中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (5): 771-779 DOI: 10.7536/PC220925 Previous Articles   Next Articles

• Review •

Performance of Resistance to Sulfur Oxide and Regeneration over Copper-Based Small-Pore Zeolites Catalysts for the Selective Catalytic Reduction of NOx with NH3

Shuai Li1, Na Zhu1(), Yangjian Cheng1, Di Chen2   

  1. 1 School of Advanced Manufacturing, Fuzhou University,Jinjiang 362251, China
    2 Foshan (Southern China) Institute for New Materials,Foshan 528247, China
  • Received: Revised: Online: Published:
  • Contact: * e-mail: nzhu@fzu.edu.cn
  • Supported by:
    Natural Science Foundation of Fujian Province(2021J05138); Open Fund Project of Foshan (Southern China) Institute for New Materials(2021AYF25001)
Richhtml ( 13 ) PDF ( 203 ) Cited
Export

EndNote

Ris

BibTeX

Copper-based small-pore zeolites catalysts are the promising candidate catalysts for NOx abatement in current diesel vehicles with Chinese VI standards, due to the excellent NH3-SCR catalytic performance, hydrothermal stability, nitrogen selectivity and wide temperature window. However, the catalytic activity of copper-based small-pore zeolites is still significantly affected by sulfur oxides emitted from diesel vehicles, and even the irreversible deactivation occurs. The SO2-poisoning of Cu-based small-zeolites is mainly due to the accumulation of surface ammonium sulfate and sulfation of Cu active site sites. In this review, the research status of the structure and active sites of copper-based small-pore zeolites catalysts is summarized, and the sulfur poisoning mechanism of copper-based small-pore zeolites catalysts is discussed. Moreover, the research advance in the improvement of sulfur resistance of catalysts and the regeneration of sulfur-poisoned catalysts is also illustrated. The systematic understanding of mechanism of sulfur poisoning and regeneration is important for the design of novel, efficient catalyst. It is pointed out that the study on sulfur poisoning mechanism and regeneration mechanism of copper-based small-pore zeolites catalysts, as well as the synergistic effect of various poisoning factors and corresponding deactivation mechanism, are the main research directions for copper-based zeolites to be practically applied to ultra-low emission of nitrogen oxides in diesel vehicle exhaust in the future.

Contents

1 Introduction

2 Structure and active sites of copper-based small-pore zeolites catalysts

2.1 Structure of copper-based small-pore zeolites catalysts

2.2 Study on active sites of copper-based small-pore zeolites catalysts

3 Study on sulfur poisoning mechanism of copper-based small-pore zeolites catalysts

3.1 The effect of SO2

3.2 The effect of H2O and SO2 coexistence

3.3 The effect of SO3

4 Research advance on improvement of resistance to sulfur oxides

4.1 Element doping

4.2 Morphology control

5 Regeneration research

5.1 Study of regeneration methods

5.2 Research on regeneration mechanism

6 Conclusion and outlook

Fig. 1 Low-temperature standard NH3-SCR catalytic cycle over Cu-SSZ-13[24]
Fig. 2 Schematic diagram of Cu-SSZ-13 sulfur poisoning[35]
[1]
Usui T, Liu Z D, Ibe S, Zhu J, Anand C, Igarashi H, Onaya N, Sasaki Y, Shiramata Y, Kusamoto T, Wakihara T. ACS Catal., 2018, 8(10): 9165.

doi: 10.1021/acscatal.8b01949
[2]
2021年中国移动源环境管理年报. 中华人民共和国生态环境部, 2021.
[3]
Granger P, Parvulescu V I. Chem. Rev., 2011, 111(5): 3155.

doi: 10.1021/cr100168g
[4]
Forzatti P. Appl. Catal. A-Gen., 2001, 222 (1/2): 221.

doi: 10.1016/S0926-860X(01)00832-8
[5]
Kwak J H, Tonkyn R G, Kim D H, Szanyi J, Peden C H F. J. Catal., 2010, 275(2): 187.

doi: 10.1016/j.jcat.2010.07.031
[6]
Beale A M, Gao F, Lezcano-Gonzalez I, Peden C H F, Szanyi J. Chem. Soc. Rev., 2015, 44(20): 7371.

doi: 10.1039/c5cs00108k pmid: 25913215
[7]
Borfecchia E, Beato P, Svelle S, Olsbye U, Lamberti C, Bordiga S. Chem. Soc. Rev., 2018, 47(22): 8097.

doi: 10.1039/c8cs00373d pmid: 30083666
[8]
Paolucci C, Di Iorio J R, Schneider W F, Gounder R. Acc. Chem. Res., 2020, 53(9): 1881.

doi: 10.1021/acs.accounts.0c00328
[9]
Wang J H, Zhao H W, Haller G, Li Y D. Appl. Catal. B Environ., 2017, 202: 346.

doi: 10.1016/j.apcatb.2016.09.024
[10]
Deka U, Lezcano-Gonzalez I, Weckhuysen B M, Beale A M. ACS Catal., 2013, 3(3): 413.

doi: 10.1021/cs300794s
[11]
Korhonen S T, Fickel D W, Lobo R F, Weckhuysen B M, Beale A M. Chem. Commun., 2011, 47(2): 800.

doi: 10.1039/C0CC04218H
[12]
Kispersky V F, Kropf A J, Ribeiro F H, Miller J T. Phys. Chem. Chem. Phys., 2012, 14(7): 2229.

doi: 10.1039/c1cp22992c pmid: 22158950
[13]
Deka U, Juhin A, Eilertsen E A, Emerich H, Green M A, Korhonen S T, Weckhuysen B M, Beale A M. J. Phys. Chem. C, 2012, 116(7): 4809.

doi: 10.1021/jp212450d
[14]
Kwak J H, Zhu H Y, Lee J H, Peden C H F, Szanyi J. Chem. Commun., 2012, 48(39): 4758.

doi: 10.1039/c2cc31184d
[15]
Gao F, Walter E D, Karp E M, Luo J Y, Tonkyn R G, Kwak J H, Szanyi J, Peden C H F. J. Catal., 2013, 300: 20.

doi: 10.1016/j.jcat.2012.12.020
[16]
Verma A A, Bates S A, Anggara T, Paolucci C, Parekh A A, Kamasamudram K, Yezerets A, Miller J T, Delgass W N, Schneider W F, Ribeiro F H. J. Catal., 2014, 312: 179.

doi: 10.1016/j.jcat.2014.01.017
[17]
Wang J, Yu T, Wang X Q, Qi G, Xue J J, Shen M Q, Li W. Appl. Catal. B Environ., 2012, 127: 137.

doi: 10.1016/j.apcatb.2012.08.016
[18]
Gao F, Walter E D, Washton N M, Szanyi J, Peden C H F. ACS Catal., 2013, 3(9): 2083.

doi: 10.1021/cs4004672
[19]
Paolucci C, Parekh A A, Khurana I, Di Iorio J R, Li H, Albarracin Caballero J D, Shih A J, Anggara T, Delgass W N, Miller J T, Ribeiro F H, Gounder R, Schneider W F. J. Am. Chem. Soc., 2016, 138(18): 6028.

doi: 10.1021/jacs.6b02651
[20]
Lomachenko K A, Borfecchia E, Negri C, Berlier G, Lamberti C, Beato P, Falsig H, Bordiga S. J. Am. Chem. Soc., 2016, 138(37): 12025.

doi: 10.1021/jacs.6b06809 pmid: 27532483
[21]
Mao Y, Wang Z Y, Wang H F, Hu P. ACS Catal., 2016, 6(11): 7882.

doi: 10.1021/acscatal.6b01449
[22]
Paolucci C, Verma A A, Bates S A, Kispersky V F, Miller J T, Gounder R, Delgass W N, Ribeiro F H, Schneider W F. Angew. Chem. Int. Ed., 2014, 53(44): 11828.

doi: 10.1002/anie.201407030
[23]
Paolucci C, Khurana I, Parekh A A, Li S C, Shih A J, Li H, Di Iorio J R, Albarracin-Caballero J D, Yezerets A, Miller J T, Delgass W N, Ribeiro F H, Schneider W F, Gounder R. Science, 2017, 357(6354): 898.

doi: 10.1126/science.aan5630
[24]
Gao F, Mei D H, Wang Y L, Szanyi J, Peden C H F. J. Am. Chem. Soc., 2017, 139(13): 4935.

doi: 10.1021/jacs.7b01128
[25]
Su W K, Li Z G, Zhang Y N, Meng C C, Li J H. Catal. Sci. Technol., 2017, 7(7): 1523.

doi: 10.1039/C7CY00302A
[26]
Xu L W, Wang C Z, Chang H Z, Wu Q R, Zhang T, Li J H. Environ. Sci. Technol., 2018, 52(12): 7064.

doi: 10.1021/acs.est.8b01990
[27]
Sheng Z Y, Hu Y F, Xue J M, Wang X M, Liao W P. J. Rare Earths, 2012, 30(7): 676.

doi: 10.1016/S1002-0721(12)60111-2
[28]
Jin R B, Liu Y, Wu Z B, Wang H Q, Gu T T. Catal. Today, 2010, 153(3/4): 84.

doi: 10.1016/j.cattod.2010.01.039
[29]
Pan S W, Luo H C, Li L, Wei Z L, Huang B C. J. Mol. Catal. A Chem., 2013, 377: 154.

doi: 10.1016/j.molcata.2013.05.009
[30]
Hammershøi P S, Jangjou Y, Epling W S, Jensen A D, Janssens T V W. Appl. Catal. B Environ., 2018, 226: 38.

doi: 10.1016/j.apcatb.2017.12.018
[31]
Zhang L, Wang D, Liu Y, Kamasamudram K, Li J H, Epling W. Appl. Catal. B Environ., 2014, 156/157: 371.

doi: 10.1016/j.apcatb.2014.03.030
[32]
Brookshear D W, Nam J G, Nguyen K, Toops T J, Binder A. Catal. Today, 2015, 258: 359.

doi: 10.1016/j.cattod.2015.04.029
[33]
Jangjou Y, Ali M, Chang Q Y, Wang D, Li J H, Kumar A, Epling W S. Catal. Sci. Technol., 2016, 6(8): 2679.

doi: 10.1039/C5CY02212F
[34]
Jangjou Y, Wang D, Kumar A, Li J H, Epling W S. ACS Catal., 2016, 6(10): 6612.

doi: 10.1021/acscatal.6b01656
[35]
Jangjou Y, Do Q, Gu Y T, Lim L G, Sun H, Wang D, Kumar A, Li J H, Grabow L C, Epling W S. ACS Catal., 2018, 8(2): 1325.

doi: 10.1021/acscatal.7b03095
[36]
Wang A Y, Olsson L. Chem. Eng. J., 2020, 395: 125048.

doi: 10.1016/j.cej.2020.125048
[37]
Jiang H, Guan B, Peng X, Wei Y, Zhan R, Lin H, Huang Z. Chem. Sci., 2020, 226: 115855.
[38]
Shen M Q, Wen H Y, Hao T, Yu T, Fan D Q, Wang J, Li W, Wang J Q. Catal. Sci. Technol., 2015, 5 (3): 1741.

doi: 10.1039/C4CY01129E
[39]
Wijayanti K, Andonova S. Appl. Catal. B-Environ., 2015, 166/167: 568.

doi: 10.1016/j.apcatb.2014.11.043
[40]
Wijayanti K, Leistner K, Chand S, Kumar A, Kamasamudram K, Currier N W, Yezerets A, Olsson L. Catal. Sci. Technol., 2016, 6(8): 2565.

doi: 10.1039/C5CY01288K
[41]
Ma L, Li Z H, Zhao H W, Zhang T, Yan N Q, Li J H. ACS EST Eng., 2022, 2(9): 1684.

doi: 10.1021/acsestengg.2c00068
[42]
Han S, Ye Q, Cheng S Y, Kang T F, Dai H X. Catal. Sci. Technol., 2017, 7(3): 703.

doi: 10.1039/C6CY02555B
[43]
Song J, Wang Y L, Walter E D, Washton N M, Mei D H, Kovarik L, Engelhard M H, Prodinger S, Wang Y, Peden C H F, Gao F. ACS Catal., 2017, 7(12): 8214.

doi: 10.1021/acscatal.7b03020
[44]
Zhang Y N, Peng Y, Li J H, Groden K, McEwen J S, Walter E D, Chen Y, Wang Y, Gao F. ACS Catal., 2020, 10(16): 9410.

doi: 10.1021/acscatal.0c01590
[45]
Han S, Cheng J, Zheng C K, Ye Q, Cheng S Y, Kang T F, Dai H X. Appl. Surf. Sci., 2017, 419: 382.

doi: 10.1016/j.apsusc.2017.04.198
[46]
Schmidt J E, Oord R, Guo W, Poplawsky J D, Weckhuysen B M. Nat. Commun., 2017, 8: 1666.

doi: 10.1038/s41467-017-01765-0 pmid: 29162802
[47]
Ma Y, Wu X D, Cheng S Q, Cao L, Liu L P, Xu Y F, Liu J B, Ran R, Si Z C, Weng D. Appl. Catal. A Gen., 2020, 602: 117650.

doi: 10.1016/j.apcata.2020.117650
[48]
Shan Y L, Shi X Y, Yan Z D, Liu J J, Yu Y B, He H. Catal. Today, 2019, 320: 84.

doi: 10.1016/j.cattod.2017.11.006
[49]
Zhang Y N, Zhu H C, Zhang T, Li J, Chen J J, Peng Y, Li J H. Environ. Sci. Technol., 2022, 56(3): 1917.

doi: 10.1021/acs.est.1c06068
[50]
Cheng Y S, Lambert C, Kim D H, Kwak J H, Cho S J, Peden C H F. Catal. Today, 2010, 151(3/4): 266.

doi: 10.1016/j.cattod.2010.01.013
[51]
Auvray X, Arvanitidou M, Högström Å, Jansson J, Fouladvand S, Olsson L. Emiss. Control Sci. Technol., 2021, 7(4): 232.

doi: 10.1007/s40825-021-00203-4
[52]
Kumar A, Smith M A, Kamasamudram K, Currier N W, An H M, Yezerets A. Catal. Today, 2014, 231: 75.

doi: 10.1016/j.cattod.2013.12.038
[53]
Hammershøi P S, Jangjou Y, Epling W S, Jensen A D, Janssens T V W. Appl. Catal. B Environ., 2018, 226: 38.

doi: 10.1016/j.apcatb.2017.12.018
[54]
Hammershøi P S, Vennestrøm P N R, Falsig H, Jensen A D, Janssens T V W. Appl. Catal. B Environ., 2018, 236: 377.

doi: 10.1016/j.apcatb.2018.05.038
[55]
Tang Y D, Wang D, Wang X, Zha Y H, An H M, Kamasamudram K, Yezerets A. Catal. Today, 2021, 360: 234.

doi: 10.1016/j.cattod.2020.04.033
[56]
Qiu Y, Fan C, Sun C C, Zhu H C, Yi W T, Chen J Z, Guo L Y, Niu X X, Chen J J, Peng Y, Zhang T, Li J H. Catalysts, 2020, 10(12): 1391.

doi: 10.3390/catal10121391
[57]
Yin C Y, Cheng P F, Li X, Yang R T. Catal. Sci. Technol., 2016, 6(20): 7561.

doi: 10.1039/C6CY01027J
[58]
Zhang D, Yang R T. Appl. Catal. A Gen., 2017, 543: 247.

doi: 10.1016/j.apcata.2017.06.021
[59]
Sun G, Yu R, Xu L L, Wang B C, Zhang W P. Catal. Sci. Technol., 2022, 12(12): 3898.

doi: 10.1039/D1CY02343H
[60]
Yu R, Zhao Z C, Huang S J, Zhang W P. Appl. Catal. B Environ., 2020, 269: 118825.

doi: 10.1016/j.apcatb.2020.118825
[61]
Li Y H, Song W Y, Liu J, Zhao Z, Gao M L, Wei Y C, Wang Q, Deng J L. Chem. Eng. J., 2017, 330: 926.

doi: 10.1016/j.cej.2017.08.025
[62]
Han S, Ye Q, Gao Q, Dai H X. Catalysts, 2020, 10(7): 783.

doi: 10.3390/catal10070783
[63]
Yu R, Kong H Y, Zhao Z C, Shi C, Meng X J, Xiao F S, De Baerdemaeker T, Parvulescu A N, Müller U, Zhang W P. ChemCatChem, 2022, 14(10): e202200228.
[64]
Chen Y X, Li C, Chen J X, Tang X F. Environ. Sci. Technol., 2018, 52(20): 11796.
[65]
Li C X, Shen M Q, Yu T, Wang J Q, Wang J, Zhai Y P. Phys. Chem. Chem. Phys., 2017, 19(23): 15194.

doi: 10.1039/C7CP02324C
[66]
Li C X, Shen M Q, Wang J Q, Wang J, Zhai Y P. Appl. Catal. A Gen., 2018, 560: 153.

doi: 10.1016/j.apcata.2018.05.005
[67]
Shi D, Feng J, Wang J, Zhao W, Li X. Kinetics Catal., 2020, 61(5): 750.

doi: 10.1134/S0023158420050109
[68]
Peng C, Yan R, Mi Y Y, Li G, Zheng Y L, Luo Y W, Liang J, Liu W M, Li Z G, Wu D S, Wang X, Peng H G. J. Catal., 2021, 401: 309.

doi: 10.1016/j.jcat.2021.07.024
[69]
Liang J, Tao J X, Mi Y Y, Liu W M, Wang Z, Li Z G, Wu D S, Wu P, Peng H G. Chem. Eng. J., 2021, 409: 128238.

doi: 10.1016/j.cej.2020.128238
[70]
Zhang T, Qiu F, Li J H. Appl. Catal. B Environ., 2016, 195: 48.

doi: 10.1016/j.apcatb.2016.04.058
[71]
Wang X M, Du X S, Zhang L, Chen Y R, Yang G P, Ran J Y. Appl. Catal. A Gen., 2018, 559: 112.

doi: 10.1016/j.apcata.2018.04.025
[72]
Wang X M, Du X S, Zhang L, Yang G P, Chen Y R, Ran J Y. Energy Fuels, 2018, 32(6): 6990.

doi: 10.1021/acs.energyfuels.8b01455
[73]
Wang C, Wang J, Wang J Q, Yu T, Shen M Q, Wang W L, Li W. Appl. Catal. B Environ., 2017, 204: 239.

doi: 10.1016/j.apcatb.2016.11.033
[74]
Shen M Q, Li X H, Wang J Q, Wang C, Wang J. Ind. Eng. Chem. Res., 2018, 57(10): 3501.

doi: 10.1021/acs.iecr.7b05053
[75]
Mesilov V, Dahlin S, Bergman S L, Xi S B, Han J, Olsson L, Pettersson L J, Bernasek S L. Appl. Catal. B Environ., 2021, 299: 120626.

doi: 10.1016/j.apcatb.2021.120626
[76]
Hammershøi P S, Jensen A D, Janssens T V W. Appl. Catal. B Environ., 2018, 238: 104.

doi: 10.1016/j.apcatb.2018.06.039
[77]
Hammershøi P S, Godiksen A L, Mossin S, Vennestrøm P N R, Jensen A D, Janssens T V W. React. Chem. Eng., 2019, 4(6): 1081.

doi: 10.1039/C8RE00275D
[78]
Dahlin S, Lantto C, Englund J, Westerberg B, Regali F, Skoglundh M, Pettersson L J. Catal. Today, 2019, 320: 72.

doi: 10.1016/j.cattod.2018.01.035
[79]
Bergman S L, Dahlin S, Mesilov V V, Xiao Y, Englund J, Xi S B, Tang C H, Skoglundh M, Pettersson L J, Bernasek S L. Appl. Catal. B Environ., 2020, 269: 118722.

doi: 10.1016/j.apcatb.2020.118722
[80]
Shen M Q, Wang Z X, Li X H, Wang J M, Wang J Q, Wang C, Wang J. Korean J. Chem. Eng., 2019, 36(8): 1249.

doi: 10.1007/s11814-019-0307-x
[1] Nan Wang, Yingxu Wei, Zhongmin Liu. Methanol to Olefins (MTO): A Condensed Matter Chemistry [J]. Progress in Chemistry, 2023, 35(6): 839-860.
[2] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[3] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[4] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[5] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[6] Gang Lin, Yuanyuan Zhang, Jian Liu. Bioinspired Photo/(Electro)-Catalytic NADH Regeneration [J]. Progress in Chemistry, 2022, 34(11): 2351-2360.
[7] Rui Zhao, Xiao Yang, Xiangdong Zhu, Xingdong Zhang. Application of Trace Element Strontium-Doped Biomaterials in the Field of Bone Regeneration [J]. Progress in Chemistry, 2021, 33(4): 533-542.
[8] Xiaohan Wang, Caixia Liu, Chunfeng Song, Degang Ma, Zhenguo Li, Qingling Liu. Application of Metal-Organic Frameworks for Low-Temperature Selective Catalytic Reduction of NO with NH3 [J]. Progress in Chemistry, 2020, 32(12): 1917-1929.
[9] Jiao Lin, Chunwei Liu, Hongbin Cao, Li Li, Renjie Chen, Zhi Sun. Recovery of Spent Lithium Ion Batteries Based on High Temperature Chemical Conversion [J]. Progress in Chemistry, 2018, 30(9): 1445-1454.
[10] Dandan Liu, Yongchong Chen, Han He, Yingyuan He, Hao Liu, Bin Zhang. Scientific Fundamentals of Lithium Slurry Battery [J]. Progress in Chemistry, 2018, 30(6): 765-774.
[11] Xie Lijuan, Shi Xiaoyan, Liu Fudong, Ruan Wenquan. Selective Catalytic Reduction of NOx from Diesel Engine with NH3 over Zeolites Catalysts with Chabazite [J]. Progress in Chemistry, 2016, 28(12): 1860-1869.
[12] Li Panpan, Yu Feng, Zhu Mingyuan, Tang Changjin, Dai Bin, Dong Lin. Selective Catalytic Reduction De-NOx Catalysts [J]. Progress in Chemistry, 2016, 28(10): 1578-1590.
[13] Liu Wei, Zhan Hongbing. Organic/Inorganic Composites for Bone Regeneration [J]. Progress in Chemistry, 2011, 23(6): 1251-1258.
[14] . Reaction and Mechanism of Low-Temperature Selective Catalytic Reduction of NOx by NH3 over Manganese Oxide-based Catalysts [J]. Progress in Chemistry, 2010, 22(10): 1882-1900.
[15] . Catalytic Decomposition of PCDD/Fs from Flue Gas [J]. Progress in Chemistry, 2010, 22(09): 1836-1843.