[3]
Peng H J, Zhang Z W, Huang J Q, Zhang G, Xie J, Xu W T, Shi J L, Chen X, Cheng X B, Zhang Q. Adv. Mater., 2016, 28(43): 9550.

doi: 10.1002/adma.201670303     URL    
[4]
Grey C P, Tarascon J M. Nat. Mater., 2017, 16(1): 45.

doi: 10.1038/nmat4777     URL    
[5]
Peng H J, Huang J Q, Cheng X B, Zhang Q. Adv. Energy Mater., 2017, 7(24): 1700260.

doi: 10.1002/aenm.201700260     URL    
[6]
Pang Q, Liang X, Kwok C Y, Nazar L F. Nat. Energy, 2016, 1(9): 16132.

doi: 10.1038/nenergy.2016.132     URL    
[7]
Li Z, Wu H B, (David) Lou X W. Energy Environ. Sci., 2016, 9(10): 3061.

doi: 10.1039/C6EE02364A     URL    
[8]
Li G X, Sun J H, Hou W P, Jiang S D, Huang Y, Geng J X. Nat. Commun., 2016, 7(1): 10601.

doi: 10.1038/ncomms10601     URL    
[9]
Meng T, Gao J C, Zhu J H, Li N, Xu M W, Li C M, Jiang J. J. Mater. Chem. A, 2020, 8(24): 11976.

doi: 10.1039/D0TA04592F     URL    
[10]
Rosenman A, Markevich E, Salitra G, Aurbach D, Garsuch A, Chesneau F F. Adv. Energy Mater., 2015, 5(16): 1500212.

doi: 10.1002/aenm.201500212     URL    
[11]
Yao N P, Heredy L A, Saunders R C. J. Electrochem. Soc., 1970, 117: 148.
[12]
Rosenman A, Elazari R, Salitra G, Markevich E, Aurbach D, Garsuch A. J. Electrochem. Soc., 2015, 162(3): A470.

doi: 10.1149/2.0861503jes     URL    
[13]
Ji X L, Lee K T, Nazar L F. Nat. Mater., 2009, 8(6): 500.

doi: 10.1038/nmat2460     URL    
[14]
Ding N, Lum Y, Chen S F, Chien S W, Hor T S A, Liu Z L, Zong Y. J. Mater. Chem. A, 2015, 3(5): 1853.

doi: 10.1039/C4TA05659K     URL    
[15]
Wei Seh Z, Li W Y, Cha J J, Zheng G Y, Yang Y, McDowell M T, Hsu P C, Cui Y. Nat. Commun., 2013, 4(1): 1331.

doi: 10.1038/ncomms2327     URL    
[16]
Yao Y, Feng W L, Chen M L, Zhong X W, Wu X J, Zhang H B, Yu Y. Small, 2018, 14(42): 1802516.

doi: 10.1002/smll.201802516     URL    
[17]
Ai W, Zhou W W, Du Z Z, Chen Y, Sun Z P, Wu C, Zou C J, Li C M, Huang W, Yu T. Energy Storage Mater., 2017, 6: 112.
[18]
Pu J, Shen Z H, Zheng J X, Wu W L, Zhu C, Zhou Q W, Zhang H G, Pan F. Nano Energy, 2017, 37: 7.

doi: 10.1016/j.nanoen.2017.05.009     URL    
[19]
Li Z, Zhang J T, Guan B Y, Wang D, Liu L M, Lou X W. Nat. Commun., 2016, 7(1): 13065.

doi: 10.1038/ncomms13065     URL    
[20]
Liang X, Garsuch A, Nazar L F. Angew. Chem. Int. Ed., 2015, 54(13): 3907.

doi: 10.1002/anie.201410174     pmid: 25650042
[21]
Pang Q, Kundu D P, Cuisinier M, Nazar L F. Nat. Commun., 2014, 5(1): 4759.

doi: 10.1038/ncomms5759     URL    
[22]
Lin H B, Yang L Q, Jiang X, Li G C, Zhang T R, Yao Q F, Zheng G W, Lee J Y. Energy Environ. Sci., 2017, 10(6): 1476.

doi: 10.1039/C7EE01047H     URL    
[23]
Li Y J, Fan J M, Zheng M S, Dong Q F. Energy Environ. Sci., 2016, 9(6): 1998.

doi: 10.1039/C6EE00104A     URL    
[24]
Xin S, Gu L, Zhao N H, Yin Y X, Zhou L J, Guo Y G, Wan L J. J. Am. Chem. Soc., 2012, 134(45): 18510.

doi: 10.1021/ja308170k     URL    
[25]
Cuisinier M, Cabelguen P E, Adams B D, Garsuch A, Balasubramanian M, Nazar L F. Energy Environ. Sci., 2014, 7(8): 2697.

doi: 10.1039/C4EE00372A     URL    
[26]
He F, Wu X J, Qian J F, Cao Y L, Yang H X, Ai X P, Xia D G. J. Mater. Chem. A, 2018, 6(46): 23396.

doi: 10.1039/C8TA08159J     URL    
[27]
Deng N P, Ma X M, Ruan Y L, Wang X Q, Kang W M, Cheng B W. Progress in Chemistry, 2016, 28(9): 1435.
(邓南平, 马晓敏, 阮艳莉, 王晓清, 康卫民, 程博闻. 化学进展, 2016, 28(9): 1435.).

doi: 10.7536/PC160203    
[28]
Manthiram A, Fu Y Z, Chung S H, Zu C X, Su Y S. Chem. Rev., 2014, 114(23): 11751.

doi: 10.1021/cr500062v     pmid: 25026475
[29]
Chen X, Peng L F, Wang L H, Yang J Q, Hao Z X, Xiang J W, Yuan K, Huang Y H, Shan B, Yuan L X, Xie J. Nat. Commun., 2019, 10(1): 1021.

doi: 10.1038/s41467-019-08818-6     pmid: 30833552
[30]
Dai C L, Lim J M, Wang M Q, Hu L Y, Chen Y M, Chen Z Y, Chen H, Bao S J, Shen B L, Li Y, Henkelman G, Xu M W. Adv. Funct. Mater., 2018, 28(14): 1704443.

doi: 10.1002/adfm.201704443     URL    
[31]
Lei J, Liu T, Chen J J, Zheng M S, Zhang Q, Mao B W, Dong Q F. Chem, 2020, 6(10): 2533.

doi: 10.1016/j.chempr.2020.06.032     URL    
[32]
Liu Y T, Liu S, Li G R, Gao X P. Adv. Mater., 2021, 33(8): 2003955.

doi: 10.1002/adma.202003955     URL    
[33]
Zhao M, Li B Q, Zhang X Q, Huang J Q, Zhang Q. ACS Cent. Sci., 2020, 6(7): 1095.

doi: 10.1021/acscentsci.0c00449     URL    
[34]
Wang D W, Zhou G M, Li F, Wu K H, Lu G Q M, Cheng H M, Gentle I R. Phys. Chem. Chem. Phys., 2012, 14(24): 8703.

doi: 10.1039/c2cp40808b     URL    
[35]
Wang D W, Zeng Q C, Zhou G M, Yin L C, Li F, Cheng H M, Gentle I R, Lu G Q M. J. Mater. Chem. A, 2013, 1(33): 9382.

doi: 10.1039/c3ta11045a     URL    
[36]
Lin Y X, Zheng J, Wang C S, Qi Y. Nano Energy, 2020, 75: 104915.

doi: 10.1016/j.nanoen.2020.104915     URL    
[37]
Ma L, Hendrickson K E, Wei S Y, Archer L A. Nano Today, 2015, 10(3): 315.

doi: 10.1016/j.nantod.2015.04.011     URL    
[38]
Wang L L, Ye Y S, Chen N, Huang Y X, Li L, Wu F, Chen R J. Adv. Funct. Mater., 2018, 28(38): 1800919.

doi: 10.1002/adfm.201800919     URL    
[39]
Lin Y L, Huang S, Zhong L, Wang S J, Han D M, Ren S, Xiao M, Meng Y Z. Energy Storage Mater., 2021, 34: 128.
[40]
Zhang B, Qin X, Li G R, Gao X P. Energy Environ. Sci., 2010, 3(10): 1531.

doi: 10.1039/c002639e     URL    
[41]
Maria Joseph H, Fichtner M, Munnangi A R. J. Energy Chem., 2021, 59: 242.

doi: 10.1016/j.jechem.2020.11.001     URL    
[42]
Demir-Cakan R, Morcrette M, Nouar F, Davoisne C, Devic T, Gonbeau D, Dominko R, Serre C, FÉrey G, Tarascon J M. J. Am. Chem. Soc., 2011, 133(40): 16154.

doi: 10.1021/ja2062659     pmid: 21882857
[43]
Hao G P, Tang C, Zhang E, Zhai P Y, Yin J, Zhu W C, Zhang Q, Kaskel S. Adv. Mater., 2017, 29(37): 1702829.

doi: 10.1002/adma.201702829     URL    
[44]
Sun Z J, Wang S J, Yan L L, Xiao M, Han D M, Meng Y Z. J. Power Sources, 2016, 324: 547.

doi: 10.1016/j.jpowsour.2016.05.122     URL    
[45]
Zheng G Y, Yang Y, Cha J J, Hong S S, Cui Y. Nano Lett., 2011, 11(10): 4462.

doi: 10.1021/nl2027684     URL    
[46]
Hua Y, Li X L, Zhang X C, Zhang L Y, Shu Y Z, Sheng H J, Fang H G, Wei H B, Ding Y S. ChemElectroChem, 2019, 6(9): 2570.

doi: 10.1002/celc.201900556     URL    
[47]
Sun J K, Xu Q. Energy Environ. Sci., 2014, 7(7): 2071.

doi: 10.1039/c4ee00517a     URL    
[48]
Morozan A, Jaouen F. Energy Environ. Sci., 2012, 5(11): 9269.

doi: 10.1039/c2ee22989g     URL    
[49]
Zhu Q L, Xu Q. Chem. Soc. Rev., 2014, 43(16): 5468.

doi: 10.1039/C3CS60472A     URL    
[50]
Wang D Y, Liu R L, Guo W, Li G, Fu Y Z. Coord. Chem. Rev., 2021, 429: 213650.

doi: 10.1016/j.ccr.2020.213650     URL    
[51]
Li Z Q, Yin L W. ACS Appl. Mater. Interfaces, 2015, 7(7): 4029.

doi: 10.1021/am507660y     URL    
[52]
Hong X J, Tang X Y, Wei Q, Song C L, Wang S Y, Dong R F, Cai Y P, Si L P. ACS Appl. Mater. Interfaces, 2018, 10(11): 9435.

doi: 10.1021/acsami.7b19609     URL    
[53]
Yan D, Teng B. Chem. Res. Chin. Univ., 2019, 35(4): 654.

doi: 10.1007/s40242-019-9038-0     URL    
[54]
Li G C, Jiang X L, Liu C, Song M C, Yang S L, Lian J B, Lee J Y. Int. J. Energy Res., 2020, 44(3): 2126.

doi: 10.1002/er.5070     URL    
[55]
Tong Z M, Huang L, Lei W, Zhang H J, Zhang S W. J. Energy Chem., 2021, 54: 254.

doi: 10.1016/j.jechem.2020.05.059     URL    
[56]
Hu L, Lu Y, Zhang T W, Huang T, Zhu Y C, Qian Y T. ACS Appl. Mater. Interfaces, 2017, 9(16): 13813.

doi: 10.1021/acsami.7b01387     URL    
[57]
Zhu Q Z, Zhao Q, An Y B, Anasori B, Wang H R, Xu B. Nano Energy, 2017, 33: 402.

doi: 10.1016/j.nanoen.2017.01.060     URL    
[58]
Zhao Q, Zhu Q Z, Miao J W, Guan Z, Liu H, Chen R J, An Y B, Wu F, Xu B. ACS Appl. Mater. Interfaces, 2018, 10(13): 10882.

doi: 10.1021/acsami.8b00225     URL    
[59]
Han J K, Li Y, Li S W, Long P, Cao C, Cao Y, Wang W Z, Feng Y Y, Feng W. Sustain. Energy Fuels, 2018, 2(10): 2187.

doi: 10.1039/C8SE00185E     URL    
[60]
Hu L, Lu Y, Li X N, Liang J W, Huang T, Zhu Y C, Qian Y T. Small, 2017, 13(11): 1603533.

doi: 10.1002/smll.201603533     URL    
[61]
Sun D, Razaq R, Xin Y, Zhang J H, Li Q, Huang T Z, Zhang Z L. Mater. Res. Express, 2019, 6(8): 085509.

doi: 10.1088/2053-1591/ab1bf9     URL    
[62]
Li Z, Yuan L X, Yi Z Q, Sun Y M, Liu Y, Jiang Y, Shen Y, Xin Y, Zhang Z L, Huang Y H. Adv. Energy Mater., 2014, 4(7): 1301473.

doi: 10.1002/aenm.201301473     URL    
[63]
Liu X D, Rahmatinejad J, Ye Z B. Chem. Eng. J., 2021, 422: 130129.

doi: 10.1016/j.cej.2021.130129     URL    
[64]
Allahbakhsh A, Bahramian A R. Nanoscale, 2015, 7(34): 14139.

doi: 10.1039/c5nr03855c     pmid: 26245296
[65]
Nojabaee M, Sievert B, Schwan M, Schettler J, Warth F, Wagner N, Milow B, Friedrich K A. J. Mater. Chem. A, 2021, 9(10): 6508.

doi: 10.1039/D0TA11332H     URL    
[66]
Li Z H, Li X G, Liao Y H, Li X P, Li W S. J. Power Sources, 2016, 334: 23.

doi: 10.1016/j.jpowsour.2016.10.003     URL    
[67]
Fan C J, Yan Y L, Chen L P, Chen S Y, Lin J M, Yang R. Progress in Chemistry, 2019, 31(8): 1166.
(樊潮江, 燕映霖, 陈利萍, 陈世煜, 蔺佳明, 杨蓉. 化学进展, 2019, 31(8): 1166.).

doi: 10.7536/PC190140    
[68]
Aurbach D, Markovsky B, Levi M D, Levi E, Schechter A, Moshkovich M, Cohen Y. J. Power Sources, 1999, 81-82: 95.
[69]
Aurbach D, Zinigrad E, Cohen Y, Teller H. Solid State Ion., 2002, 148(3/4): 405.

doi: 10.1016/S0167-2738(02)00080-2     URL    
[70]
Verma P, Maire P, Novák P. Electrochim. Acta, 2010, 55(22): 6332.

doi: 10.1016/j.electacta.2010.05.072     URL    
[71]
Sun S, Liu B, Zhang H S, Guo Q B, Xia Q Y, Zhai T, Xia H. Adv. Energy Mater., 2021, 11(8): 2003599.

doi: 10.1002/aenm.202003599     URL    
[72]
Wang W P, Zhang J, Chou J, Yin Y X, You Y, Xin S, Guo Y G. Adv. Energy Mater., 2021, 11(2): 2000791.

doi: 10.1002/aenm.202000791     URL    
[73]
Kozen A C, Lin C F, Zhao O, Lee S B, Rubloff G W, Noked M. Chem. Mater., 2017, 29(15): 6298.

doi: 10.1021/acs.chemmater.7b01496     URL    
[74]
Guo D, Li X, Wahyudi W, Li C Y, Emwas A H, Hedhili M N, Li Y X, Lai Z P. ACS Nano, 2020, 14(12): 17163.

doi: 10.1021/acsnano.0c06944     URL    
[75]
Markevich E, Salitra G, Talyosef Y, Chesneau F, Aurbach D. J. Electrochem. Soc., 2016, 164(1): A6244.

doi: 10.1149/2.0391701jes     URL    
[76]
Markevich E, Salitra G, Rosenman A, Talyosef Y, Chesneau F, Aurbach D. J. Mater. Chem. A, 2015, 3(39): 19873.

doi: 10.1039/C5TA04613K     URL    
[77]
Markevich E, Salitra G, Rosenman A, Talyosef Y, Chesneau F, Aurbach D. Electrochem. Commun., 2015, 60: 42.

doi: 10.1016/j.elecom.2015.08.004     URL    
[78]
Rosenman A, Markevich E, Salitra G, Talyosef Y, Chesneau F, Aurbach D. J. Electrochem. Soc., 2016, 163(9): A1829.

doi: 10.1149/2.0151609jes    
[79]
Lee J T, Eom K, Wu F X, Kim H, Lee D C, Zdyrko B, Yushin G. ACS Energy Lett., 2016, 1(2): 373.

doi: 10.1021/acsenergylett.6b00163     URL    
[80]
Chen X, Yuan L X, Li Z, Chen S J, Ji H J, Qin Y F, Wu L S, Shen Y, Wang L B, Hu J P, Huang Y H. ACS Appl. Mater. Interfaces, 2019, 11(33): 29830.

doi: 10.1021/acsami.9b07787     URL    
[81]
Wang K, Guan Y P, Jin Z Q, Wang W K, Wang A B. J. Energy Chem., 2019, 39: 249.

doi: 10.1016/j.jechem.2019.03.010    
[82]
Li S P, Zhang W, Zeng Z Q, Cheng S J, Xie J. Electrochem. Energy Rev., 2020, 3(3): 613.

doi: 10.1007/s41918-020-00072-5     URL    
[83]
Xu G L, Sun H, Luo C, Estevez L, Zhuang M H, Gao H, Amine R, Wang H, Zhang X Y, Sun C J, Liu Y Z, Ren Y, Heald S M, Wang C S, Chen Z H, Amine K. Adv. Energy Mater., 2019, 9(2): 1802235.

doi: 10.1002/aenm.201802235     URL    
[84]
Li S P, Ma J Q, Zeng Z Q, Hu W, Zhang W, Cheng S J, Xie J. J. Mater. Chem. A, 2020, 8(6): 3405.

doi: 10.1039/C9TA13191D     URL    
[85]
He B, Rao Z X, Cheng Z X, Liu D D, He D Q, Chen J, Miao Z Y, Yuan L X, Li Z, Huang Y H. Adv. Energy Mater., 2021, 11(14): 2003690.

doi: 10.1002/aenm.202003690     URL    
[86]
Li X, Lushington A, Sun Q, Xiao W, Liu J, Wang B Q, Ye Y F, Nie K Q, Hu Y F, Xiao Q F, Li R Y, Guo J H, Sham T K, Sun X L. Nano Lett., 2016, 16(6): 3545.

doi: 10.1021/acs.nanolett.6b00577     pmid: 27175936
[87]
Li X, Banis M, Lushington A, Yang X F, Sun Q, Zhao Y, Liu C Q, Li Q Z, Wang B Q, Xiao W, Wang C H, Li M S, Liang J W, Li R Y, Hu Y F, Goncharova L, Zhang H M, Sham T K, Sun X L. Nat. Commun., 2018, 9(1): 4509.

doi: 10.1038/s41467-018-06877-9     pmid: 30375387
[88]
Azaceta E, García S, Leonet O, Beltrán M, GÓmez I, Chuvilin A, Mainar A R, Blazquez J A, Knez M. Mater. Today Energy, 2020, 18: 100567.
[89]
Fang R Y, Xu H H, Xu B Y, Li X Y, Li Y T, Goodenough J B. Adv. Funct. Mater., 2021, 31(2): 2001812.

doi: 10.1002/adfm.202001812     URL    
[90]
Yamada Y, Wang J H, Ko S, Watanabe E, Yamada A. Nat. Energy, 2019, 4(4): 269.

doi: 10.1038/s41560-019-0336-z    
[91]
Liu K X, Wang Z Y, Shi L Y, Jungsuttiwong S, Yuan S. J. Energy Chem., 2021, 59: 320.

doi: 10.1016/j.jechem.2020.11.017     URL    
[92]
Dokko K, Tachikawa N, Yamauchi K, Tsuchiya M, Yamazaki A, Takashima E, Park J W, Ueno K, Seki S, Serizawa N, Watanabe M. J. Electrochem. Soc., 2013, 160(8): A1304.

doi: 10.1149/2.111308jes     URL    
[93]
Amine R, Liu J Z, Acznik I, Sheng T, Lota K, Sun H, Sun C J, Fic K, Zuo X B, Ren Y, Ei-Hady D A, Alshitari W, Al-Bogami A S, Chen Z H, Amine K, Xu G L. Adv. Energy Mater., 2020, 10(25): 2000901.

doi: 10.1002/aenm.202000901     URL    
[94]
Kong L, Yin L H, Xu F, Bian J C, Yuan H M, Lu Z G, Zhao Y S. J. Energy Chem., 2021, 55: 80.

doi: 10.1016/j.jechem.2020.06.054     URL    
[95]
Su C C, He M N, Amine R, Chen Z H, Amine K. Angew. Chem. Int. Ed., 2018, 57(37): 12033.

doi: 10.1002/anie.201807367     URL    
[96]
Suo L M, Hu Y S, Li H, Armand M, Chen L Q. Nat. Commun., 2013, 4(1): 1481.

doi: 10.1038/ncomms2513     URL    
[97]
Pang Q, Shyamsunder A, Narayanan B, Kwok C Y, Curtiss L A, Nazar L F. Nat. Energy, 2018, 3(9): 783.

doi: 10.1038/s41560-018-0214-0     URL    
[98]
Zhang Y Z, Liu S, Li G C, Li G R, Gao X P. J. Mater. Chem. A, 2014, 2(13): 4652.

doi: 10.1039/C3TA14914E     URL    
[99]
Fan L L, Deng N P, Yan J, Li Z H, Kang W M, Cheng B W. Chem. Eng. J., 2019, 369: 874.

doi: 10.1016/j.cej.2019.03.145     URL    
[100]
Chen S R, Zheng J M, Mei D H, Han K S, Engelhard M H, Zhao W G, Xu W, Liu J, Zhang J G. Adv. Mater., 2018, 30(21): 1870144.

doi: 10.1002/adma.201870144     URL    
[101]
Huang F F, Ma G Q, Wen Z Y, Jin J, Xu S Q, Zhang J J. J. Mater. Chem. A, 2018, 6(4): 1612.

doi: 10.1039/C7TA08274F     URL    
[102]
Zheng J, Fan X L, Ji G B, Wang H Y, Hou S, DeMella K C, Raghavan S R, Wang J, Xu K, Wang C S. Nano Energy, 2018, 50: 431.

doi: 10.1016/j.nanoen.2018.05.065     URL    
[103]
Zheng J, Ji G B, Fan X L, Chen J, Li Q, Wang H Y, Yang Y, DeMella K C, Raghavan S R, Wang C S. Adv. Energy Mater., 2019, 9(16): 1803774.

doi: 10.1002/aenm.201803774     URL    
[104]
Huang F F, Gao L J, Zou Y P, Ma G Q, Zhang J J, Xu S Q, Li Z X, Liang X. J. Mater. Chem. A, 2019, 7(20): 12498.

doi: 10.1039/C9TA02877C     URL    
[105]
Xin S, Yin Y X, Guo Y G, Wan L J. Adv. Mater., 2014, 26(8): 1261.

doi: 10.1002/adma.201304126     URL    
[106]
Wei S Y, Xu S M, Agrawral A, Choudhury S, Lu Y Y, Tu Z Y, Ma L, Archer L A. Nat. Commun., 2016, 7(1): 11722.

doi: 10.1038/ncomms11722     URL    
[107]
Zhao M, Li B Q, Peng H J, Yuan H, Wei J Y, Huang J Q. Angew. Chem. Int. Ed., 2020, 59(31): 12636.

doi: 10.1002/anie.201909339     URL    
[1] 梁宵, 温兆银, 刘宇. 高性能锂硫电池材料研究进展[J]. 化学进展, 2011, 23(0203): 520-526.
阅读次数
全文


摘要

准固相转化机制硫正极