中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (1): 93-102 DOI: 10.7536/PC190607 Previous Articles   Next Articles

Special Issue: 电化学有机合成

Synthesis of Bottlebrush Polymers by Ring-Opening Metathesis Polymerization

Kerui Chen1, Xin Hu2,**(), Jiangkai Qiu1,**(), Ning Zhu1,**(), Kai Guo1   

  1. 1. College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
    2. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China
  • Received: Online: Published:
  • Contact: Xin Hu, Jiangkai Qiu, Ning Zhu
  • About author:
    ** E-mail: (Xin Hu);
  • Supported by:
    National Natural Science Foundation of China(21878145); Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture(XTD1823); Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture(XTB1802)
Richhtml ( 40 ) PDF ( 850 ) Cited
Export

EndNote

Ris

BibTeX

Bottlebrush polymers are a class of comb polymers that have the unique side chain structures and properties. Functional bottlebrush polymers have found broad applications in photonic crystals, surfactants, pharmaceutical carriers, antifouling coatings and smart materials. The synthetic strategies to bottlebrush polymers by ring-opening metathesis polymerization (ROMP) exhibit various advantages, such as simple synthesis steps, high polymer graft density and uniform side chain composition. Well control of polymer composition, molecular weight and molecular weight dispersity could be achieved by ROMP. This review summarizes the synthesis of homo, block, Janus, core-shell bottlebrush copolymers via ROMP. Moreover, the advances in finely controlling the bottlebrush polymer architecture are discussed.

Fig. 1 Methods for synthesizing bottlebrush polymers[5]
Scheme. 1 Synthesis of bottlebrush homopolymers by anionic polymerization and ring-opening metathesis polymerization[36]
Scheme. 2 Synthesis of bottlebrush homopolymers by atom transfer radical polymerization and ring-opening metathesis polymerization[37]
Scheme. 3 Synthesis of bottlebrush homopolymers by ring -opening polymerization and ring-opening metathesis polymerization[40]
Scheme. 4 Synthesis of bottlebrush homopolymers by Grignard metathesis polymerization and ring-opening metathesis polymerization[43]
Fig. 2 Structures of bottlebrush copolymers[3,44]
Scheme. 5 Synthesis of the diblock brush terpolymers[47]
Scheme. 6 Synthesis of heterograft molecular polymer brushes via Janus polymerization and ROMP[65]
Fig. 3 Structures of Janus particles[69]
Scheme. 7 Synthesis of Janus bottlebrush copolymers[67]
Scheme. 8 Synthesis of core-shell bottlebrush copolymers[73]
Fig. 4 Core decomposable core-shell bottlebrush polymers[72,76]
Fig. 5 Adding diluent to control synthesis of bottlebrush polymers[35,81]
Fig. 6 Synthesis of tapered bottlebrush polymers by sequential addition of macromonomers[83]
[1]
Sheiko S S , Sumerlin B S , Matyjaszewski K . Prog. Polym. Sci., 2008,33:759.
[2]
Hadjichristidis N , Pitsikalis M , Iatrou H , Pispas S . Macromol. Rapid Commun., 2003,24:979. http://doi.wiley.com/10.1002/%28ISSN%291521-3927

doi: 10.1002/(ISSN)1521-3927
[3]
Verduzco R , Li X , Pesek S L , Stein G E . Chem. Soc. Rev., 2015,44:2405. https://www.ncbi.nlm.nih.gov/pubmed/25688538

doi: 10.1039/c4cs00329b pmid: 25688538
[4]
Guo J , Peng L , Yuan J . Eur. Polym. J., 2015,69:449.
[5]
Müllner M . Macromol. Chem. Phys., 2016,217:2209.
[6]
Liberman-Martin A L , Chu C K , Grubbs R H . Macromol. Rapid Commun., 2017,38:1700058.
[7]
Krivorotova T , Radzevicius P , Makuska R . Eur. Polym. J., 2015,66:543.
[8]
Nese A , Sheiko S S , Matyjaszewski K . Eur. Polym. J., 2011,47:1198.
[9]
Jia J , Liu C , Wang L , Liang X , Chai X . Chem. Eng. J., 2018,347:631.
[10]
Müllner M , Müller A H E . Polymer, 2016,98:389.
[11]
Rzayev J . ACS Macro Lett., 2012,1:1146.
[12]
Zhang A , Guo Y . Chem. Eur. J., 2008,14:8939. https://www.ncbi.nlm.nih.gov/pubmed/18696526

doi: 10.1002/chem.200801191 pmid: 18696526
[13]
Li W , Zhang X , Wang J , Qiao X , Liu K , Zhang A . J. Polym. Sci. Pol. Chem., 2012,50:4063.
[14]
Pelras T , Mahon C S , Mullner M . Angew. Chem. Int. Ed., 2018,57:6982. https://www.ncbi.nlm.nih.gov/pubmed/29484797

doi: 10.1002/anie.201711878 pmid: 29484797
[15]
Bielawski C W , Grubbs R H . Prog. Polym. Sci., 2007,32:1.
[16]
Leitgeb A , Wappel J , Slugovc C . Polymer, 2010,51:2927. https://linkinghub.elsevier.com/retrieve/pii/S0032386110004039

doi: 10.1016/j.polymer.2010.05.002
[17]
Le D , Morandi G , Legoupy S , Pascual S , Montembault V , Fontaine L . Eur. Polym. J., 2013,49:972.
[18]
Zhou C , Wang Y , Zhao L , Liu Z , Cheng J . Eur. Polym. J., 2019,112:60.
[19]
赵健(Zhao J), 吕英莹(Lv Y Y), 胡友良(Hu Y L). 化学进展(Progress in Chemistry), 2001,13:48.
[20]
Bazan G C , Khosravi E , Schrock R R , Feast W J , Gibson V C , Oregan M B , Thomas J K , Davis W M . J. Am. Chem. Soc., 1990,112:8378.
[21]
Schrock R R . Dalton Trans., 2011,40:7484. https://www.ncbi.nlm.nih.gov/pubmed/21547311

doi: 10.1039/c1dt10215j pmid: 21547311
[22]
Nguyen S T , Johnson L K , Grubbs R H , Ziller J W . J. Am. Chem. Soc., 1992,114:3974.
[23]
Scholl M , Ding S , Lee C W , Grubbs R H . Org. Lett., 1999,1:953. https://www.ncbi.nlm.nih.gov/pubmed/10823227

doi: 10.1021/ol990909q pmid: 10823227
[24]
Vougioukalakis G C , Grubbs R H . Chem. Rev., 2010,110:1746. https://www.ncbi.nlm.nih.gov/pubmed/20000700

doi: 10.1021/cr9002424 pmid: 20000700
[25]
Bielawski C W , Grubbs R H . Angew. Chem. Int. Ed., 2000,39:2903. https://www.ncbi.nlm.nih.gov/pubmed/11028004

doi: 10.1002/1521-3773(20000818)39:16【-逻*辑*与-】lt;2903::aid-anie2903【-逻*辑*与-】gt;3.0.co;2-q pmid: 11028004
[26]
Cruz T R , Silva R A N , Machado A E H , Lima-Neto B S , Goi B E P , Carvalho V . New J. Chem., 2019,43:6220.
[27]
Grubbs R H . Angew. Chem. Int. Ed., 2006,45:3760. https://www.ncbi.nlm.nih.gov/pubmed/16724297

doi: 10.1002/anie.200600680 pmid: 16724297
[28]
Schrock R R , Hoveyda A H . Angew. Chem. Int. Ed., 2003,42:4592. https://www.ncbi.nlm.nih.gov/pubmed/14533149

doi: 10.1002/anie.200300576 pmid: 14533149
[29]
张勇杰(Zhang Y J), 李化毅(Li H Y), 董金勇(Dong J Y), 胡友良(Hu Y L). 化学进展(Progress in Chemistry), 2014,26:110.
[30]
张磊(Zhang L), 李文(Li W), 张阿方(Zhang A F). 化学进展(Progress in Chemistry), 2006,18:939.
[31]
Nikovia C , Theodoridis L , Alexandris S , Bilalis P , Hadjichristidis N , Floudas G , Pitsikalis M . Macromolecules, 2018,51:8940.
[32]
Wang Y , Ren R , Ling J , Sun W , Shen Z . Polymer, 2018,138:378.
[33]
Teo Y C , Xia Y . Macromolecules, 2018,52:81.
[34]
Radzinski S C , Foster J C , Chapleski R C , Troya D , Matson J B . J. Am. Chem. Soc., 2016,138:6998. https://www.ncbi.nlm.nih.gov/pubmed/27219866

doi: 10.1021/jacs.5b13317 pmid: 27219866
[35]
Chang A B , Lin T P , Thompson N B , Luo S X , Liberman-Martin A L , Chen H Y , Lee B , Grubbs R H . J. Am. Chem. Soc., 2017,139:17683. https://www.ncbi.nlm.nih.gov/pubmed/29117478

doi: 10.1021/jacs.7b10525 pmid: 29117478
[36]
Sukegawa T , Masuko I , Oyaizu K , Nishide H . Macromolecules, 2014,47:8611.
[37]
Xu Y , Wang W , Wang Y , Zhu J , Uhrig D , Lu X , Keum J K , Mays J W , Hong K . Polym. Chem., 2016,7:680.
[38]
Foster J C , Radzinski S C , Lewis S E , Slutzker M B , Matson J B . Polymer, 2015,79:205.
[39]
Fu Q , Ren J M , Qiao G G . Polym. Chem., 2012,3:343.
[40]
Radzinski S C , Foster J C , Matson J B . Macromol. Rapid Commun., 2016,37:616. https://www.ncbi.nlm.nih.gov/pubmed/26847467

doi: 10.1002/marc.201500672 pmid: 26847467
[41]
Yang B , Abel B A McCormick C L , Storey R F . Macromolecules, 2017,50:7458.
[42]
Arrington K J , Radzinski S C , Drummey K J , Long T E , Matson J B . ACS Appl. Mater. Interfaces, 2018,10:26662. https://www.ncbi.nlm.nih.gov/pubmed/30062885

doi: 10.1021/acsami.8b08480 pmid: 30062885
[43]
van As D , Subbiah J , Jones D J , Wong W W H . Macromol. Chem. Phys., 2016,217:403.
[44]
Lanson D , Ariura F , Schappacher M , Borsali R , Deffieux A . Macromolecules, 2009,42:3942.
[45]
Su L , Heo G S , Lin Y N , Dong M , Zhang S , Chen Y , Sun G , Wooley K L . J. Polym. Sci. Pol. Chem., 2017,55:2966.
[46]
Yamauchi Y , Yamada K , Horimoto N N , Ishida Y . Polymer, 2017,120:68.
[47]
Sun G , Cho S , Clark C , Verkhoturov S V , Eller M J , Li A , Pavia-Jimenez A , Schweikert E A , Thackeray J W , Trefonas P , Wooley K L . J. Am. Chem. Soc., 2013,135:4203. https://www.ncbi.nlm.nih.gov/pubmed/23480169

doi: 10.1021/ja3126382 pmid: 23480169
[48]
Miyake G M , Piunova V A , Weitekamp R A , Grubbs R H . Angew. Chem. Int. Ed., 2012,51:11246. https://www.ncbi.nlm.nih.gov/pubmed/22976479

doi: 10.1002/anie.201205743 pmid: 22976479
[49]
Yu Y G , Chae C G , Kim M J , Seo H B , Grubbs R H , Lee J S . Macromolecules, 2018,51:447.
[50]
梁晨(Liang C) Master Dissertation of Changchun University of Science and Technology(长春理工大学硕士学位论文), 2016.
[51]
Qiao Y , Zhao Y , Yuan X , Zhao Y , Ren L . J. Mater. Sci., 2018,53:16160.
[52]
Song D P , Li C , Colella N S , Lu X , Lee J H , Watkins J J . Adv. Optical Mater., 2015,3:1169.
[53]
Song D P , Li C , Li W , Watkins J J . ACS Nano, 2016,10:1216. https://www.ncbi.nlm.nih.gov/pubmed/26713452

doi: 10.1021/acsnano.5b06525 pmid: 26713452
[54]
Song D P , Jacucci G , Dundar F , Naik A , Fei H F , Vignolini S , Watkins J J . Macromolecules, 2018,51:2395. https://www.ncbi.nlm.nih.gov/pubmed/29681653

doi: 10.1021/acs.macromol.7b02288 pmid: 29681653
[55]
Song D P , Zhao T H , Guidetti G , Vignolini S , Parker R M . ACS Nano, 2019,13:1764. https://www.ncbi.nlm.nih.gov/pubmed/30620557

doi: 10.1021/acsnano.8b07845 pmid: 30620557
[56]
Yao Q , Gutierrez D C , Hoang N H , Kim D , Wang R , Hobbs C , Zhu L . Mol. Pharmaceutics, 2017,14:2378. https://www.ncbi.nlm.nih.gov/pubmed/28605595

doi: 10.1021/acs.molpharmaceut.7b00278 pmid: 28605595
[57]
Meng C S , Yan Y K , Wang W . Polym. Chem., 2017,8:6824.
[58]
Chae C G , Yu Y G , Seo H B , Kim M J , Mallela Y L N K , Lee J S . Macromolecules, 2019,52:1912.
[59]
Pesek S L , Lin Y H , Mah H Z , Kasper W , Chen B , Rohde B J , Robertson M L , Stein G E , Verduzco R . Polymer, 2016,98:495. https://linkinghub.elsevier.com/retrieve/pii/S0032386116300581

doi: 10.1016/j.polymer.2016.01.057
[60]
You L , Ling J . Macromolecules, 2014,47:2219.
[61]
Li Y , Bai T , Li Y , Ling J . Macromol. Chem. Phys., 2017,218:1600450.
[62]
Shah M , Yang Z , Li Y , Jiang L , Ling J . Polymers, 2017,9:559.
[63]
Li Y , von der Lühe M , Schacher F H , Ling J . Macromolecules, 2018,51:4938.
[64]
Qiu H , Yang Z , Shah M I , Mao Z , Ling J . Polymer, 2017,128:71.
[65]
Li Y , Schacher F H , Ling J . Macromol. Rapid Commun., 2019,40:1800905.
[66]
Walther A , Müller A H E . Soft Matter, 2008,4:663.
[67]
Li Y , Themistou E , Zou J , Das B P , Tsianou M , Cheng C . ACS Macro Lett., 2011,1:52.
[68]
刘一寰(Liu Y H), 胡欣(Hu X), 朱宁(Zhu N), 郭凯(Guo K). 化学进展(Progress in Chemistry), 2018,30:1133.
[69]
Ruhland T M , Groschel A H , Ballard N , Skelhon T S , Walther A , Muller A H , Bon S A . Langmuir, 2013,29:1388. https://www.ncbi.nlm.nih.gov/pubmed/23311383

doi: 10.1021/la3048642 pmid: 23311383
[70]
Burts A O , Gao A X , Johnson J A . Macromol. Rapid Commun., 2014,35:168. https://www.ncbi.nlm.nih.gov/pubmed/24265215

doi: 10.1002/marc.201300618 pmid: 24265215
[71]
Nguyen H V , Gallagher N M , Vohidov F , Jiang Y , Kawamoto K , Zhang H , Park J V , Huang Z , Ottaviani M F , Rajca A , Johnson J A . ACS Macro Lett., 2018,7:472. https://www.ncbi.nlm.nih.gov/pubmed/30271675

doi: 10.1021/acsmacrolett.8b00201 pmid: 30271675
[72]
Cheng C , Qi K , Khoshdel E , Wooley K L . J. Am. Chem. Soc., 2006,128:6808. https://www.ncbi.nlm.nih.gov/pubmed/16719459

doi: 10.1021/ja061892r pmid: 16719459
[73]
Cheng C , Khoshdel E , Wooley K L . Macromolecules, 2007,40:2289.
[74]
Onbulak S , Rzayev J . J. Polym. Sci. Pol. Chem., 2017,55:3868.
[75]
Johnson J A , Lu Y Y , Burts A O , Xia Y , Durrell A C , Tirrell D A , Grubbs R H . Macromolecules, 2010,43:10326. https://www.ncbi.nlm.nih.gov/pubmed/21532937

doi: 10.1021/ma1021506 pmid: 21532937
[76]
Liu J , Burts A O , Li Y , Zhukhovitskiy A V , Ottaviani M F , Turro N J , Johnson J A . J. Am. Chem. Soc., 2012,134:16337.
[77]
Zhang H , Hadjichristidis N . Macromolecules, 2016,49:1590.
[78]
Radzinski S C , Foster J C , Matson J B . Polym. Chem., 2015,6:5643.
[79]
Radzinski S C , Foster J C , Lewis S E , French E V , Matson J B . Polym. Chem., 2017,8:1636.
[80]
Sarapas J M , Chan E P , Rettner E M , Beers K L . Macromolecules, 2018,51:2359.
[81]
Lin T P , Chang A B , Chen H Y , Liberman-Martin A L , Bates C M , Voegtle M J , Bauer C A , Grubbs R H . J. Am. Chem. Soc., 2017,139:3896. https://www.ncbi.nlm.nih.gov/pubmed/28221030

doi: 10.1021/jacs.7b00791 pmid: 28221030
[82]
Teo Y C , Xia Y . Macromolecules, 2015,48:5656.
[83]
Radzinski S C , Foster J C , Scannelli S J , Weaver J R , Arrington K J , Matson J B . ACS Macro Lett., 2017,6:1175.
[1] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[2] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[3] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[4] Chuncai Zhou, Chuncai Zhou*. Design, Synthesis and Applications of Antimicrobial Peptides and Antimicrobial Peptide-Mimetic Copolymers [J]. Progress in Chemistry, 2018, 30(7): 913-920.
[5] Hao Zhang, Fang Xu, Heying Wang, Tao Jiang, Zhi Ma. Controlled Synthesis of New Polymethylene-Based Copolymers [J]. Progress in Chemistry, 2018, 30(2/3): 179-189.
[6] Wang Xinbo, Zhang Shuhong, He Xiaodong. Network Mesostructures in Self-Assembly of Diblock Copolymers and the Application [J]. Progress in Chemistry, 2016, 28(6): 860-871.
[7] Feng Yuchen, Jie Suyun, Li Bogeng. Telechelic Polymers and Block Copolymers Prepared via Olefin-Metathesis Polymerization [J]. Progress in Chemistry, 2015, 27(8): 1074-1086.
[8] Xiong Lina, Zhang Xueqin, Sun Ying, Yang Hong. Synthesis, Self-Assembly and Application of All-Conjugated Block Copolymers [J]. Progress in Chemistry, 2015, 27(12): 1774-1783.
[9] Fu Chao, Zhu Yutian, Shi Dean. Separation and Characterization of Block Copolymers by Liquid Chromatography at the Critical Condition [J]. Progress in Chemistry, 2014, 26(01): 140-151.
[10] Wang Zhipeng, Yuan Jinying* . Applications of Diels-Alder Reaction in Synthesis of Polymers with Well-Defined Architectures [J]. Progress in Chemistry, 2012, 24(12): 2342-2351.
[11] He Wen, Ding Yuanju, Lu Zaijun, Yang Qifeng. Amphiphilic Block Copolymer Micelles for Medical Materials [J]. Progress in Chemistry, 2011, 23(5): 930-940.
[12] . Fluorescence Technique in Studies of Amphiphilic Polymer [J]. Progress in Chemistry, 2010, 22(0203): 458-464.
[13] . Synthesis and Functions of Cellulose Graft Copolymers [J]. Progress in Chemistry, 2010, 22(0203): 449-457.
[14] Wu Qingbin Ren Nan Zhang Yahong Tang Yi. Nanoparticle-Coated Temperature-Responsive Copolymer [J]. Progress in Chemistry, 2009, 21(12): 2642-2650.
[15] Li Di Zhang Long Fan Quli Huang Wei. Self-Assembly of Conjugated Rod-Coil Block Copolymers [J]. Progress in Chemistry, 2009, 21(12): 2660-2673.