中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (2/3): 139-155 DOI: 10.7536/PC170919 Previous Articles   Next Articles

• Review •

Application of Carbamates in the C—H Bond Activation

Chuqiang Que, Ning Chen*, Jiaxi Xu*   

  1. State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, Faculty of Science, Beijing University of Chemical Technology, Beijing 100029, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21702014, 21572017, 21772010) and the National Key Basic Research Program(973) of China(No.2013CB328905).
PDF ( 1580 ) Cited
Export

EndNote

Ris

BibTeX

Carbamates widely exist in natural products, drugs and pesticides, and have also been utilized as directing groups in the C-H bond activation. Generally, in the presence of transition metals, the carbamate group can selectively direct the ortho C-H bond activation of substrates to realize the coupling approaches with various coupling reagents through metal-bearing six-membered ring intermediates. The application of carbamates in the C-H bond activation reactions has been systematically summarized, including:(1) sp2 C-H bond activation and functionalization of N-aryl carbamates, and aryl carbamates under the catalysis of Pd, Rh, Ru, or Ir to afford the corresponding halogenation, arylation, cyclization, and alkenylation products;(2) sp2 C-H bond activation and functionalization of alkenyl carbamates in the presence of Rh to afford the corresponding alkenylation and allylation products;(3) sp3 C-H bond activation and functionalization of N-dialkyl carbamates in the presence of Pd, Cu, Fe or even the transition-metal-free conditions to afford the acetoxylation, alkylation or arylation products. During the aromatic sp2 C-H bond activation approaches, both electronic and steric effects control the reaction yields and regioselectivities. In most cases, substrates bearing electron donating and less steric hindrance groups show better reactivity. Moreover, owing to the high activity of vicinal position of amines, the C-H functionalization of benzylamine, tetrahydroisoquinolines or 1,2-dihydroquinoline, bearing N-alkoxycarbonyl, can be carried out under the catalysis of copper, iron, or even the transition-metal-free conditions, some of which can also show high enantioselectivity through the asymmetric induction. The review can provide some guidance to promote the further development and application of carbamates in C-H bond activation reactions.
Contents
1 Introduction
2 Ortho-directed sp2 C-H bond activation reactions of N-aryl carbamates
2.1 Pd-catalyzed reactions
2.2 Rh-catalyzed reactions
2.3 Ru-catalyzed reactions
2.4 Ir-catalyzed reactions
3 Ortho-directed sp2 C-H bond activation reactions of aryl carbamates
3.1 Pd-catalyzed reactions
3.2 Rh-catalyzed reactions
3.3 Ru-catalyzed reactions
3.4 Ir-catalyzed reactions
4 Ortho-directed sp2 C-H bond activation reactions of N-alkenyl carbamates and alkenyl carbamates
5 Directing sp3 C-H bond activation reactions of N-dialkyl carbamates
6 Non-directing sp3 C-H bond activation reactions of N-dialkyl carbamates
7 Conclusion

CLC Number: 

[1] Negishi E I. Angew. Chem. Int. Ed., 2011, 50:6738.
[2] Suzuki A. Angew. Chem. Int. Ed., 2011, 50:6722.
[3] Meijere A D, Diederich F. Metal-Catalyzed Cross-Coupling Reactions. 2nd ed., Weinheim:Wiley-VCH, 2004.
[4] 胡兴邦(Hu X B), 李浩然(Li H R). 化学进展(Prog. Chem.), 2009, 21:577.
[5] Gensch T, Hopkinson M N, Glorius F, Wencel-Delord J. Chem. Soc. Rev., 2016, 45:2900.
[6] Wencel-Delord J, Dröger T, Liu F, Glorius F. Chem. Soc. Rev., 2011, 40:4740.
[7] Chen Z K, Wang B J, Zhang J T, Yu W L, Liu Z X, Zhang Y H. Org. Chem. Front., 2015, 2:1107.
[8] Ping L, Chung D S, Bouffard J, Lee S G. Chem. Soc. Rev., 2017, 46:4299.
[9] Eagle K M, Mei T S, Wasa M, Yu J Q. Acc. Chem. Res., 2012, 45:788.
[10] Leow D, Li G, Mei T S, Yu J Q. Nature, 2012, 486:518.
[11] Matthews G. The Pesticide Manual. 11th ed., Croydon:British Crop Production Council, 1998.
[12] Alizadeh B H, Sugiyama T, Oritani T, Kuwahara S. Biosci. Biotechnol. Biochem., 2002, 66:422.
[13] Snieckus V. Chem. Rev., 1990, 90:879.
[14] 沈金海(Shen J H), 程国林(Chen G L), 崔秀灵(Cui X L). 化学进展(Prog. Chem.), 2012, 24:1324.
[15] Topczewski J J, Sanford M S. Chem. Sci., 2015, 6:70.
[16] Song G Y, Wang F, Li X W. Chem. Soc. Rev., 2012, 41:3651.
[17] Colby D A, Bergman R G, Ellman J A. Chem. Rev., 2010, 110:624.
[18] Arockiam P B, Bruneau C, Dixneuf P H. Chem. Rev., 2012, 112:5879.
[19] Dong Z, Ren Z, Thompson S J, Xu Y, Dong G B. Chem. Rev., 2017, 117:9333.
[20] Han Y F, Jin G X. Chem. Soc. Rev., 2014, 43:2799.
[21] 邢其毅(Xing Q Y), 裴伟伟(Pei W W), 徐瑞秋(Xu R Q), 裴坚(Pei J). 基础有机化学(Basic Organic Chemistry). 北京:高等教育出版社(Beijing:Higher Education Press), 2005.
[22] 周励宏(Zhou L H), 陆文军(Lu W J). 化学学报(Acta Chim. Sin.), 2015, 73:1250.
[23] Uhlig N, Li C J. Chem. -Eur. J., 2014, 20:12066.
[24] Moghaddam F M, Tavakoli G, Saeednia B, Langer P, Jafari B. J. Org. Chem., 2016, 81:3868.
[25] Yang L, Fu L, Li G. Adv. Synth. Catal., 2017, 359:2235.
[26] Morita T, Satoh T, Miura M. Org. Lett., 2017, 19:1800.
[27] Cartney D M, Guiry P J. Chem. Soc. Rev., 2011, 40:5122.
[28] Haridharan R, Muralirajan K, Cheng C H. Adv. Synth. Catal., 2015, 357:366.
[29] Zhang X, Si W L, Bao M, Asao N, Yamamoto Y, Jin T N. Org. Lett., 2014, 16:4830.
[30] Zhou B, Yang Y X, Tang H Y, Du J J, Feng H J, Li Y C. Org. Lett., 2014, 16:3900.
[31] Leitch J A, Wilson P B, McMullin C L, Mahon M F, Bhonoah Y, Williams I H, Frost C G. ACS Catal., 2016, 6:5520.
[32] Kallepalli V A, Shi F, Paul S, Onyeozili E N, Maleczka R E, Smith M R. J. Org. Chem., 2009, 74:9199.
[33] Bedford R B, Mitchell C J, Webster R L. Chem. Comm., 2010, 46:3095.
[34] John A, Nicholas K M. J. Org. Chem., 2012, 77:5600.
[35] Sun X Y, Sun Y H, Zhang C, Rao Y. Chem. Comm., 2014, 50:1262.
[36] Sun X Y, Yao X, Zhang C, Rao Y. Chem. Comm., 2015, 51:10014.
[37] Bedford R B, Webster R L, Mitchell C J. Org. Biomol. Chem., 2009, 7:4853.
[38] Zhao X D, Yeung C S, Dong V M. J. Am. Chem. Soc., 2010, 132:5837.
[39] Bedford R B, Brenner P B, Durrant S J, Gallagher T, Méndez-Gálvez C, Montgomery M. J. Org. Chem., 2016, 81:3473.
[40] Yang X L, Sun Y H, Chen Z, Rao Y. Adv. Synth. Catal., 2014, 356:1625.
[41] Gong T J, Xiao B, Liu Z J, Wan J, Xu J, Luo D F, Fu Y, Liu L. Org. Lett., 2011, 13:3235.
[42] Feng C, Loh T P. Chem. Comm., 2011, 47:10458.
[43] Srimani D, Bej A, Sarkar A. J. Org. Chem., 2010, 75:4296.
[44] Schröder N, Wencel-Delord J, Glorius F. J. Am. Chem. Soc., 2012, 134:8298.
[45] Li B, Ma J F, Liang Y J, Wang N C, Xu S S, Song H B, Wang B Q. Eur. J. Org. Chem., 2013,(10):1950.
[46] Li J, Kornhaaß C, Ackermann L. Chem. Comm., 2012, 48:11343.
[47] Reddy M C, Jeganmohan M. Chem. Comm., 2013, 49:481.
[48] Liu W P, Ackermann L. Org. Lett., 2013, 15:3484.
[49] Bartels B, Helmchen G. Chem. Comm., 1999,(8):741.
[50] Mkhalid I A I, Barnard J H, Marder T B, Murphy J M, Hartwig J F. Chem. Rev., 2010, 110:890.
[51] Fuji K, Kinoshita N, Kawabata T, Tanaka K. Chem. Comm., 1999,(22):2289.
[52] Yamazaki K, Kawamorita S, Ohmiya H, Sawamura M. Org. Lett., 2010, 12:3978.
[53] Gong T J, Su W, Liu Z J, Cheng W M, Xiao B, Fu Y. Org. Lett., 2014, 16:330.
[54] Sharma S, Han S H, Oh Y, Mishra N K, Han S, Kwak J H, Lee S Y, Jung Y H, Kim I S. J. Org. Chem., 2016, 81:2243.
[55] Wang D H, Hao X S, Wu D F, Yu J Q. Org. Lett., 2006, 8:3387.
[56] Li Z P, Bohle D S, Li C J. Proc. Natl. Acad. Sci., 2006, 103:8928.
[57] Li Z P, Li C J. J. Am. Chem. Soc., 2005, 127:3672.
[58] 郭兴伟(Guo X W), 李志平(Li Z P), 李朝军(Li C J). 化学进展(Prog. Chem.), 2010, 22:1434.
[59] Ghobrial M, Harhammer K, Mihovilovic M D, Schnürch M. Chem. Comm., 2010, 46:8836.
[60] Richter H, Mancheño O G. Eur. J. Org. Chem., 2010,(23):4460.
[61] Richter H, Fröhlich R, Daniliuc C G, Mancheño O G. Angew. Chem. Int. Ed., 2012, 51:8656.
[62] Xie Z Y, Liu L, Chen W F, Zheng H B, Xu Q Q, Yuan H Q, Lou H X. Angew. Chem. Int. Ed., 2014, 53:3904.
[63] Liu X G, Sun S T, Meng Z L, Lou H X, Liu L. Org. Lett., 2015, 17:2396.
[64] Sun S T, Li C K, Floreancig P E, Lou H X, Liu L. Org. Lett., 2015, 17:1684.
[65] Xie Z Y, Zan X, Sun S T, Pan X H, Liu L. Org. Lett., 2016, 18:3944.
[66] Yan C C, Liu Y X, Wang Q M. RSC Adv., 2014, 4:60075.
[67] Yan C C, Li L L, Liu Y X, Wang Q M. Org. Lett., 2016, 18:4686.
[68] Liu Z Q, Chen L, Li J, Liu K, Zhao J Q, Xu M M, Feng L, Wan R Z, Li W, Liu L. Org. Biomol. Chem., 2017, 15:7600.
[1] Xi Chen, Zheyao Li, Yayun Chen, Zhihua Chen, Yan Hu, Chuanxiang Liu. C—H Cyanoalkylation:the Direct C—H Cyanomethylation of Naphthalimide [J]. Progress in Chemistry, 2021, 33(11): 1947-1952.
[2] Yandong Dou, Xiaoxu Gu, Jianze Jiang, Qing Zhu. Group-Directed C—H Functionalization [J]. Progress in Chemistry, 2018, 30(9): 1317-1329.
[3] Li Xuqin Liu An. Inspiration from Protecting-Group-Free Synthesis [J]. Progress in Chemistry, 2010, 22(01): 81-90.
[4] Zhang Xiaopeng1,2 Jing Huanzhi1 Miao Jianghuan1 Lu Shiwei2**. Advances in the Synthesis of Thiocarbamates [J]. Progress in Chemistry, 2008, 20(0708): 1102-1107.
[5] Shi Feng,Zhou hancheng,Chen nan,Zhang Qinghua,Deng Youquan**. Recent Development in Catalytic Carbonylation of Nitrogen Containing Compounds [J]. Progress in Chemistry, 2004, 16(06): 940-.