中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (4): 596-609 DOI: 10.7536/PC200525 Previous Articles   Next Articles

• Review •

Graft Modification of PVDF-Based Fluoropolymers

Tingting Heng1, Hui Zhang1, Mingxue Chen1, Xin Hu1(), Liang Fang1(), Chunhua Lu1()   

  1. 1 College of Materials Science and Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials(SICAM), Nanjing Tech University,Nanjing 211800, China
  • Received: Revised: Online: Published:
  • Contact: Xin Hu, Liang Fang, Chunhua Lu
  • Supported by:
    the National Natural Science Foundation of China(21604037); the Priority Academic Program Development of the Jiangsu Higher Education Institutions(PAPD); the Qing Lan Project, and the Six Talent Peaks project in Jiangsu Province(XCL-029)
Richhtml ( 45 ) PDF ( 1426 ) Cited
Export

EndNote

Ris

BibTeX

Poly(vinylidene fluoride)(PVDF)-based fluoropolymers have received widespread attention due to their unique properties. Poly(vinylidene fluoride)(PVDF)-based fluoropolymers have received widespread attention due to their unique properties. Incorporation of functional segments on PVDF-based fluoropolymers has been an important way to improve their performance and expand the application areas. Compared with the physical blending and the direct copolymerization approaches, significant advantages have been witnessed by employing the graft modification method, which provides an easy and efficient way to obtain well-defined fluoro-copolymer with precise compositions. This review highlights the methods of functional graft modification of PVDF-based fluoropolymers via living radical polymerization (including atom transfer radical polymerization (ATRP), single electron transfer-living radical polymerization (SET-LRP), organocatalyzed atom transfer radical polymerization (O-ATRP), photo-induced Cu(Ⅱ)-mediated reversible deactivation radical polymerization (RDRP) and high energy ray radiation (γ-ray, ultraviolet, electron beam)). The opportunities and applications are proposed for the further development.

Contents

1 Introduction

2 Graft modification of PVDF-based fluoropolymers via atom transfer radical polymerization(ATRP)

2.1 Graft modification of PVDF via ATRP

2.2 Graft modification of P(VDF-co-CTFE) via ATRP

2.3 Graft modification of poly(chlorotrifluoroethyl-ene)(PCTFE) via ATRP

2.4 Graft modification of poly(vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene)(P(VDF-co-TrFE-co-CTFE)) via ATRP

2.5 Graft modification of P(VDF-co-HFP) via ATRP

3 Graft modification of PVDF-based fluoropolymers via single electron transfer-living radical polymerization(SET-LRP)

3.1 Graft modification of PVDF via SET-LRP

3.2 Graft modification of P(VDF-co-CTFE) via SET-LRP

4 Graft modification of PVDF-based fluoropolymers via photo-induced Cu(Ⅱ)-mediated RDRP

4.1 Graft modification of PVDF via photo-induced Cu(Ⅱ)-mediated RDRP

4.2 Graft modification of P(VDF-co-CTFE) via photo-induced Cu(Ⅱ)-mediated RDRP

5 Graft modification of PVDF-based fluoropolymers via organocatalyzed atom transfer radical polymerization(O-ATRP)

6 Graft modification of PVDF-based fluoropolymers via radical polymerization

6.1 Graft modification of PVDF via reaction of initiator and double bond

6.2 Graft modification of PVDF via irradiation

7 Conclusion and outlook

Fig.1 Polymerization process of PVDF-g-PHEA
Fig.2 Synthesis of the P(VDF-co-CTFE)-g-PS graft copolymers using ATRP, followed by dechlorination with nBu3SnH
Fig.3 ATRP of styrene initiated by PCTFE oligomer[45]
Fig.4 Synthesis of P(VDF-co-TrFE-co-CTFE)-g-PS graft copolymer using ATRP, followed by dechlorination with nBu3SnH
Fig.5 Synthetic procedure of proton conductive P(VDF-co-HFP)-g-PSPMA copolymer[51]
Fig.6 Synthesis route of P(VDF-co-HFP)-g-PPEGMA[52]
Fig.7 The mechanism of SET-CRP using C—F bonds as active sites[53]
Fig.8 SET-LRP of MMA and AN initiated with P(VDF-co-CTFE) and a schematic diagram of the copper tubular reactor[25]
Fig.9 Synthesis of the PVDF-g-THFMA copolymer[82]
Fig.10 Photoinduced Cu(Ⅱ)-mediate RDRP to P(VDF-co-CTFE)-g-PAN[83,84]
Fig.11 Synthesis of P(VDF-co-CTFE)-g-PMA、P(VDF-co-CTFE)-g-PBA and P(VDF-co-CTFE)-g-(PMMA-b-PMA)[85]
Fig.12 Schematic diagram illustrating the process of the amphiphilic copolymer synthesis, and quaternization[89]
Fig.13 Process for the preparation and extraction of the PVDF-g-St film[90]
Fig.14 Reaction scheme for the sulfonation and grafting of PVDF-g-PSSA[91]
Fig.15 Schematic illustration of the processes of ozone pretreatment, graft copolymerization of PVDF with PMA, andpreparation of PVDF-g-PPMA membrane with “Clickable” surface by phase inversion [37]
Table 1 Functionalized graft-modified fluorocopolymers by ATRP, SET-LRP, photo-induced Cu(Ⅱ)-mediated RDRP, O-ATRP, traditional radical polymerization and radiation polymerization
Reactions Advantages Drawbacks Graft product Ref
ATRP mild polymerization conditions, wide range of monomers, high reaction rate, strong molecular design ability, and adjustable grafting amount Due to the unavoidable metal residues, there are potential risks when used in the fields of electricity, biology and environmental materials. The high temperature and the participation of N-containing ligands in the polymerization process may lead to side reactions such as elimination and hydrogenation PVDF-g-PHEA 40
PVDF-g-PSPMA/PSSA 41
PVDF-g-POEM/PAA 42,43
P(VDF-co-CTFE)-g-PS 44
P(VDF-co-CTFE)-g-PAA/PS 45
PCTFE-g-PS 46,47
P(VDF-co-TrFE-co-CTFE)-g-PS/SPS 48~50
P(VDF-co-CTFE)-g-PEMA/PMMA/PBMA 51,52
P(VDF-co-TrFE-co-CTFE)-g-P(St-MMA)
P(VDF-co-HFP)-g-PSPMA/PPEGMA
SET-LRP mild reaction conditions, the amount of metal catalyst is small and easy to remove, side reactions such as elimination can be avoided expensive Me6-TREN as ligand PVDF-g-PMMA 53
P(VDF-co-CTFE)-g-PAN/PMMA
P(VDF-co-CTFE)-g-PMMA
21,25
22
Photo-RDRP good space-time control, fast reaction rate, mild reaction conditions and high grafting efficiency expensive Me6-TREN as ligand PVDF-g-THFMA 82
P(VDF-co-CTFE)-g-PAN/PMMA 83,84
O-ATRP Metal residue can be totally avoided, good controllability, grafting amount may be adjusted by tuning conditions Medium reaction efficiency and low graft P(VDF-co-CTFE)-g-PMA/PBA/PMMA 85
P(VDF-co-CTFE)-g-(PMMA-b-PMA)
P(VDF-co-CTFE)-g-PMMA 86
P(VDF-co-CTFE)-g-PMMA/PGMA 87
Traditional Radical Polymerization Mild polymerization conditions, water resistance, suitable for various polymerization methods, suitable for a wide range of monomers The microstructure, degree of polymerization and polydispersity of polymer can not be controlled PVDF-g-P(Sty-co-VBC)/PDMAPMA 88,89
Radiation Polymerization Strong penetration
High activation efficiency
Solid state polymerizable
The high energy ray is uncontrollable and the matrix structure is easy to be damaged PVDF-g-PPMA/St/PHEMA/PS/PSSA/AN 37,90~96
[1]
Song X M, Yao W Q, Lu G L, Li Y J, Huang X Y. Polym. Chem., 2013, 4(9): 2864.
[2]
Feng C, Lu G L, Sun G, Liu X W, Huang X Y. Polym. Chem., 2014, 5(20): 6027.
[3]
Xu B B, Feng C, Huang X Y. Nat. Commun., 2017, 8: 333.

pmid: 28839135
[4]
Que Y R, Huang Z, Feng C, Yang Y, Huang X Y. ACS Macro Lett., 2016, 5(12): 1339.
[5]
Que Y R, Liu Y J, Tan W, Feng C, Shi P, Li Y J, Huang X Y. ACS Macro Lett., 2016, 5(2): 168.
[6]
Feng C, Huang X Y. Acc. Chem. Res., 2018, 51(9): 2314.
[7]
Que Y R, Feng C, Zhang S, Huang X Y. J. Phys. Chem. C, 2015, 119(4): 1960.
[8]
Que Y R, Feng C, Lu G L, Huang X Y. ACS Appl. Mater. Interfaces, 2017, 9(17): 14647.

pmid: 28403612
[9]
Jiang X Y, Jiang X, Lu G L, Feng C, Huang X Y. Polym. Chem., 2014, 5(17): 4915.
[10]
Sun F X, Feng C, Liu H Y, Huang X Y. Polym. Chem., 2016, 7(45): 6973.
[11]
Ni Y Y, Tian C, Zhang L F, Cheng Z P, Zhu X L. ACS Macro Lett., 2019, 8(11): 1419.
[12]
Li Z, Chen W J, Zhang L F, Cheng Z P, Zhu X L. Polym. Chem., 2015, 6(28): 5030.
[13]
Peng J Y, Tian C, Zhang L F, Cheng Z P, Zhu X L. Polym. Chem., 2017, 8(9): 1495.
[14]
Peng J Y, Xu Q H, Ni Y Y, Zhang L F, Cheng Z P, Zhu X L. Polym. Chem., 2019, 10(16): 2064.
[15]
Corrigan N, Rosli D, Jones J W J, Xu J T, Boyer C. Macromolecules, 2016, 49(18): 6779.
[16]
Liu X D, Zhang L F, Cheng Z P, Zhu X L. Polym. Chem., 2016, 7(3): 689.
[17]
Huang Z C, Gu Y, Liu X D, Zhang L F, Cheng Z P, Zhu X L. Macromol. Rapid Commun., 2017, 38(10): 1600461.
[18]
Ma W C, Zhang X H, Ma Y H, Chen D, Wang L, Zhao C W, Yang W T. Polym. Chem., 2017, 8(23): 3574.
[19]
Pan X C, Lamson M, Yan J J, Matyjaszewski K. ACS Macro Lett., 2015, 4(2): 192.
[20]
Yang Q, Zhang X H, Ma Y H, Chen D, Yang W T. J. Polym. Sci. Part A: Polym. Chem., 2018, 56(18): 2072.
[21]
Hu X, Li J J, Li H Y, Zhang Z C. J. Polym. Sci. A Polym. Chem., 2012, 50(15): 3126.
[22]
Hu X, Li J J, Li H Y, Zhang Z C. J. Polym. Sci. Part A: Polym. Chem., 2013, 51(20): 4378.
[23]
Chan N, Cunningham M F, Hutchinson R A. J. Polym. Sci. Part A: Polym. Chem., 2013, 51(15): 3081.
[24]
Burns J A, Houben C, Anastasaki A, Waldron C, Lapkin A A, Haddleton D M. Polym. Chem., 2013, 4(17): 4809.
[25]
Zhu N, Hu X, Zhang Y J, Zhang K, Li Z J, Guo K. Polym. Chem., 2016, 7(2): 474.
[26]
Zhu N, Hu X, Fang Z, Guo K. ChemPhotoChem, 2018, 2(10): 831.
[27]
Cui P, Song C T, Zhang X H, Chen D, Ma Y H, Yang W T. Ind. Eng. Chem. Res., 2019, 58(47): 21864.
[28]
Treat N J, Sprafke H, Kramer J W, Clark P G, Barton B E, Read de Alaniz J, Fors B P, Hawker C J. J. Am. Chem. Soc., 2014, 136(45): 16096.

doi: 10.1021/ja510389m pmid: 25360628
[29]
Miyake G M, Theriot J C. Macromolecules, 2014, 47(23): 8255.
[30]
Yang Q, Zhang X H, Ma W C, Ma Y H, Chen D, Wang L, Zhao C W, Yang W T. J. Polym. Sci. Part A: Polym. Chem., 2018, 56(2): 229.
[31]
Cai T, Neoh K G, Kang E T, Teo S L M. Langmuir, 2011, 27(6): 2936.

pmid: 21341769
[32]
Gebrekrstos A, Prasanna Kar G, Madras G, Misra A, Bose S. Polymer, 2019, 181: 121764.
[33]
Grasselli M, Betz N. Nucl. Instruments Methods Phys. Res. Sect. B: Beam Interactions Mater. Atoms, 2005, 236(1/4): 201.
[34]
Cai T, Wang R, Neoh K G, Kang E T. Polym. Chem., 2011, 2(8): 1849.
[35]
Dumas L, Fleury E, Portinha D. Polymer, 2014, 55(11): 2628.
[36]
Li X, Hu X F, Cai T. Langmuir, 2017, 33(18): 4477.

doi: 10.1021/acs.langmuir.7b00191 pmid: 28452489
[37]
Cai T, Neoh K G, Kang E T. Macromolecules, 2011, 44(11): 4258.

doi: 10.1021/ma2002728
[38]
Cai T, Yang W J, Neoh K G, Kang E T. Ind. Eng. Chem. Res., 2012, 51(49): 15962.

doi: 10.1021/ie302762w
[39]
Cai T, Wang R, Yang W J, Lu S J, Neoh K G, Kang E T. Soft Matter, 2011, 7(23): 11133. 137414ba-0eef-48b4-98b6-a22a7fd99d17

doi: 10.1039/c1sm06039b
[40]
Kim K M, Woo S, Lee J, Park H, Park J, Min B. Appl. Sci., 2015, 5(4): 1992.

doi: 10.3390/app5041992
[41]
Kim Y W, Lee D K, Lee K J, Kim J H. Eur. Polym. J., 2008, 44(3): 932.

doi: 10.1016/j.eurpolymj.2007.12.020
[42]
Shen J L, Zhang Q, Yin Q, Cui Z L, Li W X, Xing W H. J. Membr. Sci., 2017, 521: 95.

doi: 10.1016/j.memsci.2016.09.006
[43]
Lee J I, Kang H, Park K H, Shin M, Hong D, Cho H J, Kang N R, Lee J, Lee S M, Kim J Y, Kim C K, Park H, Choi N S, Park S, Yang C. Small, 2016, 12(23): 3119.

pmid: 27119208
[44]
Guan F X, Yang L Y, Wang J, Guan B, Han K, Wang Q, Zhu L. Adv. Funct. Mater., 2011, 21(16): 3176.

doi: 10.1002/adfm.201002015
[45]
Zhang M F, Russell T P. Macromolecules, 2006, 39(10): 3531.

doi: 10.1021/ma060128m
[46]
Guan F X, Wang J, Yang L Y, Tseng J K, Han K, Wang Q, Zhu L. Macromolecules, 2011, 44(7): 2190.

doi: 10.1021/ma102910v
[47]
Tan S B, Yang Q H, Zhang Z C. Acta Polym. Sin., 2010,(11): 1269.
谭少博, 杨庆浩, 张志成. 高分子学报, 2010,(11): 1269.
[48]
Li J J, Hu X, Gao G X, Ding S J, Li H Y, Yang L J, Zhang Z C. J. Mater. Chem. C, 2013, 1(6): 1111.

doi: 10.1039/C2TC00431C
[49]
Li J J, Tan S B, Ding S J, Li H Y, Yang L J, Zhang Z C. J. Mater. Chem., 2012, 22(44): 23468.

doi: 10.1039/c2jm35532a
[50]
Liu J J, Liao J N, Liao Y, Zhang Z C. Polym. Chem., 2019, 10(25): 3547.

doi: 10.1039/C9PY00540D
[51]
Xiao S Q, Chen Y W, Zhou W H, Zhang X L, He X H. The Chinese Journal of Process Engineerin, 2008, 8(6): 1223.
肖书琴, 陈义旺, 周魏华, 张小林, 贺晓慧. 过程工程学报, 2008, 8(6): 1223. d004385e-69a5-41fe-bb2b-6390df4fd867
[52]
Yu S C, Chen L, Chen Y W, Tong Y F. Appl. Surf. Sci., 2012, 258(11): 4983. 09692411-367b-4dfe-9760-408cb821c2b3

doi: 10.1016/j.apsusc.2012.01.146
[53]
Tan S B, Zhang Y A, Niu Z J, Zhang Z C. Macromol. Rapid Commun., 2018, 39(4): 1700561.

doi: 10.1002/marc.v39.4
[54]
Sackmann E K, Fulton A L, Beebe D J. Nature, 2014, 507(7491): 181. b2ab6b3f-b1ea-45c5-9013-9d1e71db1f0d

doi: 10.1038/nature13118
[55]
Tsubogo T, Oyamada H, Kobayashi S. Nature, 2015, 520(7547): 329.

pmid: 25877201
[56]
Kim H, Nagaki A, Yoshida J I. Nat. Commun., 2011, 2: 264.

pmid: 21468016
[57]
Elvira K S, i Solvas X C, Wootton R C R, de Mello A J. Nat. Chem., 2013, 5(11): 905.

pmid: 24153367
[58]
Reis M H, Leibfarth F A, Pitet L M. ACS Macro Lett., 2020, 9(1): 123.

doi: 10.1021/acsmacrolett.9b00933
[59]
Nagaki A, Miyazaki A, Yoshida J I. Macromolecules, 2010, 43(20): 8424.

doi: 10.1021/ma101663x
[60]
Nagaki A, Kawamura K, Suga S, Ando T, Sawamoto M, Yoshida J I. J. Am. Chem. Soc., 2004, 126(45): 14702.

doi: 10.1021/ja044879k pmid: 15535678
[61]
Zhao W R, Hu X, Zhu N, Fang Z, Guo K. Progress in Chemistry, 2018, 30(9): 1330.
赵婉如, 胡欣, 朱宁, 方正, 郭凯. 化学进展, 2018, 30(9): 1330.
[62]
Iwasaki T, Yoshida J I. Macromolecules, 2005, 38(4): 1159.

doi: 10.1021/ma048369m
[63]
Noda T, Grice A J, Levere M E, Haddleton D M. Eur. Polym. J., 2007, 43(6): 2321.

doi: 10.1016/j.eurpolymj.2007.03.010
[64]
Ramsey B L, Pearson R M, Beck L R, Miyake G M. Macromolecules, 2017, 50(7): 2668.

pmid: 29051672
[65]
Ramakers G, Krivcov A, Trouillet V, Welle A, Möbius H, Junkers T. Macromol. Rapid Commun., 2017, 38(21): 1700423.

doi: 10.1002/marc.v38.21
[66]
Hu X, Zhu N, Fang Z, Li Z J, Guo K. Eur. Polym. J., 2016, 80: 177.

doi: 10.1016/j.eurpolymj.2016.04.006
[67]
Kuroki A, Martinez-Botella I, Hornung C H, Martin L, Williams E G L, Locock K E S, Hartlieb M, Perrier S. Polym. Chem., 2017, 8(21): 3249.

doi: 10.1039/C7PY00630F
[68]
Diehl C, Laurino P, Azzouz N, Seeberger P H. Macromolecules, 2010, 43(24): 10311.

doi: 10.1021/ma1025253
[69]
Corrigan N, Almasri A, Tailades W, Xu J T, Boyer C. Macromolecules, 2017, 50(21): 8438.

doi: 10.1021/acs.macromol.7b01890
[70]
Fukuyama T, Kajihara Y, Ryu I, Studer A. Synthesis, 2012, 44(16): 2555.

doi: 10.1055/s-0031-1290780
[71]
Gong H H, Zhao Y C, Shen X W, Lin J, Chen M. Angew. Chem. Int. Ed., 2018, 57(1): 333.

doi: 10.1002/anie.201711053
[72]
Hu X, Zhu N, Fang Z, Guo K. React. Chem. Eng., 2017, 2(1): 20.

doi: 10.1039/C6RE00206D
[73]
Kundu S, Bhangale A S, Wallace W E, Flynn K M, Guttman C M, Gross R A, Beers K L. J. Am. Chem. Soc., 2011, 133(15): 6006.

pmid: 21438577
[74]
Bhangale A S, Beers K L, Gross R A. Macromolecules, 2012, 45(17): 7000.

doi: 10.1021/ma301178k
[75]
Zhu N, Liu Y H, Feng W Y, Huang W J, Zhang Z L, Hu X, Fang Z, Li Z J, Guo K. Eur. Polym. J., 2016, 80: 234.

doi: 10.1016/j.eurpolymj.2016.04.010
[76]
Zhu N, Huang W J, Hu X, Liu Y H, Fang Z, Guo K. Chem. Eng. J., 2018, 333: 43.

doi: 10.1016/j.cej.2017.09.143
[77]
Zhu N, Huang W J, Hu X, Liu Y H, Fang Z, Guo K. Macromol. Rapid Commun., 2018, 39(8): 1700807.
[78]
Huang W J, Zhu N, Liu Y H, Wang J, Zhong J, Sun Q, Sun T, Hu X, Fang Z, Guo K. Chem. Eng. J., 2019, 356: 592.
[79]
Liu Y H, Hu X, Zhu N, Guo K. Progress in Chemistry, 2018, 30(8): 1133.
刘一寰, 胡欣, 朱宁, 郭凯. 化学进展, 2018, 30(8): 1133.
[80]
Zhu N, Zhang Z L, Feng W Y, Zeng Y Q, Li Z Y, Fang Z, Zhang K, Li Z J, Guo K. RSC Adv., 2015, 5(40): 31554.
[81]
Zhu N, Feng W Y, Hu X, Zhang Z L, Fang Z, Zhang K, Li Z J, Guo K. Polymer, 2016, 84: 391.
[82]
Lei H D, Liu L, Huang L K, Li W X, Xing W H. Polymer, 2018, 157: 1.
[83]
Hu X, Cui G P, Zhu N, Zhai J L, Guo K. Polymers, 2018, 10(1): 68.
[84]
Hu X, Cui G P, Zhang Y J, Zhu N, Guo K. Eur. Polym. J., 2018, 100: 228.

doi: 10.1016/j.eurpolymj.2018.01.033
[85]
Hu X, Zhang Y J, Cui G P, Zhu N, Guo K. Macromol. Rapid Commun., 2017, 38(21): 1700399.

doi: 10.1002/marc.v38.21
[86]
Tan S B, Xiong J, Zhao Y F, Liu J J, Zhang Z C. J. Mater. Chem. C, 2018, 6(15): 4131.

doi: 10.1039/C8TC00781K
[87]
Hu X, Li N, Heng T T, Fang L, Lu C H. React. Funct. Polym., 2020, 150: 104541.
[88]
Sharma P P, Yadav V, Rajput A, Kulshrestha V. Desalination, 2018, 444: 35.
[89]
Liu L, Huang L K, Shi M L, Li W X, Xing W H. J. Appl. Polym. Sci., 2019, 136(42): 48049.
[90]
Chen J H, Seko N. Polymers, 2019, 11(7): 1098.
[91]
Cohen E, Ophir A. J. Appl. Polym. Sci., 2012, 126(2): 442.
[92]
Thakur V K, Tan E J, Lin M F, Lee P S. J. Mater. Chem., 2011, 21(11): 3751.
[93]
Thakur V K, Tan E J, Lin M F, Lee P S. Polym. Chem., 2011, 2(9): 2000.
[94]
Golcuk S, Muftuoglu A E, Celik S U, Bozkurt A. J. Polym. Res., 2013, 20(5): 144.
[95]
Deng Q L, Chen Y W, Sun W. Surf. Rev. Lett., 2007, 14(1): 23.
[96]
Peng Q, Lu S Q, Chen D Z, Wu X Q, Fan P F, Zhong R, Xu Y W. Macromol. Biosci., 2007, 7(9/10): 1149.
[1] Anchao Feng, Xiangyu Pan, Xiaohu Wei, Anchao Feng*, San H. Thang*. Stimuli Responsive Gradient Polymers [J]. Progress in Chemistry, 2017, 29(10): 1184-1194.
[2] Li Donghan, Qi Shicheng, Zhang Xiaoa, Liao Mingyi. Preparation, Functionalization and Properties of Low Molecular Fluoropolymers [J]. Progress in Chemistry, 2016, 28(5): 673-685.
[3] Li Guang, Bai Ruke. Synthesis of Azide Polymers [J]. Progress in Chemistry, 2011, 23(8): 1692-1699.
[4] Yuan Weizhong, Zhang Jinchun, Wei Jingren. Synthesis of Well-Defined Polymer via a Combination of Click Chemistry and Living Radical Polymerization [J]. Progress in Chemistry, 2011, 23(4): 760-771.
[5] He Naipu, He Yufeng, Wang Rongmin, Song Pengfei, Zhou Yun. Protein Polymer Conjugates [J]. Progress in Chemistry, 2010, 22(12): 2388-2396.
[6] . Inorganic Ions and Small Molecular Recognition Based on Functional Modification Quantum Dots [J]. Progress in Chemistry, 2010, 22(06): 1077-1085.
[7] . Atom Transfer Radical Polymerization in Miniemulsion [J]. Progress in Chemistry, 2010, 22(04): 663-668.
[8] . Preparation and Functionalization of Interconnected Porous Polymer by Emulsion-Template [J]. Progress in Chemistry, 2009, 21(04): 672-676.
[9] Pu Hongting1 Cai Xiangyu1 Wan Decheng1** Yang Genjin2. Living Radical Polymerization of N-vinylamides [J]. Progress in Chemistry, 2008, 20(10): 1572-1577.
[10] Chen Hui, Ma Huiru, Guan Jianguo**. Preparation of Water-Soluble Conducting Polyanilines [J]. Progress in Chemistry, 2007, 19(11): 1770-1775.
[11] Li Hong,Xu An hou,Zhang Yongming**. Synthesis of Fluoropolymers in Supercritical Carbon Dioxide [J]. Progress in Chemistry, 2007, 19(10): 1562-1567.
[12] Huiwu Wang Yanming Dong Yaqing Zhao . Advance of Graft Copolymerization onto Chitin and Chitosan [J]. Progress in Chemistry, 2006, 18(05): 601-608.