中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (9): 1317-1329 DOI: 10.7536/PC180206 Previous Articles   Next Articles

• Review •

Group-Directed C—H Functionalization

Yandong Dou1,2, Xiaoxu Gu2, Jianze Jiang2, Qing Zhu1,2*   

  1. 1. Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Hangzhou 310032, China;
    2. College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21472172) and the Zhejiang University Student Science and Technology Innovation Program (Xin Miao Talent Program)(No. 2017R403052).
PDF ( 2014 ) Cited
Export

EndNote

Ris

BibTeX

Transition-metal-catalyzed C—H bond activation is currently one of the most extensively studied research topics in organic synthesis. Recently, the directing group assisted C—H functionlization has drawn more attention from the researchers. The directing groups could enhance the reactive speed, selectivity and catalysis efficiency, which usually contain the nitrogen or oxygen atom. The review aims to summarize the methods of construction of C-C bond, C-O bond or C—N bond by C—H bond activation via introducing a directing group, including carboxyl, pyridnyl groups and so on during the past 3 years. The reaction mechanisms, the existing problems and limitations of this field are also included in this review. Finally, the development trend of this area is prospected.
Contents
1 Introduction
2 Recent advances in directing group C—H activation
2.1 Nitrogen-containing groups as the directing group
2.2 Oxygen-containing groups as the directing group
3 Conclusion

CLC Number: 

[1] a) Qin Y, Zhu L H, Luo S Z. Chem. Rev., 2017, 117:9433; b) Wei Y, Hu P, Zhang M, Su W P. Chem. Rev., 2017, 117:8864
[2] Kawasaki Y, Ishikawa Y, Igawa K, Tomooka K. J. Am. Chem. Soc., 2011, 133:20712
[3] Wang P, Verma P, Xia G, Shi J, Qiao J X, Tao S, Cheng P T W, Poss M A, Farmer M E, Yeung K S, Yu J Q. Nature, 2017, 551:489.
[4] Wu X F, Anbrarasan P, Neumannr H, Beller M. Angew. Chem. Int. Ed., 2010, 49:7316.
[5] Arockiam P B, Bruneau C, Dixneuf P H. Chem. Rev., 2012, 112:5879.
[6] Satoh T, Kawamura Y, Miura M, Nomura M. Angew. Chem. Int. Ed., 1997, 36:1740.
[7] a) Mei T S, Giri R, Maugel N, Yu J Q. Angew. Chem. Int. Ed., 2008, 47:5215; b) Chen X, Hao X S, Goodhue C E, Yu J Q. J. Am. Chem. Soc., 2006, 128:6790.
[8] Tang C H, Jiao N. J. Am. Chem. Soc., 2012, 134:18924.
[9] Fang H, Dou Y D, Ge J Y, Chhabra M, Sun H, Zhang P, Zheng Y G, Zhu Q. J. Org. Chem., 2017, 82:11212.
[10] a) Halima T B, Vandavasi J K, Shkoor M, Newman S G. ACS Catal., 2017, 7:2176; b) Wang J Q, He J, Zhi C, Luo B, Li X M, Pan Y, Cao X Q, Gu H W. RSC Adv., 2014, 4:16607.
[11] a) Xie F, Qi Z S, Li X W. Angew. Chem. Int. Ed., 2013, 52:11862; b) Saidi O, Marafie J, Ledger A E W, Liu P M, Mahon M F, Kohn G K, Whittlesey M K, Frost C G. J. Am. Chem. Soc. 2011, 133:19298; c) Stowers K J, Sanford M S. Org. Lett., 2009, 11:4584.
[12] Lou S J, Chen Q, Wang Y F, Xu D Q, Du X H, He J Q, Mao Y J, Xu Z Y. ACS Catal., 2015, 5:2846.
[13] Wang Z, Kuninobu Y, Kanai M. J. Am. Chem. Soc., 2015, 137:6140.
[14] Pawar G G, Brahmanandan A, Kapur M. Org. Lett., 2016, 18:448.
[15] Ravi M, Allu S, Swamy K C K. J. Org. Chem., 2017, 82:2355.
[16] Xu Y W, Zhou X K, Zheng G F, Li X W. Org. Lett., 2017, 19, 5256.
[17] Zhang G F, Li Y, Xie X Q, Ding C R. Org. Lett., 2017, 19:1216.
[18] McAteer D C, Javed E, Huo L, Huo S. Org. Lett., 2017, 19:1606.
[19] a) Liu B X, Li B, Wang B Q. Chem. Commun., 2015, 51:16334; b) Wang X, Qiu R H, Yan C Y, Reddy V P, Zhu L Z, Xu X H, Yin S F. Org. Lett., 2015, 17:1970; c) Yan S B, Zhang S, Duan W L. Org. Lett., 2015, 17:2458; d) Yan Q Q, Chen Z K, Yu W L, Yin H, Liu Z X, Zhang Y H. Org. Lett., 2015, 17:2482.
[20] Seuss A M, Ertem M Z, Cramer C J, Stahl S S. J. Am. Chem. Soc., 2013, 135:9797.
[21] Qiao H, Sun S Y, Yang F, Zhu Y, Zhu W G, Dong Y, Wu Y S, Kong X T, Jiang L, Wu Y J. Org. Lett., 2015, 17:6086.
[22] Wei J, Jiang J X, Xiao X S, Lin D E, Deng Y F, Ke Z F, Jiang W, Zeng W. J. Org. Chem., 2016, 81:946.
[23] Liu X G, Xu J, Shen C, Zhu X L, Zhang P F, Ajitha M J, Huang K W, An Z F. Chem. Asian J., 2016, 11:882.
[24] Wang Z, Kuninobu Y, Kanai M. Org. Lett., 2014, 16:4790.
[25] Tan Z, Zhu G G. Chem. Commoun., 2016, 52:6845.
[26] Takamatsu D, Hirano K, Miura M. Org. Lett., 2015, 17:4066.
[27] Dou Y D, Xie Z D, Sun Z G, Fang H L, Shen C, Zhang P F, Zhu Q. ChemCatChem., 2016, 8:3570.
[28] Lang K, Davis L, Wallace S, Mahesh M, Cox D J, Blackman M L, Fox J M, Chin J W. J. Am. Chem. Soc., 2012, 134:10317.
[29] Lemieux G A, Graffenried C L, Bertozzi C R. J. Am. Chem. Soc., 2003, 125:4708.
[30] Testa C, Gigot E, Genc S, Decrau R, Roger J, Hierso J. Angew. Chem., 2016, 128:5645.
[31] Mboyi C D, Testa C, Reeb S, Genc S, Cattey H, Lessard P F, Roger J, Hierso J C. ACS Catal., 2017, 7:8493.
[32] Peng Z H, Yu Z, Li T, Li N, Wang Y L, Song L H, Jiang C Y. Organometallics., 2017, 36:2826.
[33] a) Krajcovicova S, Soural M. ACS Comb. Sci., 2016, 18:371; b) Zhou L H, Zhang H W, Tao S J, Ehteshami M, Cho J H, McBrayer T R, Tharnish P, Whitaker T, Amblard F, Coats S J, Schinaz R F, ACS Med. Chem. Lett., 2016, 7:17; c) Keough D T, Adams T S, Jones M K, Brereton M, Guddat L W, Jersey J, J. Med. Chem., 2006, 49:7479.
[34] Guo H M, Jiang L L, Niu H Y, Rao W H, Liang L, Mao R Z, Li D Y, Qu G R. Org. Lett., 2011, 13:2008.
[35] Kim H J, Ajitha M J, Lee Y, Ryu J, Kim J, Lee Y, Jung Y, Chang S. J. Am. Chem. Soc., 2014, 136:1132.
[36] Yu M Y, Wang Z Q, Tian M, Lu C H, Li S L, Du H G. J. Org. Chem., 2016, 81:3435.
[37] Ruan Z, Lackner S, Ackermann L. ACS Catal., 2016, 6:4690.
[38] Warratz S, Burns D J, Zhu C, Korvorapun K, Rogge T, Scholz J, Jooss C, Gelman D, Ackermann L. Angew. Chem. Int. Ed., 2017, 56:1557.
[39] Bettadapur K R, Lanke V, Ramaiah P K. Org. Lett. 2015, 17:4658.
[40] Potter T J, Kamber D N, Mercado B Q, Ellman J A. ACS Catal., 2017, 7:150.
[41] Xu J C, Liu Y, Wang Y, Li Y J, Xu X H, Jin Z. Org. Lett., 2017, 19:1562.
[42] Hoque M E, Bisht R, Haldar C, Chattopadhyay B. J. Am. Chem. Soc., 2017, 139:7745.
[43] Sato T, Yoshida T, Mamari H H A, Ilies L, Nakamura E. Org. Lett., 2017, 19:5458.
[44] Cheng H C, Hernandez J G, Bolm C. Org. Lett., 2017, 19:6284.
[45] a) Miao J M, Yang K, Kurek M, Ge H B. Org. Lett., 2015, 17:3738; b)He J, Takise R, Fu H Y, Yu J Q. J. Am. Chem. Soc., 2015, 137:4618.
[46] Zhu R Y, Denis T G S, Shao Y, He J, Sieber J D, Senanayake C H, Yu J Q. J. Am. Chem. Soc., 2017, 139:5724.
[47] Zhu C L, Zhang Y F, Kan J, Zhao H Q, Su W P. Org. Lett., 2015, 17:3418.
[48] Biafora A, Krause T, Hackenberger D, Belitz F, Goossen L J, Angew. Chem. Int. Ed., 2016, 55:14752.
[49] Mei R, Zhang S K, Ackermann L. Org. Lett., 2017, 19:3171.
[50] Mandal A, Dana S, Sahoo H, Sankar G, Baidya G M. Org. Lett., 2017, 19:2430.
[51] Aman A, Wulff W D. Synthesis, 2010, 21:3670.
[52] Zhao Y T, Huang B B, Yang C, Li B, Gou B Q, Xia W J. ACS Catal., 2017, 7:2446.
[53] Tan E, Konovalov A I, Fernandez G A, Dorel R, Echavarren A M. Org. Lett., 2017, 19:5561
[54] a) Putro W S, Kojima T, Hara T, Ichikuni N, Shimazu S. Catal. Sci. Technol., 2017, 7:3637; b) Yu H, Ru S, Dai G Y, Zhai Y Y, Lin H L, Han S, Wei Y G. Angew. Chem. Int. Ed., 2017, 56:3867.
[55] Bisht R, Chattopadhyay B. J. Am. Chem. Soc., 2016, 138:84.
[56] Zhang F L, Hong K, Li T J, Park H, Yu J Q. Science, 2016, 351:252.
[57] Liu X H, Park H, Hu J H, Hu Y, Zhang Q L, Wang B L, Sun B, Yeung K S, Zhang F L, Yu J Q. J. Am. Chem. Soc., 2017, 139:888.
[58] Ma F, Lei M, Hu L H. Org. Lett., 2016, 18:2708.
[59] Yang F Z, Rauch K, Kettelhoit K, Ackermann L. Angew. Chem. Int. Ed., 2014, 53:11285.
[60] Chen X Y, Ozturk S, Sorensen E J. Org. Lett., 2017, 19:6280.
[61] Yang K, Li Q, Liu Y B, Li G G, Ge H B. J. Am. Chem. Soc., 2016, 138:12775.
[1] Xi Chen, Zheyao Li, Yayun Chen, Zhihua Chen, Yan Hu, Chuanxiang Liu. C—H Cyanoalkylation:the Direct C—H Cyanomethylation of Naphthalimide [J]. Progress in Chemistry, 2021, 33(11): 1947-1952.
[2] Chaojiang Fan, Yinglin Yan, Liping Chen, Shiyu Chen, Jiaming Lin, Rong Yang. Transition-Metal Sulfides Modified Cathode of Li-S Batteries [J]. Progress in Chemistry, 2019, 31(8): 1166-1176.
[3] Lixin Dai*. Ullmann Reaction,A Centennial Memory and Recent Renaissance——Related Formation of Carbon-Heteroatom Bond [J]. Progress in Chemistry, 2018, 30(9): 1257-1297.
[4] Qi Yang, Kunbing Ouyang, Liang Liu, Zhenfeng Xi. Me3Si(TMS) Chemistry: Transition-Metal Catalyzed Activation and Utilization of C(sp3)-Si Bond [J]. Progress in Chemistry, 2018, 30(5): 513-527.
[5] Chuqiang Que, Ning Chen*, Jiaxi Xu*. Application of Carbamates in the C—H Bond Activation [J]. Progress in Chemistry, 2018, 30(2/3): 139-155.
[6] Yandong Dou, Shasha Ying, Chenqing Zhang, Liyang Yu, Ken Zheng, Qing Zhu*. Recent Advances in C-H Azidation Catalyzed by Metals [J]. Progress in Chemistry, 2017, 29(2/3): 293-299.
[7] Ma Xuelu, Lei Ming. Dinitrogen Fixation Activated by Binuclear Transition-Metal Complexes [J]. Progress in Chemistry, 2013, 25(08): 1325-1333.
[8] Zhang Bianxiang*, Zhao Xiaoyun, Wu Qun, Guo Yili. Application of Diaryliodonium Salts in Arylation Reaction [J]. Progress in Chemistry, 2013, 25(07): 1142-1148.
[9] Weng Jianquan, Yu Zhiqin, Zhang Guofu. Direct Oxidative Coupling Between Unfunctionalized Arene and Olefin [J]. Progress in Chemistry, 2012, 24(04): 523-544.
[10] Chen Xin, Zhang Naiqing, Sun Kening. 3d Transition-Metal Oxides as Anode Micro/Nano-Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2011, 23(10): 2045-2054.
[11] . Synthesis of Pyridine Derivatives via Transition Metal-Catalyzed [2 + 2 + 2] Cycloaddition [J]. Progress in Chemistry, 2010, 22(04): 610-630.
[12] Wang Yan Tao Zhanliang Chen Jun. Mg-Based Transition-Metal Complex Hydrides with 18-Electronic Structure [J]. Progress in Chemistry, 2010, 22(01): 234-240.
[13] Li Xuqin Liu An. Inspiration from Protecting-Group-Free Synthesis [J]. Progress in Chemistry, 2010, 22(01): 81-90.
[14] Li Cailin Chen Yungui Wu Chaoling Zhou Jingjing PangLijuan. Theoretical and Experimental Studies on Metal-Carbon-Based Materials for Hydrogen Storage [J]. Progress in Chemistry, 2009, 21(6): 1101-1106.
[15] Zhang Xiaowen1,2 Yin Shuangfeng1** Wu Shuisheng1 Dai Weili1 Li Wensheng1 Zhou Xiaoping1**. Organobismuth Chemistry in the Past Decade [J]. Progress in Chemistry, 2008, 20(06): 878-886.
Viewed
Full text


Abstract

Group-Directed C—H Functionalization