中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (10): 1547-1556 DOI: 10.7536/PC200225 Previous Articles   Next Articles

Grafting Modification of Lignin via Ring-Opening Polymerization

Guofu Qin1, Yihuan Liu1, Fan Yin1, Xin Hu2,**(), Ning Zhu1,**(), Kai Guo1   

  1. 1. College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
    2. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China
  • Received: Revised: Online: Published:
  • Contact: Xin Hu, Ning Zhu
  • About author:
    **e-mail:(Xin Hu)
  • Supported by:
    National Natural Science Foundation of China(22078150)
Richhtml ( 37 ) PDF ( 953 ) Cited
Export

EndNote

Ris

BibTeX

As one of the most abundant biomass resources in nature, lignin has not been fully utilized, which has become a challenge to the development of biochemical industry. As an important strategy to achieve high-value utilization of lignin, grafting modification of lignin has been paid much attention. Ring-opening polymerization is a mild and efficient polymerization method, which can introduce aliphatic polyester segments into lignin. Compared to the pristine lignin, graft polymers show improved solubility, compatibility and degradability. This paper focuses on the progress of grafting modification of lignin via ring opening polymerization by using varied catalysis. Lactide, caprolactone and other cyclic monomers are summarized. The performance and applications of lignin grafted polymers are discussed as well as the challenges and opportunities.

Contents

1 Introduction

2 Catalysis for ring-opening polymerization

2.1 Metal-catalyzed ring-opening polymerization

2.2 Enzymatic ring-opening polymerization

2.3 Organocatalyzed ring-opening polymerization

3 Lactide as monomer

3.1 Synthesis of lignin grafted polylactide

3.2 Effect of lignin's structure and lactide's chirality

3.3 Application of lignin grafted polylactide

4 Caprolactone as monomer

4.1 Synthesis of lignin grafted polycaprolactone

4.2 Application of lignin grafted polycaprolactone

5 Other monomers

5.1 Oxazoline

5.2 Cyclic carbonate

5.3 β-Butyrolactone

6 Conclusion and outlook

Fig.1 Precursor of lignin monomer[5]
Fig.2 Coordination-insertion mechanism
Fig.3 Enzymatic ring-opening polymerization mechanism[43]
Fig.4 Nucleophilic monomer activation mechanism
Fig.5 Electrophilic monomer activation mechanism
Fig.6 Chain-end activation mechanism
Fig.7 Bifunctional activation mechanism
Table 1 Preparation of Lignin-g-PLA with different catalysts
Fig.8 TBD catalytic synthesis of lignin graft copolymer[54]
Fig.9 Three methods for synthesizing lignin graft copolymer[63]
Fig.10 Grafting modification of dodecylated lignin via ROP of LA [61]
Table 2 Different lignins as the initiators for ROP of CL
Fig.11 TBD catalytic synthesis of BBL-g-PCL[74]
Table 3 The other cyclic monomers for grafting modification
[1]
路瑶, 魏贤勇(Wei X Y), 宗志敏(Zong Z M), 陆永超(Lu Y C), 赵炜(Zhao W), 曹景沛(Cao J P). 化学进展 (Progress in Chemistry), 2013,25:838.
[2]
Doherty W O S, Mousavioun P, Fellows C M. Industrial Crops and Products, 2011,33:259.
[3]
Figueiredo P, Lintinen K, Hirvonen J T, Kostiainen M A, Santos H A. Progress in Materials Science, 2018,93:233.
[4]
Wang C, Kelley S S, Venditti R A. ChemSusChem, 2016,9:770. doi: 10.1002/cssc.201501531

pmid: 27059111
[5]
Kai D, Tan M J, Chee P L, Chua Y K, Yap Y L, Loh X J. Green Chemistry, 2016,18:1175.
[6]
翟景琳(Zhai J L), 胡欣(HuX), 刘成扣(LiuC K), 朱宁(ZhuN), 郭凯(Guo K). 化学进展 (Progress in Chemistry), 2019,31:1293.
[7]
Liu H, Chung H. Journal of Polymer Science Part A: Polymer Chemistry, 2017,55:3515.
[8]
马晓振(Ma X Z), 罗清(LuoQ), 秦冬冬(QinD D), 陈景(ChenJ), 朱锦(Zhu J), 颜宁(Yan N) 化学进展 (Progress in Chemistry). 2020,32:617.
[9]
Upton B M, Kasko A M. Chemical Reviews, 2016,116:2275. doi: 10.1021/acs.chemrev.5b00345

pmid: 26654678
[10]
Corrigan N, Jung K, Moad G, Hawker C J, Matyjaszewski K, Boyer C. Progress in Polymer Science, 2020,111:101311.
[11]
Gurnani P, Perrier S. Progress in Polymer Science, 2020,102:101209.
[12]
Mocny P, Klok H A. Progress in Polymer Science, 2020,100:101185.
[13]
Huang W, Zhai J, Hu X, Duan J, Fang Z, Zhu N, Guo K. European Polymer Journal, 2020,126:109565.
[14]
Zhu N, Hu X, Fang Z, Guo K. ChemPhotoChem, 2018,2:831.
[15]
Song Q, Pascouau C, Zhao J, Zhang G, Peruch F, Carlotti S. Progress in Polymer Science, 2020,110:101309.
[16]
Zhu N, Feng W, Zhang Z, Fang Z, Li Z, Guo K. Polymer, 2015,80:88.
[17]
Zhu N, Huang W, Hu X, Liu Y, Fang Z, Guo K. Macromol. Rapid Commun, 2018,39:1700807.
[18]
Hu X, Zhu N, Fang Z, Guo K. Reaction Chemistry & Engineering, 2017,2:20.
[19]
Hu X, Cui G, Zhu N, Zhai J, Guo K. Polymers (Basel), 2018,10:68.
[20]
Zhu N, Hu X, Zhang Y, Zhang K, Li Z, Guo K. Polymer Chemistry, 2016,7:474.
[21]
Zhu N, Feng W, Hu X, Zhang Z, Fang Z, Zhang K, Li Z, Guo K. Polymer, 2016,84:391.
[22]
Hu X, Zhang Y, Cui G, Zhu N, Guo K. Macromol. Rapid Commun, 2017,38:1700399.
[23]
Zhu N, Liu Y, Feng W, Huang W, Zhang Z, Hu X, Fang Z, Li Z, Guo K. European Polymer Journal, 2016,80:234.
[24]
Hu X, Cui G, Zhang Y, Zhu N, Guo K. European Polymer Journal, 2018,100:228.
[25]
Kowalski A, Duda A, Penczek S. Macromolecules, 2000,33:7359. doi: 10.1021/ma000125o
[26]
Kowalski A, Duda A, Penczek S. Macromolecules, 2000,33:689.
[27]
Dagorne S, Fliedel C. Top Organomet. Chem., 2012,41:125.
[28]
Ling J, Zhu W, Shen Z. Macromolecules, 2004,37:758.
[29]
Ling J, Shen Z, Huang Q. Macromolecules, 2001,34:7613. doi: 10.1021/ma0107657
[30]
Lin J O, Chen W, Shen Z, Ling J. Macromolecules, 2013,46:7769.
[31]
Ling J, Liu J, Shen Z, Hogen-Esch T E. Journal of Polymer Science Part A: Polymer Chemistry, 2011,49:2081.
[32]
Ling J, Shen J, Hogen-Esch T E. Polymer, 2009,50:3575.
[33]
Liu J, Ling J, Li X, Shen Z. Journal of Molecular Catalysis A: Chemical, 2009,300:59.
[34]
Sun Y, Yang L, Lu X, He C. Journal of Materials Chemistry A, 2015,3:3699.
[35]
Thomas C M, Chem. Soc. Rev, 2010,39:165.

pmid: 20023847
[36]
Kai D, Zhang K, Jiang L, Wong H Z, Li Z, Zhang Z, Loh X J. ACS Sustainable Chemistry & Engineering, 2017,5:6016.
[37]
Li Y, von der Lühe M, Schacher F H, Ling J. Macromolecules, 2018,51:4938.
[38]
You L, Ling J. Macromolecules, 2014,47:2219.
[39]
Li Y, Bai T, Li Y, Ling J. Macromolecular Chemistry and Physics, 2017,218:1600450.
[40]
Li Y, Schacher F H, Ling J. Macromol. Rapid Commun, 2019,40:1800905.
[41]
Shah M I, Yang Z, Li Y, Jiang L, Ling J. Polymers (Basel), 2017,9:559.
[42]
Huang W, Zhu N, Liu Y, Wang J, Zhong J, Sun Q, Sun T, Hu X, Fang Z, Guo K. Chemical Engineering Journal, 2019,356:592.
[43]
Gross R A, Kumar A, Kalra B. Chemical Reviews, 2001,101:2097. doi: 10.1021/cr0002590

pmid: 11710242
[44]
Seyednejad H, Ghassemi A H, van Nostrum C F, Vermonden T, Hennink W E. J. Control. Release, 2011,152:168.

pmid: 21223989
[45]
Zhu N, Zhang Z L, He W, Geng X C, Fang Z, Li X, Li Z J, Guo K. Chinese Chemical Letters, 2015,26:361.
[46]
Hu S, Zhao J, Zhang G, Schlaad H. Progress in Polymer Science, 2017,74:34.
[47]
Xia H, Kan S, Li Z, Chen J, Cui S, Wu W, Ouyang P, Guo K. Journal of Polymer Science Part A: Polymer Chemistry, 2014,52:2306.
[48]
Kan S, Jin Y, He X, Chen J, Wu H, Ouyang P, Guo K, Li Z. Polymer Chemistry, 2013,4:5432.
[49]
Liu J, Cui S, Li Z, Xu S, Xu J, Pan X, Liu Y, Dong H, Sun H, Guo K. Polymer Chemistry, 2016,7:5526.
[50]
Zhu N, Liu Y, Liu J, Ling J, Hu X, Huang W, Feng W, Guo K. Sci. Rep., 2018,8:3734.

pmid: 29487371
[51]
Alamri H, Zhao J, Pahovnik D, Hadjichristidis N. Polym. Chem., 2014,5:5471.
[52]
Zhao J, Zhang G, Pispas S. Journal of Polymer Science Part A: Polymer Chemistry, 2010,48:2320.
[53]
Pratt R C, Lohmeijer B G G, Long D A, Waymouth R M, Hedrick J L. Journal of the American Chemical Society, 2006,128:4556.

pmid: 16594676
[54]
Chung Y L, Olsson J V, Li R J, Frank C W, Waymouth R M, Billington S L, Sattely E S. ACS Sustainable Chemistry & Engineering, 2013,1:1231.
[55]
Kamber N E, Jeong W, Waymouth R M, Pratt R C, Lohmeijer B G G, Hedrick J L. Chemical Reviews, 2007,107:5813.

pmid: 17988157
[56]
张国栋(Zhang G D), 杨纪元(YangJ Y), 冯新德(FengX D), 顾忠伟(Gu Z W) 化学进展 (Progress in Chemistry), 2000,12:89.
[57]
Harris S B, Tschirner U W, Lemke N, van Lierop J L. Journal of Wood Chemistry and Technology, 2017,37:211.
[58]
Dai L, Liu R, Si C. Green Chemistry, 2018,20:1777.
[59]
Liu R, Dai L, Hu L Q, Zhou W Q, Si C L. Mater. Sci. Eng. C. Mater. Biol. Appl., 2017,80:397.

pmid: 28866180
[60]
Liu R, Dai L, Zou Z, Si C. Int. J. Biol. Macromol, 2018,119:1129. doi: 10.1016/j.ijbiomac.2018.08.040

pmid: 30098362
[61]
Ren W, Pan X, Wang G, Cheng W, Liu Y. Green Chemistry, 2016,18:5008.
[62]
Kai D, Ren W, Tian L, Chee P L, Liu Y, Ramakrishna S, Loh X J. ACS Sustainable Chemistry & Engineering, 2016,4:5268.
[63]
Chile L E, Kaser S J, Hatzikiriakos S G, Mehrkhodavandi P. ACS Sustainable Chemistry & Engineering, 2018,6:1650.
[64]
Dick A T, Couve J, Gimello O, Mas A, Robin J J. Polymer, 2017,118:280.
[65]
Olsén P, Jawerth M, Lawoko M, Johansson M, Berglund L A. Green Chemistry, 2019,21:2478.
[66]
Liu Y, Huang W, Zhu N, Guo K. RSC Advances, 2017,7:37412.
[67]
Liu Y, Zhu N, Hu X, Huang W, Wu J, Bin X, Qiu J, Duan J, Fang Z, Guo K. Chemical Engineering Science, 2020,211:115290.
[68]
Zhu N, Zhang Z, Feng W, Zeng Y, Li Z, Fang Z, Zhang K, Li Z, Guo K. RSC Advances, 2015,5:31554.
[69]
Zhu N, Huang W, Hu X, Liu Y, Fang Z, Guo K. Chemical Engineering Journal, 2018,333:43.
[70]
高晗(Gao H), 徐军(Xu J), 胡欣(Hu X), 朱宁(Zhu N), 郭凯(Guo K). 化学进展 (Progress in Chemistry), 2018,30:1634.
[71]
许茸(Xu R), 陈春霞(Cheng C X). 化学进展 (Progress in Chemistry), 2012,24:1519.
[72]
Matsushita Y, Inomata T, Takagi Y, Hasegawa T, Fukushima K. Journal of Wood Science, 2011,57:214.
[73]
Laurichesse S, Avérous L. Polymer, 2013,54:3882. doi: 10.1016/j.polymer.2013.05.054
[74]
Liu X, Zong E, Jiang J, Fu S, Wang J, Xu B, Li W, Lin X, Xu Y, Wang C, Chu F. Int. J. Biol. Macromol., 2015,81:521. doi: 10.1016/j.ijbiomac.2015.08.046

pmid: 26306414
[75]
Park I K, Sun H, Kim S H, Kim Y, Kim G E, Lee Y, Kim T, Choi H R, Suhr J, Nam J D. Sci. Rep, 2019,9:7033. doi: 10.1038/s41598-019-43296-2

pmid: 31065000
[76]
Jang S H, Kim D H, Park D H, Kim O Y, Hwang S H. Progress in Organic Coatings, 2018,120:234.
[77]
Abdollahi M, Bairami Habashi R, Mohsenpour M. Industrial Crops and Products, 2019,130:547.
[78]
Tian J, Yang Y, Song J. Int J Biol Macromol, 2019,141:919. doi: 10.1016/j.ijbiomac.2019.09.055

pmid: 31513856
[79]
Pérez-Camargo R A, Saenz G, Laurichesse S, Casas M T, Puiggalí J, Avérous L, Müller A J. Journal of Polymer Science Part B: Polymer Physics, 2015,53:1736.
[80]
Kim S H, Choi K, Choi H R, Kim T, Suhr J, Kim K J, Choi H J, Nam J D. ACS Omega, 2019,4:10036. doi: 10.1021/acsomega.9b01043

pmid: 31460096
[81]
Nadji H, Bruzzèse C, Belgacem M N, Benaboura A, Gandini A. Macromolecular Materials and Engineering, 2005,290:1009.
[82]
Schmidt B V K J, Molinari V, Esposito D, Tauer K, Antonietti M. Polymer, 2017,112:418.
[83]
Nemoto T, Konishi G I, Tojo Y, An Y C, Funaoka M. Journal of Applied Polymer Science, 2012,123:2636.
[84]
Mahata D, Jana M, Jana A, Mukherjee A, Mondal N, Saha T, Sen S, Nando G B, Mukhopadhyay C K, Chakraborty R, Mandal S M. Scientific Reports, 2017,7:46412.

pmid: 28401944
[85]
Duval A, Avérous L. ACS Sustainable Chemistry & Engineering, 2017,5:7334.
[86]
Kühnel I, Saake B, Lehnen R. Industrial Crops and Products, 2017,101:75.
[87]
Kai D, Chong H M, Chow L P, Jiang L, Lin Q, Zhang K, Zhang H, Zhang Z, Loh X J. Composites Science and Technology, 2018,158:26. doi: 10.1016/j.compscitech.2018.01.046
[1] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[2] Xiangyun Chen, Bing Yuan, Fengli Yu, Congxia Xie, Shitao Yu. Lignin: A Potential Source of Biomass-Based Catalysts [J]. Progress in Chemistry, 2021, 33(2): 303-317.
[3] Xiaozhen Ma, Qing Luo, Dongdong Qin, Jing Chen, Jin Zhu, Ning Yan. Lignin-Based Polyurethane [J]. Progress in Chemistry, 2020, 32(5): 617-626.
[4] Jinglin Zhai, Xin Hu, Chengkou Liu, Ning Zhu, Kai Guo. Grafting Modification of Lignin via Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2019, 31(9): 1293-1302.
[5] Jinxin Yi, Zhipeng Huo, Abdullah M. Asiri, Khalid A. Alamry, Jiaxing Li. Application of Agroforestry Waste Biomass Adsorption Materials in Water Pollution Treatment [J]. Progress in Chemistry, 2019, 31(5): 760-772.
[6] Fanfan Du, Ying Zheng, Guorong Shan, Yongzhong Bao, Suyun Jie*, Pengju Pan*. Hydrogen Bonding-Based Non-Metallic Organocatalysts for Ring-Opening Polymerization of Lactones [J]. Progress in Chemistry, 2018, 30(6): 710-718.
[7] Han Gao, Jun Xu, Xin Hu, Ning Zhu, Kai Guo. Synthesis of Poly(Ester Amide) [J]. Progress in Chemistry, 2018, 30(11): 1634-1645.
[8] Na Ji, Jingjing Song, Xinyong Diao, Chunfeng Song, Qingling Liu, Mingyuan Zheng. Transformation of Lignin and Its Model Compounds into Value-Added Chemicals Using Sulfide Catalysts [J]. Progress in Chemistry, 2017, 29(5): 563-578.
[9] Xiaojun Shen, Panli Huang, Jialong Wen, Runcang Sun. Research Status of Lignin Oxidative and Reductive Depolymerization [J]. Progress in Chemistry, 2017, 29(1): 162-178.
[10] Zhang Xinghua, Chen Lungang, Zhang Qi, Long Jinxing, Wang Tiejun, Ma Longlong. Production of Hydrocarbons via Hydrodeoxygenation of Lignin-Derived Phenolic Compounds [J]. Progress in Chemistry, 2014, 26(12): 1997-2006.
[11] Lu Yao, Wei Xianyong*, Zong Zhimin, Lu Yongchao, Zhao Wei, Cao Jingpei. Structural Investigation and Application of Lignins [J]. Progress in Chemistry, 2013, 25(05): 838-858.
[12] Xu Rong, Chen Chunxia. Ring-Opening Polymerization of ε-Caprolactone Catalyzed by Organocatalyst [J]. Progress in Chemistry, 2012, 24(08): 1519-1525.
[13] Li Guang, Bai Ruke. Synthesis of Azide Polymers [J]. Progress in Chemistry, 2011, 23(8): 1692-1699.
[14] Li Qizheng, Zhang Guoyi, Yuan Cong, Wei Liuhe, Ma Zhi. Synthesis and Application of Polyolefin/Polyester (Polyether) Copolymers [J]. Progress in Chemistry, 2011, 23(6): 1174-1180.
[15] . Synthesis of Well-Defined Polymers via Mechanism Transformation between Living Ring-Opening Polymerization and Controlled Free Radical Polymerization [J]. Progress in Chemistry, 2010, 22(09): 1799-1807.