中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (11): 1947-1952 DOI: 10.7536/PC201001 Previous Articles   Next Articles

• Review •

C—H Cyanoalkylation:the Direct C—H Cyanomethylation of Naphthalimide

Xi Chen, Zheyao Li, Yayun Chen, Zhihua Chen, Yan Hu, Chuanxiang Liu()   

  1. School of Chemical and Environmental Engineering, Shanghai Institute of Technology,Shanghai 201418, China
  • Received: Revised: Online: Published:
  • Contact: Chuanxiang Liu
  • Supported by:
    Natural Science Foundation of Shanghai(17ZR1429900); Opening Fund of Shanghai Key Laboratory of Chemical Biology.
Richhtml ( 58 ) PDF ( 403 ) Cited
Export

EndNote

Ris

BibTeX

The cyanoalkylation/cyanomethylation of organic molecules is of great research interest to organic and medicinal chemists due to the wide presence of the cyano group in biologically active molecules and the facile conversion of the cyano group into many other functional groups, such as amides, esters, aldehydes, and primary amines. Although a variety of different synthetic strategies have been developed for the selective introduction of the cyanomethyl group, an attractive approach is to use acetonitrile directly through C—H activation due to the highly efficient atom economy and the avoidance of prefunctionalization. Therefore, this review summarizes the main research progress in C—H cyanoalkylation/cyanomethylation of radical cyanomethylation, Photochemical Cross-coupling reaction, Cross-Dehydrogenative Coupling(CDC) Reaction, Directing group-promoted C—H cyanomethylation and Fluorophore C—H cyanomethylation reported by our group.

Contents

1 Introduction

2 Radical cyanomethylation of activated alkenes with acetonitrile

3 Photochemical cross-coupling reaction of alkene or aroma C(sp2)—H functionalization of acetonitrile

4 Cross-dehydrogenative coupling(CDC) reaction of aromatic ring C(sp2)—H functionalization of acetonitrile

5 Directing group-promoted C—H cyanomethylation

6 Conclusion and outlook

[1]
Mᶏkosza M. Chem. Soc. Rev., 2010, 39(8): 2855.

doi: 10.1039/b822559c
[2]
Rappoport Z.[M]. Chichester, UK: John Wiley & Sons, Ltd., 1970.
[3]
Dénès F, Pérez-Luna A, Chemla F. Chem. Rev., 2010, 110(4): 2366.

doi: 10.1021/cr800420x
[4]
Weiberth F J, Hall S S. J. Org. Chem., 1987, 52(17): 3901.

doi: 10.1021/jo00226a033
[5]
Trivedi B K, Holmes A, Stoeber T L, Blankley C J, Roark W H, Picard J A, Shaw M K, Essenburg A D, Stanfield R L, Krause B R. J. Med. Chem., 1993, 36(22): 3300.

pmid: 8230120
[6]
Culkin D A, Hartwig J F. Acc. Chem. Res., 2003, 36(4): 234.

doi: 10.1021/ar0201106
[7]
Chen G, Wang Z, Wu J, Ding K L. Org. Lett., 2008, 10(20): 4573.

doi: 10.1021/ol801812a
[8]
Narsaiah A, Nagaiah K. Adv. Synth. Catal., 2004, 346(11): 1271.

doi: 10.1002/(ISSN)1615-4169
[9]
Bacchi S, Stazi F, Maton W, Castoldi D, Westerduin P, Curcuruto O. Synthesis, 2010, 2010(19): 3332.

doi: 10.1055/s-0030-1257871
[10]
Yang Y Y, Tang S, Liu C, Zhang H M, Sun Z X, Lei A W. Org. Biomol. Chem., 2011, 9(15): 5343.

doi: 10.1039/c1ob05326d
[11]
Wu L Y, Hartwig J F. J. Am. Chem. Soc., 2005, 127(45): 15824.

doi: 10.1021/ja053027x
[12]
Shang R, Ji D S, Chu L, Fu Y, Liu L. Angew. Chem. Int. Ed., 2011, 50(19): 4470.

doi: 10.1002/anie.201006763
[13]
Lovato K, Guo L R, Xu Q L, Liu F T, Yousufuddin M, Ess D H, Kürti L, Gao H Y. Chem. Sci., 2018, 9(41): 7992.

doi: 10.1039/C8SC02758G
[14]
Dong Z, Wang J C, Dong G B. J. Am. Chem. Soc., 2015, 137(18): 5887.

doi: 10.1021/jacs.5b02809 pmid: 25909445
[15]
Cornella J, Righi M, Larrosa I. Angew. Chem. Int. Ed., 2011, 50(40): 9429.

doi: 10.1002/anie.v50.40
[16]
Wu T, Mu X, Liu G S. Angew. Chem. Int. Ed., 2011, 50(52): 12578.

doi: 10.1002/anie.201104575
[17]
Li J, Wang Z G, Wu N J, Gao G, You J S. Chem. Commun., 2014, 50(95): 15049.

doi: 10.1039/C4CC07667B
[18]
Li Z J, Xiao Y X, Liu Z Q. Chem. Commun., 2015, 51(49): 9969.

doi: 10.1039/C5CC02968F
[19]
Pan C D, Zhang H L, Zhu C J. Org. Biomol. Chem., 2015, 13(2): 361.

doi: 10.1039/C4OB02172J
[20]
Bunescu A, Wang Q, Zhu J P. Org. Lett., 2015, 17(8): 1890.

doi: 10.1021/acs.orglett.5b00571 pmid: 25825802
[21]
Chatalova-Sazepin C, Wang Q, Sammis G M, Zhu J P. Angew. Chem. Int. Ed., 2015, 54(18): 5443.

doi: 10.1002/anie.201412357
[22]
Liu Y Y, Yang X H, Song R J, Luo S L, Li J H. Nat. Commun., 2017, 8: 14720.

doi: 10.1038/ncomms14720 pmid: 28393864
[23]
Wang K C, Chen X, Yuan M, Yao M, Zhu H C, Xue Y B, Luo Z W, Zhang Y H. J. Org. Chem., 2018, 83(3): 1525.

doi: 10.1021/acs.joc.7b02585
[24]
Yoshida H, Fujimura Y, Yuzawa H, Kumagai J, Yoshida T. Chem. Commun., 2013, 49(36): 3793.

doi: 10.1039/c3cc41068d
[25]
Zhang J L, Liu Y, Song R J, Jiang G F, Li J H. Synlett., 2014, 25: 1031.

doi: 10.1055/s-00000083
[26]
Wada E, Takeuchi T, Fujimura Y, Tyagi A, Kato T, Yoshida H. Catal. Sci. Technol., 2017, 7(12): 2457.

doi: 10.1039/C7CY00365J
[27]
Liu Z Q, Li Z J. Chem. Commun., 2016, 52(99): 14278.

doi: 10.1039/C6CC08213K
[28]
Su H M, Wang L Y, Rao H H, Xu H. Org. Lett., 2017, 19(9): 2226.

doi: 10.1021/acs.orglett.7b00678
[29]
Zhang R X, Jin S Z, Liu Q, Lin S, Yan Z H. J. Org. Chem., 2018, 83(21): 13030.

doi: 10.1021/acs.joc.8b01508
[30]
Liu Y B, Yang K, Ge H B. Chem. Sci., 2016, 7(4): 2804.

doi: 10.1039/C5SC04066C
[31]
Qiao K, Zhang D, Zhang K, Yuan X, Zheng M W, Guo T F, Fang Z, Wan L, Guo K. Org. Chem. Front., 2018, 5(7): 1129.

doi: 10.1039/C7QO01086A
[32]
Davis R B, Pizzini L C. J. Org. Chem., 1960, 25(11): 1884.

doi: 10.1021/jo01081a015
[33]
Mᶏkosza M, Wojciechowski K. Chem. Rev., 2004, 104(5): 2631.

doi: 10.1021/cr020086+
[34]
Mᶏkosza M, Staliński K. Tetrahedron, 1998, 54(30): 8797.

doi: 10.1016/S0040-4020(98)00472-4
[35]
Chen J J, Liu C X, Zhang J L, Ding W, Zhou M, Wu F H. Chem. Commun., 2013, 49(92): 10814.

doi: 10.1039/c3cc46065g
[36]
Wu H W, Chen Y Y, Rao C H, Liu C X. Prog. Chem., 2016, 28(10): 1501.
(伍宏伟, 陈亚运, 饶才辉, 刘传祥. 化学进展, 2016, 28(10): 1501).
[37]
Duke R M, Veale E B, Pfeffer F M, Kruger P E, Gunnlaugsson T. Chem. Soc. Rev., 2010, 39(10): 3936.

doi: 10.1039/b910560n
[38]
Zhou L, Xie L J, Liu C H, Xiao Y. Chin. Chem. Lett., 2019, 30(10): 1799.

doi: 10.1016/j.cclet.2019.07.051
[39]
McDonald K P, Ramabhadran R O, Lee S, Raghavachari K, Flood A H. Org. Lett., 2011, 13(23): 6260.

doi: 10.1021/ol202729z pmid: 22054048
[40]
Xu Z C, Xiao Y, Qian X H, Cui J N, Cui D W. Org. Lett., 2005, 7(5): 889.

doi: 10.1021/ol0473445
[41]
Chen Y Y, Hu X X, Rao C H, Li Z Y, Chen L, Fu C, Liu C X. Anal., 2018, 143(19): 4655.

doi: 10.1039/C8AN00718G
[42]
Li Z Y, Rao C H, Chen L, Fu C, Zhu T T, Chen X, Liu C X. J. Org. Chem., 2019, 84(11): 7518.

doi: 10.1021/acs.joc.9b00904
[43]
Li Z Y, Rao C H, Chen L, Fu C, Zhu T T, Chen X, Liu C X. Dyes Pigments, 2020, 173: 107967.
[1] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[2] Wenyan Gao, Xuan Zhao, Xilin Zhou, Yaran Song, Qingrui Zhang. Strategies, Research Progress and Enlightenment of Enhancing the Heterogeneous Fenton Catalytic Reactivity: A Critical Review [J]. Progress in Chemistry, 2022, 34(5): 1191-1202.
[3] Fei Wu, Wei Ren, Cheng Cheng, Yan Wang, Heng Lin, Hui Zhang. Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water [J]. Progress in Chemistry, 2022, 34(4): 992-1010.
[4] Nan Wang, Yuqi Zhou, Ziye Jiang, Tianyu Lv, Jin Lin, Zhou Song, Lihua Zhu. Synergistically Consecutive Reduction and Oxidation of Per- and Poly-Halogenated Organic Pollutants [J]. Progress in Chemistry, 2022, 34(12): 2667-2685.
[5] Benzhan Zhu, Jing Zhang, Miao Tang, Chunhua Huang, Jie Shao. Mechanism Investigation on DNA Damage Induced by Carcinogenic Haloquinoid Disinfection Byproducts [J]. Progress in Chemistry, 2022, 34(1): 227-236.
[6] Jia Liu, Jun Shi, Kun Fu, Chao Ding, Sicheng Gong, Huiping Deng. Heterogeneous Catalytic Persulfate Oxidation of Organic Pollutants in the Aquatic Environment: Nonradical Mechanism [J]. Progress in Chemistry, 2021, 33(8): 1311-1322.
[7] Wenliang Han, Linyang Dong. Activation Methods of Advanced Oxidation Processes Based on Sulfate Radical and Their Applications in The Degradation of Organic Pollutants [J]. Progress in Chemistry, 2021, 33(8): 1426-1439.
[8] Huan Song, Qi Zou, Keding Lu. Parameterization and Application of Hydroperoxyl Radicals(HO2) Heterogeneous Uptake Coefficient [J]. Progress in Chemistry, 2021, 33(7): 1175-1187.
[9] Tingting Heng, Hui Zhang, Mingxue Chen, Xin Hu, Liang Fang, Chunhua Lu. Graft Modification of PVDF-Based Fluoropolymers [J]. Progress in Chemistry, 2021, 33(4): 596-609.
[10] Lianwei Sun, Zhonghe Sun, Xue Wang, Lin Xu, Anchao Feng, Liqun Zhang. Synthesis of Polyethylene and Polyhalogenated Olefin by Controlled/“Living” Radical Polymerization [J]. Progress in Chemistry, 2020, 32(6): 727-737.
[11] Ning Li, Xin Hu, Liang Fang, Jiahui Kou, Yaru Ni, Chunhua Lu. Organocatalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2019, 31(6): 791-799.
[12] Yandong Dou, Xiaoxu Gu, Jianze Jiang, Qing Zhu. Group-Directed C—H Functionalization [J]. Progress in Chemistry, 2018, 30(9): 1317-1329.
[13] Zhi Li, Houliang Tang, Anchao Feng, San H. Thang. Synthesis of Zwitterionic Polymers by Living/Controlled Radical Polymerization and Its Applications [J]. Progress in Chemistry, 2018, 30(8): 1097-1111.
[14] Xiao Zheng, Pei-Qiang Huang*. SmI2 and Titanocene-Mediated Coupling Reactions of α-Aminoalkyl Radicals and Applications to the Synthesis of Aza-Heterocycles [J]. Progress in Chemistry, 2018, 30(5): 528-546.
[15] Chuqiang Que, Ning Chen*, Jiaxi Xu*. Application of Carbamates in the C—H Bond Activation [J]. Progress in Chemistry, 2018, 30(2/3): 139-155.