中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (9): 1445-1454 DOI: 10.7536/PC180424 Previous Articles   Next Articles

Special Issue: 锂离子电池

• Review •

Recovery of Spent Lithium Ion Batteries Based on High Temperature Chemical Conversion

Jiao Lin1,2, Chunwei Liu2, Hongbin Cao2, Li Li1*, Renjie Chen1, Zhi Sun2*   

  1. 1. School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Key Program of Chinese Academy of Sciences(No. KFZD-SW-315)and the Beijing Science and Technology Program (No. Z171100002217028).
PDF ( 1116 ) Cited
Export

EndNote

Ris

BibTeX

Given the environmental risk and valuable metal containing nature of spent lithium-ion batteries, it is of great significance to harmlessly dispose of spent lithium-ion batteries and recycle the valuable resources therein. At present, the spent lithium-ion batteries recycling technology is realized mainly through enhanced chemical conversion under high temperature or normal temperature conditions. High temperature boosts the chemical conversion rate of valuable elements in the spent lithium-ion battery, results in a short flow and releases material dependence. Therefore, high temperature chemical conversion is easy to implement in industry, and the related technologies have become one of the hotspots for the recycling of spent lithium-ion batteries. Based on the chemical conversion differences of various phases, this study systematically analyzes and evaluates the physicochemical mechanisms, technical characteristics, and research status of high temperature chemical reduction, roasting with molten salt, and direct regeneration. The advantages and problems of various technologies are compared. Based on this, it is advised that the future research needs in-depth study of its chemical conversion mechanism and takes into account the short flow clean regeneration of materials. It is necessary to develop a low energy-consuming and environmentally-friendly approach to enable the green treatment and recycling of spent lithium-ion batteries based on the principle of green chemistry.
Contents
1 Introduction
2 Pyrometallurgy recovery technology
2.1 High temperature reduction
2.2 Sulfation roasting
2.3 Direct regeneration
2.4 Discussion
3 Challenges and Prospects
4 Conclusion

CLC Number: 

[1] Zeng X L, Li J H, Narendra S. Crit. Rev. Env. Sci. Techno., 2014, 44(10):1129.
[2] Wang X, Gabrielle G, Callie W B, Kirti R. Resour. Conserv. Recy., 2014, 83(1):53.
[3] Yu L H, Miao J S, Jin Y, Lin J Y S. Front. Chem. Sci. Eng. 2017, 11(3):346.
[4] Zeng X L, Li J H, Ren Y S. Proc. IEEE, 2012, 1.
[5] Huang Y F, Han G H, Liu J T, Chai W C, Wang W J, Yang S Z, Su S P. J. Power Sources, 2016, 325:555.
[6] Zhao K C, Li Z H, Bian L. Front. Chem. Sci. Eng., 2016, 10:273.
[7] 朱凌云(Zhu L Y), 陈铭(Chen M). 汽车与配件(Automobile & Parts), 2014, 2014(33):41.
[8] Gratz E, Sa Q, Apelian D, Wang Y. J. Power Sources, 2014, 262(4):255.
[9] Germano D, Marcelo B M. J. Power Sources, 2007, 170(1):210.
[10] 王泽峰(Wang Z F). 清华大学硕士论文(Master Dissertation of Tsinghua University), 2008.
[11] 孙亮(Sun L). 中南大学硕士论文(Master Dissertation of Central South University), 2012
[12] Sun L, Qiu K Q. Waste Manage., 2012, 32(8):1575.
[13] Swain B. Sep. Purif. Technol. 2016, 172:388.
[14] Zhang P W, Yokoyama T, Itabashi O. Hydromet, 1998, 47(2/3):259.
[15] Yang L, Xi G X, Xi Y B. Ceram. Int., 2015, 41(9):11498.
[16] Li L, Dunn J B, Zhang X X, Gaines L, Chen R J, Wu F, Amine K. J. Power Sources, 2013, 233(233):180.
[17] Zeng X L, Li J H, Shen B Y. J. Hazard. Mater., 2015, 295:112.
[18] Ku H, Jung Y, Jo M, Park S, Kim S, Yang D, Rhee K, An E M, Sohn J, Kwon K. J. Hazard. Mater., 2016, 313:138.
[19] Sun Z, Cao H B, Prakash V, Jin W, Xiao Y P, Jilt S, Yang Y X. Front. Chem. Sci. Eng., 2017, 11(3):308.
[20] Xin B P, Zhang D, Zhang X, Xia Y T, Wu F, Chen S, Li L. Bioresour. Technol., 2009, 100(24):6163.
[21] Mishra D, Kim D J, Ralph D E, Ahn J G, Rhee Y H. Waste Manage., 2008, 28(2):333.
[22] Castillo S, Ansart F, Laberty-Robert C, Portal J. J. Power Sources, 2002, 112(1):247.
[23] Jian G, Guo J, Wang X, Sun C, Zhou Z, Yu L, Kong F H, Qiu J R. Pro. Env. Sci., 2012, 16:495.
[24] Zhang P W, Yokoyama T, Itabashi O, Suzuki T M, Inoue K. Hydromet, 1998, 50(1):61.
[25] Pranolo Y, Zhang W, Cheng C Y. Hydromet., 2010, 102(1/4):37.
[26] Freitas M, Penha T R, Sirtoli S. J. Power Sources, 2006, 163:1114
[27] Shu S, Lee J R, Zhang Q W, Saito F. Int. J. Miner. Process., 2004, 74(50):S373.
[28] Yang Y X, Zheng X H, Cao H B, Zhao C L, Lin X, Ning P G, Zhang Y, Jin W, Sun Z. Green Chem., 2017, 5(11):3121.
[29] Brajendra M, Sumedh G. Front. Chem. Sci. Eng., 2017, 11(3):483.
[30] Guo Y F, Xia Z D, Wang H B, Zhou H. Electronic Components & Materials, 2007, 26(12):5.
[31] Yuan E X, Ren X W, Wang L, Zhao W T. Front. Chem. Sci. Eng., 2017, 11:177.
[32] Al-Thyabat S, Nakamura T, Shibata E, Iizuka A. Miner. Eng., 2013, (45):4.
[33] Ordonez J, Gago E J, Girard A. Renewable and Sustainable Energy Reviews, 2016, 60:195.
[34] Zhao D J, Ma S Y. Chemical Engineer, 2011, 2:52.
[35] Tedjar F, Foudraz J C. US 7820317B2. 2010.
[36] Goonan T G. Lithium Use in Batteries:US Geological Survey Circular, 2012, 1371:14.
[37] Winslow K M, Laux S J, Townsend T G. Resources, Conservation & Recycling, 2017, 129:263.
[38] 欧秀琴(Ou X Q), 孙新华(Sun X H), 程耀丽(Cheng Y L). 中国资源综合回收利用(China Resource Recycling Association), 2002, 6(3):18.
[39] 陈新民(Chen X M). 火法冶金过程物理化学(Pyrometallurgical Process Physics and Chemistry). 北京:冶金工业出版社(Beijing:Metallurgical Industry Press), 1984. 293.
[40] 傅崇说(Fu C S).有色冶金原理(第二版)(Principle of Nonferrous Metallurgy,2nd). 北京:冶金工业出版社(Beijing:Metallurgical Industry Press), 1993. 174.
[41] Li J, Wang G X, Xu Z M. J. Hazard. Mater., 2016, 302:97.
[42] Xiao J F, Li J, Xu Z M. J. Hazard. Mater., 2017, 338:124.
[43] Xiao J F, Li J, Xu Z M. Environ. Sci. Technol., 2017, 51:11960.
[44] Yuan W H, Qiu D F, Wang C Y. Nonferrous Metals, 2007.
[45] Hu J T, Zhang J L, Li H X, Chen Y Q, Wang C Y. J. Power Sources, 2017, 351:192.
[46] 袁文辉(Yuan W H), 邱定蕃(Qiu D Y), 王成彦(Wang C Y). 有色金属(冶炼部分)(Transactions of Nonferrous Metals Society of China), 2007, (4):5.
[47] 王成彦(Wang C Y), 邱定蕃(Qiu D Y), 陈永强(Chen Y Q), 江培海(Jiang P H). 有色金属(冶炼部分)(Transactions of Nonferrous Metals Society of China), 2004, (5):39.
[48] Trager T, Friedrich B, Weyhe R. Proceedings of the 8th European Metallurgical Conference (EMC), 2015.
[49] Sukla L B, Panda S C, Jena P K. Hydrometalllurgy, 1986, 16(2):153.
[50] 杨仲平(Yang Z P), 靳晓珠(Jin X Z), 朱国才(Zhu G C). 中国锰业(China Manganese Industry), 2006, 24(3):12.
[51] 朱国才(Zhu G C), 李赋屏(Li F P), 肖明贵(Xiao M G). 桂林工学院学报(Journal of Guilin University of Technology),2005, 25(4):534.
[52] 无机化学(第三版)(Inorgamnc Chemistry, 3rd.). 北京:高等教育出版社(Beijing:Higher Education Press), 1991.362.
[53] 王利(Wang L). 兰州理工大学硕士论文(Master Dissertation of Lanzhou University of Science and Technology), 2013.
[54] 李敦钫(Li D F), 王成彦(Wang C Y), 尹飞(Yin F), 陈永强(Chen Y Q), 揭晓武(Jie X W), 杨永强(Yang Y Q), 王军(Wang J). 过程工程学报(The Chinese Journal of Process Engineering), 2009,(92):264.
[55] 揭晓武(Jie X W), 王成彦(Wang C Y), 李敦钫(Li D F), 尹飞(Yin F), 袁文辉(Yuan W H), 杨永强(Yang Y Q).湿法冶金(Hydrometallurgy), 2010, 29:114.
[56] 王大辉(Wang D H), 梁鸿雁(Liang H Y), 陈怀敬(Chen H J), 杨玉娇(Yang Y J), 孙建勇(Sun J Y), 王宏伟(Wang H W). 有色金属(冶炼部分)(Transactions of Nonferrous Metals Society of China), 2017, (4):1.
[57] 李丽(Li L), 葛静(Ge J), 陈人杰(Chen R J), 吴锋(Wu F). 化工进展(Chemical Industry and Engineering Progress), 2010, 29(4):757.
[58] Poyraz A S, Huang J P, Cheng S B, Bock D C, Wu L J, Zhu Y M, Marschilok A C, Takeuchi K J, Takeuchi E S. Green Chem., 2016, 18(11):3414.
[59] Nie H H, Xu L, Song D W, Song J S, Shi X X, Wang X Q, Zhang L Q, Yuan Z H. Green Chem., 2015, 17(2):1276.
[60] Song D W, Wang X Q, Nie H H, Shi H, Wang W G, Guo F X, Shi X X, Zhang L Q. J. Power Sources, 2014, 249:137.
[61] Chen J P, Li Q W, Song J S, Song D W, Zhang L Q, Shi X X. Green Chem., 2016, 18:2500.
[62] 王卫江(Wang W J). CN 101582526 A.
[63] Song X, Hu T, Liang C, Long H L, Zhou L, Song W, You L, Wu Z S, Liu J W. RSC Adv., 2017, 7(4783):4783.
[64] Veluchamy A, Doh C H, Kim D H, Lee J H, Shin H M, Jin B S. J. Power Sources, 2009, 189(1):855.
[65] He Y B, Tang Z Y, Song Q S, Xie H, Xu Q, Liu Y G, Ling G W. Thermochim. Acta, 2008, 480(1/2):15.
[66] Sita L E, Silva S, Silva P, Scarminio J. Mater. Chem. Phys., 2017, 15(194):97.
[1] Guohui Zhu, Hongxian Huan, Dawei Yu, Xueyi Guo, Qinghua Tian. Selective Recovery of Lithium from Spent Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(2): 287-301.
[2] Wenyan Gao, Xuan Zhao, Xilin Zhou, Yaran Song, Qingrui Zhang. Strategies, Research Progress and Enlightenment of Enhancing the Heterogeneous Fenton Catalytic Reactivity: A Critical Review [J]. Progress in Chemistry, 2022, 34(5): 1191-1202.
[3] Changhuan Zhang, Nianwu Li, Xiuqin Zhang. Electrode Materials for Flexible Lithium-Ion Battery [J]. Progress in Chemistry, 2021, 33(4): 633-648.
[4] Deying Mu, Zhu Liu, Shan Jin, Yuanlong Liu, Shuang Tian, Changsong Dai. The Recovery and Recycling of Cathode Materials and Electrolyte from Spent Lithium Ion Batteries in Full Process [J]. Progress in Chemistry, 2020, 32(7): 950-965.
[5] Wei Zhang, Xiaopeng Qi, Sheng Fang, Jianhua Zhang, Bimeng Shi, Juanyu Yang. Effects of Carbon on Silicon-Carbon Composites in Lithium-Ion Batteries [J]. Progress in Chemistry, 2020, 32(4): 454-466.
[6] Zhimin Jiang, Li Wang, Min Shen, Huichuang Chen, Guoqiang Ma, Xiangming He. Electrolyte Additives for Interfacial Modification of Cathodes in Lithium-Ion Battery [J]. Progress in Chemistry, 2019, 31(5): 699-713.
[7] Zhenjie Li, Du Zhong, Jie Zhang, Jinwei Chen, Gang Wang, Ruilin Wang. Silicon Nanoparticles/Carbon Composites for Lithium-Ion Battery [J]. Progress in Chemistry, 2019, 31(1): 201-209.
[8] Shuaijin Wu, Juanyu Yang, Bing Yu, Sheng Fang, Zhaohui Wu, Bimeng Shi. Nano/Micro Structured Silicon-Based Negative Materials [J]. Progress in Chemistry, 2018, 30(2/3): 272-285.
[9] Haidong Cheng, Shuangjun Chen*. Degradation and Synthesis of Poly (Ethylene Terephthalate) by Functionalized Ionic Liquids [J]. Progress in Chemistry, 2017, 29(4): 443-449.
[10] Ma Guoqiang, Wang Li, Zhang Janjun, Chen Huichuang, He Xiangming, Ding Yuansheng. Lithium-Ion Battery Electrolyte Containing Fluorinated Solvent and Additive [J]. Progress in Chemistry, 2016, 28(9): 1299-1312.
[11] Ming Hai, Ming Jun, Qiu Jingyi, Yu Zhongbao, Li Meng, ZhengJunwei. Lithium-Ion Full Batteries Based on the Anode of Non-Metallic Lithium [J]. Progress in Chemistry, 2016, 28(2/3): 204-218.
[12] Li Hongbian*. Application of Porous Carbon Macrostructures for Water Purification [J]. Progress in Chemistry, 2016, 28(10): 1462-1473.
[13] Niu Jin, Zhang Su, Niu Yue, Song Huaihe, Chen Xiaohong, Zhou Jisheng. Silicon-Based Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2015, 27(9): 1275-1290.
[14] Wang Qian, Zhang Jingze, Lou Yuwan, Xia Baojia. Characteristic of Gas Evolution in Lithium-Ion Batteries Using An Anode Based on Lithium Titanate [J]. Progress in Chemistry, 2014, 26(11): 1772-1780.
[15] Li Jian, Guan Yibiao, Fu Kai, Su Yuefeng, Bao Liying, Wu Feng. Applications of Carbon Nanotubes and Graphene in the Energy Storage Batteries [J]. Progress in Chemistry, 2014, 26(07): 1233-1243.