中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (10): 2159-2172 DOI: 10.7536/PC220306 Previous Articles   Next Articles

• Review •

Application of Deep Eutectic Solvents in Polymer Synthesis

Li Jintao, Zhang Mingzu, He Jinlin(), Ni Peihong   

  1. College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University,Suzhou 215123, China
  • Received: Revised: Online: Published:
  • Contact: He Jinlin
  • Supported by:
    National Natural Science Foundation of China(21774081); Natural Science Foundation of the Jiangsu Higher Education Institutions of China(20KJA150009); Beijing Key Lab of Special Elastomeric Composite Materials, and the Priority Academic Development of Jiangsu Higher Education Institutions.
Richhtml ( 60 ) PDF ( 902 ) Cited
Export

EndNote

Ris

BibTeX

Deep eutectic solvents (DES) are one kind of low-transition-temperature mixture composed of two or several components mixed in a certain ratio. The melting points of DES are significantly lower than that of each pure component, and they can be considered as a new type of ionic liquid. Compared with traditional organic solvents, DES possess the advantages of broad resource of raw materials, low cost, easy preparation, low toxicity and biodegradability. These characteristics make them become a promising green reaction media, which have been widely used in many areas including extraction and separation, inorganic synthesis, organic synthesis and ion gels. In recent years, the applications of DES in polymer chemistry have attracted broad research interests. Starting from a brief description of DES and their applications in organic synthesis, this review mainly focuses on the applications of DES in polymerizations, such as condensation polymerization, free radical polymerization, anionic polymerization, electrochemical polymerization, ring-opening polymerization and oxidative polymerization. In the meantime, the prospects of DES in polymer synthesis are also discussed.

Table 1 General formula for the classification of DES
Fig. 1 Typical structures of hydrogen bond acceptors (HBA) and hydrogen bond donors (HBD) for the preparation of DES
Fig. 2 Nucleophilic addition reactions of organometallic reagents in DES[39,41,42,44]
Fig. 3 DES-assisted synthesis of biodegradable antibacterial poly(octanediol-co-citrate)[57]. (a) Preparation of the different DES; (b) DES-assisted synthesis of POC elastomers containing antibacterial compounds; (c) diagram of the synthesis of POC. Copyright 2013, American Chemical Society
Fig. 4 Synthesis and application of photopolymerizable ChCl/AA-type DES. (a) One-step synthesis and its rapid, in-situ polymerization as a transparent, stretchable and conductive elastomer and (b) starfish-shaped tactile sensor[70]. Copyright 2017, The Royal Society of Chemistry. (c) Conductive paper[71]. Copyright 2018, The Royal Society of Chemistry. (d) Patterned optoelectronic devices using transparent piezoresistive balls[72]. Copyright 2020, The Royal Society of Chemistry. (e) Conductive fibers[73]. Copyright 2021, American Chemical Society
Fig. 5 All-in-one molecular networks design concept for autonomously self-healable transparent, stretchable, and conducive elastomers[74]. (a) Chemical structure and optical image of the poly(AAm/ChCl-co-MA/ChCl) elastomers; (b) demonstration of the healing process below zero temperature. Copyright 2020, American Chemical Society
Fig. 6 Fabrication of highly transparent, stretchable, self-healable, and conducive elastomers by the introduction of phytic acid as the hydrogen bonding crosslinker into PDES systems. (a) Design concept for ChCl/AA/PA-type PDES[75]. Copyright 2020, Elsevier. (b) Design concept for TMAC/AA/PA-type PDES[76]. Copyright 2021, The Royal Society of Chemistry
Fig. 7 The ATRP reaction of methyl acrylate displayed “living”/controlled character[91]. Copyright 2016, Wiley Periodicals, Inc
Fig. 8 RAFT polymerizations conducted in the DES of ChCl/Urea. (a) Homopolymerization of HEMA; (b) block copolymerization of HEMA and MMA[97]. Copyright 2019, Wiley Periodicals, Inc
Fig. 9 Organolithium-initiated anionic polymerization of olefins in ChCl-based DES[103]. Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig. 10 Electrochemical polymerization mechanism of pyrrole in ChCl/Urea-type DES[117]. Copyright 2020, Elsevier B. V
[1]
Dubé M A, Salehpour S. Macromol. React. Eng., 2014, 8(1): 7.

doi: 10.1002/mren.201300103
[2]
Tomé L I N, Baião V, da Silva W, Brett C. M. A. Appl. Mater. Today, 2018, 10: 30.
[3]
Hallett J P, Welton T. Chem. Rev., 2011, 111(5): 3508.

doi: 10.1021/cr1003248 pmid: 21469639
[4]
Walsh D A, Lovelock K R J, Licence P. Chem. Soc. Rev., 2010, 39(11): 4185.

doi: 10.1039/b822846a
[5]
Le Bideau J, Viau L, Vioux A. Chem. Soc. Rev., 2011, 40(2): 907.

doi: 10.1039/c0cs00059k pmid: 21180731
[6]
Kang M R, Jin F X, Li Z, Song H Y, Chen J. Prog. Chem., 2020, 32(9): 1274.
康美荣, 金福祥, 李臻, 宋河远, 陈静. 化学进展, 2020, 32(9): 1274.).

doi: 10.7536/PC200118
[7]
Romero A, Santos A, Tojo J, Rodriguez A. J. Hazard. Mater., 2008, 151(1): 268.

pmid: 18063302
[8]
Plechkova N V, Seddon K R. Chem. Soc. Rev., 2008, 37(1): 123.

doi: 10.1039/b006677j pmid: 18197338
[9]
Weaver K D, Kim H J, Sun J Z, MacFarlane D R, Elliott G D. Green Chem., 2010, 12(3): 507.

doi: 10.1039/b918726j
[10]
Lomba L, Ribate M P, Sangüesa E, Concha J, Garralaga M P, Errazquin D, García C B, Giner B. Appl. Sci., 2021, 11(21): 10061.

doi: 10.3390/app112110061
[11]
Hessel V, Tran N N, Asrami M R, Tran O D, Van Duc Long N, Escribà-Gelonch M, Tejada J O, Linke S, Sundmacher K. Green Chem., 2022, 24(2): 410.

doi: 10.1039/D1GC03662A
[12]
Martins M A R, Pinho S P, Coutinho J A P. J. Solution Chem., 2018, 48: 962.

doi: 10.1007/s10953-018-0793-1
[13]
Hansen B B, Spittle S, Chen B, Poe D, Zhang Y, Klein J M, Horton A, Adhikari L, Zelovich T, Doherty B W, Gurkan B, Maginn E J, Ragauskas A, Dadmun M, Zawodzinski T A, Baker G A, Tuckerman M E, Savinell R F, Sangoro J R. Chem. Rev., 2021, 121(3): 1232.

doi: 10.1021/acs.chemrev.0c00385
[14]
Hou Y C, Wang Z, Ren S X, Wu W Z. Chin. Sci. Bull., 2015, 60(26): 2490.

doi: 10.1360/N972015-00385
侯玉翠, 王震, 任树行, 吴卫泽. 科学通报, 2015, 60(26): 2490.).
[15]
Zhang Y Y, Lu X H, Feng X, Shi Y J, Ji X Y. Prog. Chem., 2013, 25(6): 881.
张盈盈, 陆小华, 冯新, 史以俊, 吉晓燕. 化学进展, 2013, 25(6): 881.).
[16]
Zhang T, Doert T, Wang H, Zhang S J, Ruck M. Angew. Chem., Int. Ed., 2021, 60(41): 22148.

doi: 10.1002/anie.202104035
[17]
Xiong X Q, Han Q, Shi L, Xiao S Y, Bi C. Chin. J. Org. Chem., 2016, 36(3): 480.

doi: 10.6023/cjoc201508004
熊兴泉, 韩骞, 石霖, 肖上运, 毕成. 有机化学, 2016, 36(3): 480.).

doi: 10.6023/cjoc201508004
[18]
Fanjul-Mosteirín N, del Amo V. Tetrahedron, 2021, 84: 131967.

doi: 10.1016/j.tet.2021.131967
[19]
Wang J K, Zhang S Z, Ma Z Z, Yan L F. Green Chem. Eng., 2021, 2(4): 359.

doi: 10.1016/j.gce.2021.06.001
[20]
Abbott A P, Capper G, Davies D L, Rasheed R K, Tambyrajah V. Chem. Commun., 2003, (1): 70.
[21]
Smith E L, Abbott A P, Ryder K S. Chem. Rev., 2014, 114(21): 11060.

doi: 10.1021/cr300162p pmid: 25300631
[22]
Abranches D O, Martins M A R, Silva L P, Schaeffer N, Pinho S P, Coutinho J A P. Chem. Commun., 2019, 55(69): 10253.

doi: 10.1039/C9CC04846D
[23]
Francisco M, van den Bruinhorst A, Kroon M C. Angew. Chem., Int. Ed., 2013, 52(11): 3074.

doi: 10.1002/anie.201207548
[24]
Kumar A K, Parikh B S, Pravakar M. Environ. Sci. Pollut. Res. Int., 2016, 23: 9265.

doi: 10.1007/s11356-015-4780-4
[25]
El Achkar T, Fourmentin S, Greige-Gerges H. J. Mol. Liq., 2019, 288: 111028.

doi: 10.1016/j.molliq.2019.111028
[26]
Yiin C L, Quitain A T, Yusup S, Sasaki M, Uemura Y, Kida T. Bioresour. Technol., 2016, 199: 258.

doi: 10.1016/j.biortech.2015.07.103
[27]
Alvarez-Vasco C, Ma R, Quintero M, Guo M, Geleynse S, Ramasamy K K, Wolcott M, Zhang X. Green Chem., 2016, 18(19): 5133.

doi: 10.1039/C6GC01007E
[28]
Zhang Q H, De Oliveira Vigier K, Royer S, Jerome F. Chem. Soc. Rev., 2012, 41(21): 7108.

doi: 10.1039/c2cs35178a
[29]
Hou Y C, Yao C F, Wu W Z. Acta Phys. -Chim. Sin., 2018, 34(8): 873.

doi: 10.3866/PKU.WHXB201802062
[30]
Abbot A P, Boothby D, Capper G, Davies D L, Rasheed R K. J. Am. Chem. Soc., 2004, 126(29): 9142.

doi: 10.1021/ja048266j
[31]
Ghaedi H, Ayoub M, Sufian S, Shariff A M, Lal B. J. Mol. Liq., 2017, 241: 500.

doi: 10.1016/j.molliq.2017.06.024
[32]
Florindo C, Branco L C, Marrucho I M. ChemSusChem, 2019, 12(8): 1549.

doi: 10.1002/cssc.201900147
[33]
Xu Q, Qin L Y, Ji Y N, Leung P K, Su H N, Qiao F, Yang W W, Shah A A, Li H M. Electrochim. Acta, 2019, 293: 426.

doi: 10.1016/j.electacta.2018.10.063
[34]
Abbott A P, Capper G, Davies D L, Rasheed R K, Tambyrajah V. Green Chem., 2002, 4(1): 24.

doi: 10.1039/b108431c
[35]
Calderon Morales R, Tambyrajah V, Jenkins P R, Davies D L, Abbott A P. Chem. Commun., 2004, (2): 158.
[36]
Imperato G, Höger S, Lenoir D, König B. Green Chem., 2006, 8(12): 1051.

doi: 10.1039/B603660K
[37]
Rodríguez-Álvarez M J, Vidal C, Díez J, García-Álvarez J. Chem. Commun., 2014, 50(85): 12927.

doi: 10.1039/C4CC05904B
[38]
Wang Y L, Li W H, Song X J, Huang K X, Du C J. Chem. Reagents, 2021, 43(6): 852.
王英磊, 李文欢, 宋晓静, 黄可心, 杜朝军. 化学试剂, 2021, 43(6): 852.).
[39]
Vidal C, García-Álvarez J, Hernín-Gómez A, Kennedy A R, Hevia E. Angew. Chem., Int. Ed., 2014, 53(23): 5969.

doi: 10.1002/anie.201400889
[40]
Mallardo V, Rizzi R, Sassone F C, Mansueto R, Perna F M, Salomone A, Capriati V. Chem. Commun., 2014, 50(63): 8655.

doi: 10.1039/C4CC03149K
[41]
Vidal C, García-Álvarez J, Hernín-Gómez A, Kennedy A. R, Hevia E. Angew. Chem., Int. Ed., 2016, 55(52): 16145.

doi: 10.1002/anie.201609929
[42]
Rodríguez-Álvarez M J, García-Álvarez J, Uzelac M, Fairley M, O’Hara C T, Hevia E. Chem. Eur. J., 2018, 24(7): 1720.

doi: 10.1002/chem.201705577
[43]
Fairley M, Bole L J, Mulks F F, Main L, Kennedy A R, O’Hara C T, García-Álvarez J, Hevia E. Chem. Sci., 2020, 11(25): 6500.

doi: 10.1039/D0SC01349H
[44]
Quivelli A F, D’Addato G, Vitale P, García-Álvarez J, Perna F M, Capriati V. Tetrahedron, 2021, 81: 131898.

doi: 10.1016/j.tet.2020.131898
[45]
Dilauro G, Dell’Aera M, Vitale P, Capriati V, Perna F M. Angew. Chem., Int. Ed., 2017, 56(34): 10200.

doi: 10.1002/anie.201705412
[46]
García-Álvarez J, Hevia E, Capriati V. Chem. Eur. J., 2018, 24(56): 14854.

doi: 10.1002/chem.201802873
[47]
Perna F M, Vitale P, Capriati V. Curr. Opin. Green Sustainable Chem., 2021, 30: 100487.
[48]
Kubisa P. Prog. Polym. Sci., 2009, 34(12): 1333.

doi: 10.1016/j.progpolymsci.2009.09.001
[49]
Gutiérrez M C, Rubio F, del Monte F. Chem. Mater., 2010, 22(9): 2711.

doi: 10.1021/cm9023502
[50]
Carriazo D, Gutiérrez M C, Ferrer M L, del Monte F. Chem. Mater., 2010, 22(22): 6146.

doi: 10.1021/cm1019684
[51]
Gutiérrez M C, Carriazo D, Ania C O, Parra J B, Ferrer M L, del Monte F. Energy Environ. Sci., 2011, 4(9): 3535.

doi: 10.1039/c1ee01463c
[52]
López-Salas N, Gutiérrez M C, Ania C O, Fierro J L G, Luisa Ferrer M, del Monte F. J. Mater. Chem. A., 2014, 2(41): 17387.

doi: 10.1039/C4TA03266G
[53]
López-Salas N, Gutiérrez M C, Ania C O, Muñoz-Mírquez M A, Luisa Ferrer M, del Monte F. J. Mater. Chem. A., 2016, 4(2): 478.

doi: 10.1039/C5TA08630B
[54]
Patiño J, Gutiérrez M C, Carriazo D, Ania C O, Fierro J L G, Ferrer M L, del Monte F. J. Mater. Chem. A., 2014, 2(23): 8719.

doi: 10.1039/C4TA00562G
[55]
Carriazo D, Gutiérrez M C, Jiménez R, Ferrer M L, del Monte F. Part. Part. Syst. Charact., 2013, 30(4): 316.

doi: 10.1002/ppsc.201200157
[56]
Serrano M C, Gutiérrez M C, Jiménez R, Ferrer M L, del Monte F. Chem. Commun., 2012, 48(4): 579.

doi: 10.1039/C1CC15284J
[57]
García-Argüelles S, Serrano M C, Gutiérrez M C, Ferrer M L, Yuste L, Rojo F, del Monte F. Langmuir, 2013, 29(30): 9525.

doi: 10.1021/la401353r pmid: 23808373
[58]
Pradeepkumar P, Elgorban A M, Bahkali A H, Rajan M. New J. Chem., 2018, 42(12): 10366.

doi: 10.1039/C8NJ00901E
[59]
Hong S, Sun X, Lian H L, Pojman J A, Mota-Morales J D. J. Appl. Polym. Sci., 2020, 137(7): 48385.

doi: 10.1002/app.48385
[60]
Guo J, Yin X W, Wang T, Feng J, Zeng P, Wu D L. J. Electroanal. Chem., 2021, 903: 115840.

doi: 10.1016/j.jelechem.2021.115840
[61]
Agostinho B, Silvestre A J D, Sousa A F. Green Chem., 2022, 24(8): 3115.

doi: 10.1039/D2GC00074A
[62]
Mota-Morales J D, Sínchez-Leija R J, Carranza A, Pojman J A, del Monte F, Luna-Bírcenas G. Prog. Polym. Sci., 2018, 78: 139.

doi: 10.1016/j.progpolymsci.2017.09.005
[63]
Mota-Morales J D, Gutiérrez M C, Sanchez I C, Luna-Bírcenas G, del Monte F. Chem. Commun., 2011, 47(18): 5328.

doi: 10.1039/c1cc10391a
[64]
Fazende K F, Phachansitthi M, Mota-Morales J D, Pojman J A. J. Polym. Sci. Part A: Polym. Chem., 2017, 55(24): 4046.

doi: 10.1002/pola.28873
[65]
Mota-Morales J D, Gutiérrez M C, Ferrer M L, Jiménez R, Santiago P, Sanchez I C, Terrones M, del Monte F, Luna-Bírcenas G. J. Mater. Chem. A, 2013, 1(12): 3970.

doi: 10.1039/c3ta01020a
[66]
Sínchez-Leija R J, Pojman J A, Luna-Bírcenas G, Mota-Morales J D. J. Mater. Chem. B, 2014, 2(43): 7495.

doi: 10.1039/C4TB01407C
[67]
Chen Y P, Li S F, Yan S L. Carbohydr. Polym., 2021, 263: 117996.

doi: 10.1016/j.carbpol.2021.117996
[68]
Isik M, Ruiperez F, Sardon H, Gonzalez A, Zulfiqar S, Mecerreyes D. Macromol. Rapid Commun., 2016, 37(14): 1135.

doi: 10.1002/marc.201600026
[69]
Fazende K F, Gary D P, Mota-Morales J D, Pojman J A. Macromol. Chem. Phys., 2020, 221(6): 1900511.

doi: 10.1002/macp.201900511
[70]
Li R A, Chen G X, He M H, Tian J F, Su B. J. Mater. Chem. C, 2017, 5(33): 8475.

doi: 10.1039/C7TC02703F
[71]
Li R A, Zhang K L, Chen G X, Su B, Tian J F, He M H, Lu F C. Chem. Commun., 2018, 54(18): 2304.

doi: 10.1039/C7CC09209A
[72]
Tong R P, Cai L, Chen G X, Tian J F, He M H. Chem. Commun., 2020, 56(18): 2771.

doi: 10.1039/C9CC08840G
[73]
Wang X C, Chen G X, Cai L, Li R A, He M H. ACS Appl. Mater. Interfaces, 2021, 13(7): 8952.

doi: 10.1021/acsami.0c21912
[74]
Li R A, Fan T, Chen G X, Zhang K L, Su, B, Tian J F, He M H. Chem. Mater., 2020, 32(2): 874.

doi: 10.1021/acs.chemmater.9b04592
[75]
Li R A, Fan T, Chen G X, Xie H J, Su B, He M H. Chem. Eng. J., 2020, 393: 124685.

doi: 10.1016/j.cej.2020.124685
[76]
Zhang K L, Li R A, Chen G X, Yang J M, Tian J F, He M H. J. Mater. Chem. A, 2021, 9(8): 4890.

doi: 10.1039/D0TA11508H
[77]
Zhang K L, Li R A, Chen G X, Wang X H, He M H. Chem. Mater., 2022, 34(8): 3736.

doi: 10.1021/acs.chemmater.2c00074
[78]
Sang P S, Li R A, Zhang K L, Chen G X, Zhao K, He M H. ACS Appl. Polym. Mater., 2022, 4(5): 3543.

doi: 10.1021/acsapm.2c00133
[79]
Yang K X, Ge Z Q, Zhang M H, Wang C Y, Peng K, Yang H Y, You Y Z. Chem. Eng. J., 2022, 439: 135646.

doi: 10.1016/j.cej.2022.135646
[80]
Li X K, Liu J Z, Guo Q Q, Zhang X X, Tian M. Small, 2022, 18(19): 2201012.
[81]
Gill I, Vulfson E. Trends Biotechnol., 1994, 12(4): 118.

pmid: 7764807
[82]
Gorke J T, Srienc F, Kazlauskas R J. Chem. Commun., 2008, (10): 1235.
[83]
Durand E, Lecomte J, Villeneuve P. Eur. J. Lipid Sci. Technol., 2013, 115(4): 379.

doi: 10.1002/ejlt.201200416
[84]
Monhemi H, Housaindokht M R, Moosavi-Movahedi A A, Bozorgmehr M R. Phys. Chem. Chem. Phys., 2014, 16(28): 14882.

doi: 10.1039/c4cp00503a pmid: 24930496
[85]
Sínchez-Leija R J, Torres-Lubiín J R, Reséndiz-Rubio A, Luna-Bírcenas G, Mota-Morales J D. RSC Adv., 2016, 6(16): 13072.

doi: 10.1039/C5RA27468K
[86]
Altundag A, Ünlü A E, Takaç S. J. Chem. Technol. Biotechnol., 2021, 96(4): 1107.
[87]
Matyjaszewski K, Tsarevsky N V. J. Am. Chem. Soc., 2014, 136(18): 6513.

doi: 10.1021/ja408069v pmid: 24758377
[88]
Perrier S. Macromolecules, 2017, 50(19): 7433.

doi: 10.1021/acs.macromol.7b00767
[89]
Chen Y G, Ding Y S. Acta Chim. Sinica, 2020, 78(8): 733.

doi: 10.6023/A20040115
陈友根, 丁远生. 化学学报, 2020, 78(8): 733.).

doi: 10.6023/A20040115
[90]
Parkatzidis K, Wang H S, Truong N P, Anastasaki A. Chem, 2020, 6(7): 1575.

doi: 10.1016/j.chempr.2020.06.014
[91]
Maximiano P, Mendonça P. V, Santos M R E, Costa J R C, Guliashvili T, Serra A C, Coelho J F J. J. Polym. Sci. Part A: Polym. Chem., 2017, 55(3): 371.

doi: 10.1002/pola.28415
[92]
Mendonça P V, Lima M S, Guliashvili T, Serra A C, Coelho J F J. Polymer, 2017, 132: 114.

doi: 10.1016/j.polymer.2017.10.060
[93]
Wang J R, Han J Y, Khan M Y, He D, Peng H Y, Chen D Y, Xie X L, Xue Z G. Polym. Chem., 2017, 8(10): 1616.

doi: 10.1039/C6PY02066F
[94]
Tian M Y, Wang J R, Zhou J, Han J Y, Du F P, Xue Z G. J. Polym. Sci., Part A: Polym. Chem., 2018, 56(3): 282.

doi: 10.1002/pola.28893
[95]
Quirós-Montes L, Carriedo G A, García-Álvarez J, Presa Soto A. Green Chem., 2019, 21(21): 5865.

doi: 10.1039/C9GC02624J
[96]
Feiz E, Mahyari M, Ghaieni H R, Tavangar S. J. Mol. Liq., 2020, 318: 114320.

doi: 10.1016/j.molliq.2020.114320
[97]
Santha Kumar A R S, Singha N K. J. Polym. Sci. Part A: Polym. Chem., 2019, 57(23): 2281.

doi: 10.1002/pola.29527
[98]
Pereira V A, Rezende T C, Mendonça P V, Coelho J F J, Serra A C. Green Chem., 2020, 22(20): 6827.

doi: 10.1039/D0GC01136C
[99]
Li C Y, Yu S S. Macromolecules, 2021, 54(21): 9825.

doi: 10.1021/acs.macromol.1c01367
[100]
Szwarc M. Nature, 1956, 178: 1168.

doi: 10.1038/1781168a0
[101]
Hirao A, Goseki R, Ishizone T. Macromolecules, 2014, 47(6): 1883.

doi: 10.1021/ma401175m
[102]
Ma H W, Zhang C Q, Li Y, Wang Y R, Hu Y M, Li Z S, Zhao Z F, Shen K H. Acta Polym. Sinica, 2011, 12(12): 1390.
马红卫, 张春庆, 李杨, 王玉荣, 胡雁鸣, 李战胜, 赵忠夫, 申凯华. 高分子学报, 2011, 12(12): 1390.).
[103]
Sínchez-Condado A, Carriedo G A, Presa Soto A, Rodríguez-Álvarez M J, García-Álvarez J, Hevia E. ChemSusChem, 2019, 12(13): 3134.

doi: 10.1002/cssc.201900533
[104]
Wagner K, Pringle J M, Hall S B, Forsyth M, MacFarlane D R, Officer D L. Synth. Met., 2005, 153(1-3): 257.

doi: 10.1016/j.synthmet.2005.07.210
[105]
Nkuku C A, LeSuer R J. J. Phys. Chem. B, 2007, 111(46): 13271.

doi: 10.1021/jp075794j
[106]
Shabani E, Zappi D, Berisha L, Dini D, Antonelli M L, Sadun C. Talanta, 2020, 215: 120880.

doi: 10.1016/j.talanta.2020.120880
[107]
Parsa A, Heli H. Microchem. J., 2020, 152: 104267.

doi: 10.1016/j.microc.2019.104267
[108]
Chen Y, Mu T C. J. Chem. Ind. Eng., 2020, 71(1): 106.
陈钰, 牟天成. 化工学报, 2020, 71(1): 106.).
[109]
Fernandes P M V, Campiña J M, Pereira C M, Silva F. J. Electrochem. Soc., 2012, 159(9): G97.

doi: 10.1149/2.059209jes
[110]
Fernande, P M V, Campiña J M, Pereira N M, Pereira C M, Silva F. J. Appl. Electrochem., 2012, 42: 997.

doi: 10.1007/s10800-012-0474-5
[111]
Prathish K P, Carvalho R C, Brett C M A. Electrochem. Commun., 2014, 44: 8.

doi: 10.1016/j.elecom.2014.03.026
[112]
Prathish K P, Carvalho R C, Brett C M A. Electrochim. Acta, 2016, 187: 704.

doi: 10.1016/j.electacta.2015.11.092
[113]
Hosu O, Bârsan M M, Cristea C, Sândulescu R, Brett C M A. Electrochim. Acta, 2017, 232: 285.

doi: 10.1016/j.electacta.2017.02.142
[114]
Hosu O, Bârsan M M, Cristea C, Sândulescu R, Brett C M A. Microchim. Acta, 2017, 184: 3919.

doi: 10.1007/s00604-017-2420-z
[115]
Abad-Gil L, Procopio J R, Brett C M A. Electrochem. Commun., 2021, 124: 106967.

doi: 10.1016/j.elecom.2021.106967
[116]
Chang Y H, Woi P M, Alias Y B. Electrocatalysis, 2021, 12: 238.

doi: 10.1007/s12678-021-00648-9
[117]
Ozdemir N, Zengin H, Yavuz A. Mater. Chem. Phys., 2020, 256: 123645.

doi: 10.1016/j.matchemphys.2020.123645
[118]
Leote R J B, Ghica M E, Brett C M A. Electroanalysis, 2022, 34(4): 724.

doi: 10.1002/elan.202100164
[119]
Coulembier O, Lemaur V, Josse T, Minoia A, Cornil J, Dubois P. Chem. Sci., 2012, 3(3): 723.

doi: 10.1039/C2SC00590E
[120]
García-Argüelles S, García C, Serrano M C, Gutiérrez M C, Ferrer M L, del Monte F. Green Chem., 2015, 17(6): 3632.

doi: 10.1039/C5GC00348B
[121]
Pérez-García M G, Gutiérrez M C, Mota-Morales J D, Luna-Bírcenas G, del Monte F. ACS Appl. Mater. Interfaces, 2016, 8(26): 16939.

doi: 10.1021/acsami.6b04830
[122]
Park T-J, Lee S H. Green Chem., 2017, 19(4): 910.

doi: 10.1039/C6GC02789J
[123]
Shiraz M G, Absalan G, Tashkhourian J. J. Appl. Polym. Sci., 2022, 139(18): 52090.

doi: 10.1002/app.52090
[124]
Mota-Morales J D, Morales-Narvíez E. Matter, 2021, 4(7): 2141.

doi: 10.1016/j.matt.2021.05.009
[125]
O’Dea R M, Willie J A, Epps III T H. ACS Macro Lett., 2020, 9(4): 476.

doi: 10.1021/acsmacrolett.0c00024
[126]
Scholten P B V, Moatsou D, Detrembleur C, Meier M A R. Macromol. Rapid Commun., 2020, 41(16): 2000266.

doi: 10.1002/marc.202000266
[127]
Dworakowska S, Lorandi F, Gorczyński A, Matyjaszewski K. Adv. Sci., 2022, 9(19): 2106076.
[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Zheng Chen, Zhenhua Jiang. Discussion on Some Chemical Problems of Polymer Condensed Statein Solvent-Free Polymer Production Technology [J]. Progress in Chemistry, 2022, 34(7): 1576-1589.
[3] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[4] Wentao Li, Hai Zhong, Yaohua Mai. In-Situ Polymerization Electrolytes for Lithium Rechargeable Batteries [J]. Progress in Chemistry, 2021, 33(6): 988-997.
[5] Tingting Heng, Hui Zhang, Mingxue Chen, Xin Hu, Liang Fang, Chunhua Lu. Graft Modification of PVDF-Based Fluoropolymers [J]. Progress in Chemistry, 2021, 33(4): 596-609.
[6] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[7] Lixu Lei, Yiming Zhou. Solvent-Free or Less-Solvent Solid State Reactions [J]. Progress in Chemistry, 2020, 32(8): 1158-1171.
[8] Xiangli Chen, Kaiqiang Liu, Yu Fang. Molecular Gels: From Structural Regulation to Functional Applications [J]. Progress in Chemistry, 2020, 32(7): 861-872.
[9] Xia Li, Hongyan Ma, Xiaojuan Nie, Xu Liu, Chengming Bian, Long Xie. Preparation of Star-Like Polymer Based on Cyclodextrin and Its Application [J]. Progress in Chemistry, 2020, 32(7): 935-942.
[10] Lianwei Sun, Zhonghe Sun, Xue Wang, Lin Xu, Anchao Feng, Liqun Zhang. Synthesis of Polyethylene and Polyhalogenated Olefin by Controlled/“Living” Radical Polymerization [J]. Progress in Chemistry, 2020, 32(6): 727-737.
[11] Bingqian Huang, Liyan Wang, Xuan Wei, Weichao Xu, Zhen Sun, Tinggang Li. Lignocellulose Pretreatment by Deep Eutectic Solvents for Biobutanol production [J]. Progress in Chemistry, 2020, 32(12): 2034-2048.
[12] Guofu Qin, Yihuan Liu, Fan Yin, Xin Hu, Ning Zhu, Kai Guo. Grafting Modification of Lignin via Ring-Opening Polymerization [J]. Progress in Chemistry, 2020, 32(10): 1547-1556.
[13] Kerui Chen, Xin Hu, Jiangkai Qiu, Ning Zhu, Kai Guo. Synthesis of Bottlebrush Polymers by Ring-Opening Metathesis Polymerization [J]. Progress in Chemistry, 2020, 32(1): 93-102.
[14] Huiya Wang, Limin Zhao, Fang Zhang, Dannong He. High-Performance Lithium-Ion Secondary Battery Membranes [J]. Progress in Chemistry, 2019, 31(9): 1251-1262.
[15] Ni Huang, Feng Xu, Jiangbin Xia. Solid State Polymerization of Polythiophene and Its Applications [J]. Progress in Chemistry, 2019, 31(8): 1103-1115.