中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (7): 1175-1187 DOI: 10.7536/PC200749 Previous Articles   Next Articles

• Review •

Parameterization and Application of Hydroperoxyl Radicals(HO2) Heterogeneous Uptake Coefficient

Huan Song, Qi Zou, Keding Lu*()   

  1. College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
  • Received: Revised: Online: Published:
  • Contact: Keding Lu
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Natural Science Foundation of China(21976006); National Natural Science Foundation of China(91844301)
Richhtml ( 24 ) PDF ( 607 ) Cited
Export

EndNote

Ris

BibTeX

The heterogeneous uptake reactions of hydroperoxyl radicals(HO2) on ambient atmospheric aerosols have been proposed to be a significant sink of HO2 radicals, thus could influence the atmospheric oxidation capacity and properties of atmospheric particles. The quantitative description of the heterogeneous reaction process of HO2 is of great significance to the exploration of atmospheric oxidation and ozone generation capacity in different regions. The HO2 uptake coefficients measured by different research groups can differ by 3 to 5 orders of magnitude. Exploration of the heterogeneous uptake mechanism of HO2 radical on different types of aerosols under different conditions, accurately parameterized expression of the uptake coefficient is the key to quantifying its environmental impacts. This article introduces the mechanism and parameterized expressions of HO2 heterogeneous uptake, reviews the existing research results and progress, summarizes and analyzes the different influencing factors, and makes suggestions and prospects for the future development.

Contents

1 Introduction

2 Research progress of HO2 radical heterogeneous reaction

3 Measurements of $\gamma_{HO_{2}}$ with aerosol particles

4 Factors influencing HO2 heterogeneous uptake

4.1 Effects of relative humidity and temperature on HO2 heterogeneous uptake

4.2 Promoting effect of transition metal ions on $\gamma_{HO_{2}}$

4.3 Effects of reaction time and initial HO2 concentration on $\gamma_{HO_{2}}$

4.4 Effect of aerosol pH on $\gamma_{HO_{2}}$

5 Parameterized expressions of HO2 heterogeneous uptake

5.1 Expression and characteristic time of each sub-step of heterogeneous reaction

5.2 Resistance model

5.3 Application of empirical equations of $\gamma_{HO_{2}}$ in the model

6 Conclusion

Fig. 1 Measurement results of heterogeneous uptake coefficients of different media and HO2. SS is the liquid surface[28,29,17], TF is the thin film[30⇓~32], DA is the mineral aerosol[23,27,33], DIA is the dry inorganic aerosol[34⇓~36], WIA is the wet inorganic aerosol[34⇓⇓~37], OA is the organic aerosol[23,24,38,39], Cu-SA is the sulfate aerosol containing copper ion[12,34,35,37,40], Cu-CA is a chloride aerosol coupled with copper ions[34,36], EDTA/Cu is an EDTA aerosol coupled with copper ions[40], and OxA/Cu is an oxalic acid aerosol coupled with copper ions[40]. It can be seen from the figure that the uptake coefficient of HO2 varies with different reaction media. The median uptake coefficient of media without copper ions is generally between 0.01 and 0.8. EDTA and oxalic acid can reduce the heterogeneous uptake of HO2. The uptake coefficient of other organic aerosols is not significantly different from that of inorganic aerosols. The heterogeneous uptake coefficient of HO2 containing copper ions is generally higher than the accumulation coefficient.
Fig. 2 The relationship between the HO2 second-order rate constant of self-reaction in the liquid phase and the pH. Without considering the effects of transition metals, nitrogen oxides, organics and other substances, the liquid-phase chemical reaction between the liquid-phase hydroxide reactant and HO2 is affected by pH, which peaks at 4 to 5, and then drops rapidly.
Fig. 3 Schematic diagram of mass transfer process in gas-liquid heterogeneous reaction
Table 1 Summary of empirical equations for γ H O 2 on different aerosol surfaces[69]
[1]
Levy H II. J. Geophys. Res., 1973, 78(24):5325.
[2]
Chameides W L, Davis D D. J. Geophys. Res., 1982, 87(C7):4863.
[3]
Li K, Jacob D J, Liao H, Shen L, Zhang Q, Bates K H. PNAS, 2019, 116(2):422.

doi: 10.1073/pnas.1812168116
[4]
Penkett S A. Nat. Phys. Sci., 1972, 240(101):105.

doi: 10.1038/physci240105a0
[5]
Zika R G, Saltzman E S. Geophys. Res. Lett., 1982, 9(3):231.

doi: 10.1029/GL009i003p00231
[6]
William L C, Douglas D D. Chem. Eng. News Archive, 1982, 60(40):38.
[7]
Graedel T E, Mandich M L, Weschler C J. J. Geophys. Res., 1986, 91(D4):5205.
[8]
Schwartz S E. J. Geophys. Res., 1984, 89(D7):11589.
[9]
Fuchs N A, Sutugin A G. Topics in Current Aerosol Research. Amsterdam: Elsevier, 1971: 1.
[10]
Bielski B H J, Cabelli D E, Arudi R L, Ross A B. J. Phys. Chem. Ref. Data, 1985, 14(4):1041.

doi: 10.1063/1.555739
[11]
Schwartz S A, Meyer G A. Spectrochimica Acta B: At. Spectrosc., 1986, 41(12):1287.
[12]
Mozurkewich M, McMurry P H, Gupta A, Calvert J G. J. Geophys. Res., 1987, 92(D4):4163.
[13]
Ross H B, Noone K J. J. Atmos. Chem., 1991, 12(2):121.

doi: 10.1007/BF00115775
[14]
Hanson D R, Ravishankara A R, Solomon S. J. Geophys. Res., 1994, 99(D2):3615.
[15]
Danckwerts P V. Trans. Faraday Soc., 1951, 47:1014.

doi: 10.1039/tf9514701014
[16]
Danckwerts P V, Lannus A. J. Electrochem. Soc., 1970, 117(10):369C.
[17]
Cooper P L, Abbatt J P D. J. Phys. Chem., 1996, 100(6):2249.

doi: 10.1021/jp952142z
[18]
Sander R. Surv. Geophys., 1999, 20(1):1.

doi: 10.1023/A:1006501706704
[19]
Jacob D. Atmos. Environ., 2000, 34(12/14):2131.

doi: 10.1016/S1352-2310(99)00462-8
[20]
Mao J, Fan S, Jacob D J, Travis K R. Atmos. Chem. Phys., 2013, 13(2):509.

doi: 10.5194/acp-13-509-2013
[21]
de Reus M, Fischer H, Sander R, Gros V, Kormann R, Salisbury G, van Dingenen R, Williams J, Zöllner M, Lelieveld J. Atmos. Chem. Phys., 2005, 5(7):1787.

doi: 10.5194/acp-5-1787-2005
[22]
Mao J, Jacob D J, Evans M J, Olson J R, Ren X, Brune W H, Clair J M S, Crounse J D, Spencer K M, Beaver M R, Wennberg P O, Cubison M J, Jimenez J L, Fried A, Weibring P, Walega J G, Hall S R, Weinheimer A J, Cohen R C, Chen G, Crawford J H, McNaughton C, Clarke A D, Jaeglé L, Fisher J A, Yantosca R M, Le Sager P, Carouge C. Atmos. Chem. Phys., 2010, 10(13):5823.

doi: 10.5194/acp-10-5823-2010
[23]
Bedjanian Y, Lelièvre S, Le Bras G. Phys. Chem. Chem. Phys., 2005, 7(2):334.

pmid: 19785156
[24]
Lakey P S J, George I J, Whalley L K, Baeza-Romero M T, Heard D E. Environ. Sci. Technol., 2015, 49(8):4878.

doi: 10.1021/acs.est.5b00948 pmid: 25811311
[25]
Zhou J, Murano K, Kohno N, Sakamoto Y, Kajii Y. Atmos. Environ., 2020, 223:117189.

doi: 10.1016/j.atmosenv.2019.117189
[26]
Taketani F, Kanaya Y, Pochanart P, Liu Y, Li J, Okuzawa K, Kawamura K, Wang Z, Akimoto H. Atmos. Chem. Phys., 2012, 12(24):11907.

doi: 10.5194/acp-12-11907-2012
[27]
Bedjanian Y, Romanias M N, El Zein A. Atmos. Chem. Phys., 2013, 13(13):6461.

doi: 10.5194/acp-13-6461-2013
[28]
Hanson D R, Burkholder J B, Howard C J, Ravishankara A R. J. Phys. Chem., 1992, 96(12):4979.

doi: 10.1021/j100191a046
[29]
Morita A. J. Geophys. Res., 2004, 109(D9):D09201.
[30]
Gershenzon M, Davidovits P, Jayne J T, Kolb C E, Worsnop D R. J. Phys. Chem. A, 2002, 106(34):7748.

doi: 10.1021/jp014146b
[31]
Remorov R G, Gershenzon Y M, Molina L T, Molina M J. J. Phys. Chem. A, 2002, 106(18):4558.

doi: 10.1021/jp013179o
[32]
Loukhovitskaya E, Bedjanian Y, Morozov I, Le Bras G. Phys. Chem. Chem. Phys., 2009, 11(36):7896.

doi: 10.1039/b906300e pmid: 19727497
[33]
James A D, Moon D R, Feng W H, Lakey P S J, Frankland V L, Heard D E, Plane J M C. J. Geophys. Res. Atmos., 2017, 122(1):554.

doi: 10.1002/2016JD025882
[34]
Taketani F, Kanaya Y, Akimoto H. J. Phys. Chem. A, 2008, 112(11):2370.

doi: 10.1021/jp0769936
[35]
George I J, Matthews P S J, Whalley L K, Brooks B, Goddard A, Baeza-Romero M T, Heard D E. Phys. Chem. Chem. Phys., 2013, 15(31):12829.

doi: 10.1039/c3cp51831k pmid: 23806979
[36]
Taketani F, Kanaya Y, Akimoto H. Atmos. Environ., 2009, 43(9):1660.

doi: 10.1016/j.atmosenv.2008.12.010
[37]
Thornton J. J. Geophys. Res., 2005, 110(D8):D08309.
[38]
Taketani F, Kanaya Y, Akimoto H. J. Phys. Chem. Lett., 2010, 1(11):1701.

doi: 10.1021/jz100478s
[39]
Taketani F, Kanaya Y, Akimoto H. Int. J. Chem. Kinet., 2013, 45(9):560.

doi: 10.1002/kin.20783
[40]
Lakey P S J, George I J, Baeza-Romero M T, Whalley L K, Heard D E. J. Phys. Chem. A, 2016, 120(9):1421.

doi: 10.1021/acs.jpca.5b06316
[41]
Thornton J A, Jaeglé L, McNeill V F. J. Geophys. Res., 2008, 113(D5):303.
[42]
Matthews P S J, Baeza-Romero M T, Whalley L K, Heard D E. Atmos. Chem. Phys., 2014, 14(14):7397.

doi: 10.5194/acp-14-7397-2014
[43]
Moon D R, Taverna G S, Anduix-Canto C, Ingham T, Chipperfield M P, Seakins P W, Baeza-Romero M T, Heard D E. Atmos. Chem. Phys., 2018, 18(1):327.

doi: 10.5194/acp-18-327-2018
[44]
Zou Q, Song H, Tang M J, Lu K D. Chin. Chemical Lett., 2019, 30(12):2236.

doi: 10.1016/j.cclet.2019.07.041
[45]
Rolston D E. Encyclopedia of Soil Science, Third Edition. CRC Press. 2017: 986.
[46]
Hernandez H. Standard Maxwell-boltzmann Distribution: Definition and Properties. 2017.
[47]
Lelieveld J, Crutzen P J. J. Atmos. Chem., 1991, 12(3):229.

doi: 10.1007/BF00048075
[48]
Chameides W L, Stelson A W. J. Geophys. Res., 1992, 97(D18):20565.
[49]
Schwartz S E, Freiberg J E. Atmos. Environ. 1967, 1981, 15(7):1129.

doi: 10.1016/0004-6981(81)90303-6
[50]
Jacob D J. J. Geophys. Res., 1986, 91(D9):9807.
[51]
Ammann M, Cox R A, Crowley J N. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume vi-heterogeneous reactions with liquid substrates. Atmos Chem Phys, 2013.
[52]
Kolb C E, Cox R A, Abbatt J P D, Ammann M, Davis E J, Donaldson D J, Garrett B C, George C, Griffiths P T, Hanson D R, Kulmala M, McFiggans G, Pöschl U, Riipinen I, Rossi M J, Rudich Y, Wagner P E, Winkler P M, Worsnop D R, O' Dowd C D. Atmos. Chem. Phys., 2010, 10(21):10561.

doi: 10.5194/acp-10-10561-2010
[53]
Davidovits P, Kolb C E, Williams L R, Jayne J T, Worsnop D R. Chem. Rev., 2006, 106(4):1323.

pmid: 16608183
[54]
Davidovits P, Kolb C E, Williams L R, Jayne J T, Worsnop D R. Chem. Rev., 2011, 111(4):cr100360b.
[55]
Smith S C, Lee J D, Bloss W J, Johnson G P, Ingham T, Heard D E. Atmos. Chem. Phys., 2006, 6(5):1435.

doi: 10.5194/acp-6-1435-2006
[56]
Kanaya Y, Hofzumahaus A, Dorn H P, Brauers T, Fuchs H, Holland F, Rohrer F, Bohn B, Tillmann R, Wegener R, Wahner A, Kajii Y, Miyamoto K, Nishida S, Watanabe K, Yoshino A, Kubistin D, Martinez M, Rudolf M, Harder H, Berresheim H, Elste T, Plass-Dülmer C, Stange G, Kleffmann J, Elshorbany Y, Schurath U. Atmos. Chem. Phys., 2012, 12(5):2567.

doi: 10.5194/acp-12-2567-2012
[57]
Mak J, Gross S, Bertram A K. Geophys. Res. Lett., 2007, 34(10):L10804.

doi: 10.1029/2007GL029756
[58]
Pöschl U, Rudich Y, Ammann M. Atmos. Chem. Phys., 2007, 7(23):5989.

doi: 10.5194/acp-7-5989-2007
[59]
Ammann M, Pöschl U. Atmos. Chem. Phys., 2007, 7(23):6025.

doi: 10.5194/acp-7-6025-2007
[60]
Tang M J, Schuster G, Crowley J N. Atmos. Chem. Phys., 2014, 14(1):245.

doi: 10.5194/acp-14-245-2014
[61]
Widmann J F, Davis E J. J. Aerosol Sci., 1997, 28(1):87.

doi: 10.1016/S0021-8502(96)00060-2
[62]
Hanson D R, Ravishankara A R. J. Phys. Chem., 1993, 97(47):12309.

doi: 10.1021/j100149a035
[63]
Hanson D R, Lovejoy E R. J. Phys. Chem., 1996, 100(16):6397.

doi: 10.1021/jp953250o
[64]
Hanson D R. J. Phys. Chem. B, 1997, 101(25):4998.

doi: 10.1021/jp970461f
[65]
Hu J H, Shi Q, Davidovits P, Worsnop D R, Zahniser M S, Kolb C E. J. Phys. Chem., 1995, 99(21):8768.

doi: 10.1021/j100021a050
[66]
Magi L, Schweitzer F, Pallares C, Cherif S, Mirabel P, George C. J. Phys. Chem. A, 1997, 101(27):4943.

doi: 10.1021/jp970646m
[67]
Utter R G, Burkholder J B, Howard C J, Ravishankara A R. J. Phys. Chem., 1992, 96(12):4973.

doi: 10.1021/j100191a045
[68]
Müller B, Heal M R. Phys. Chem. Chem. Phys., 2002, 4(14):3365.

doi: 10.1039/b202491h
[69]
MacIntyre H L, Evans M J. Atmos. Chem. Phys., 2011, 11(21):10965.

doi: 10.5194/acp-11-10965-2011
[70]
Ivanov A V, Trakhtenberg S, Bertram A K, Gershenzon Y M, Molina M J. J. Phys. Chem. A, 2007, 111(9):1632.

doi: 10.1021/jp066558w
[71]
Saathoff H, Moehler O, Schurath U, Kamm S, Dippel B, Mihelcic D. J. Aerosol Sci., 2003, 34(10):1277.

doi: 10.1016/S0021-8502(03)00363-X
[72]
Saathoff H, Naumann K H, Riemer N, Kamm S, Möhler O, Schurath U, Vogel H, Vogel B. Geophys. Res. Lett., 2001, 28(10):1957.

doi: 10.1029/2000GL012619
[73]
Dentener F J, Carmichael G R, Zhang Y, Lelieveld J, Crutzen P J. J. Geophys. Res., 1996, 101(D17):22869.
[1] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[2] Jiliang Guo, Jianfei Peng, Ainan Song, Jinsheng Zhang, Zhuofei Du, Hongjun Mao. Studies on the Formation of Secondary Organic Aerosol from Vehicle Exhaust [J]. Progress in Chemistry, 2023, 35(1): 177-188.
[3] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[4] Wenyan Gao, Xuan Zhao, Xilin Zhou, Yaran Song, Qingrui Zhang. Strategies, Research Progress and Enlightenment of Enhancing the Heterogeneous Fenton Catalytic Reactivity: A Critical Review [J]. Progress in Chemistry, 2022, 34(5): 1191-1202.
[5] Jiali Zhong, Weigang Wang, Chao Peng, Nan Ma, Zhijun Wu, Maofa Ge. Atmospheric Aerosol Hygroscopicity and Their Influence on Environment [J]. Progress in Chemistry, 2022, 34(4): 801-814.
[6] Xiangrui Kong, Jing Dou, Shuzhen Chen, Bingbing Wang, Zhijun Wu. Progress of Synchrotron-Based Research on Atmospheric Science [J]. Progress in Chemistry, 2022, 34(4): 963-972.
[7] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.
[8] Xuemei Wei, Zhanwei Ma, Xinyuan Mu, Jinzhi Lu, Bin Hu. Catalyst in Acetylene Carbonylation: From Homogeneous to Heterogeneous [J]. Progress in Chemistry, 2021, 33(2): 243-253.
[9] Shumin Cheng, Lin Du, Xiuhui Zhang, Maofa Ge. Application of Langmuir Monolayers in the Investigation of Surface Properties of Sea Spray Aerosols [J]. Progress in Chemistry, 2021, 33(10): 1721-1730.
[10] Luanluan Xue, Huizeng Li, An Li, Zhipeng Zhao, Yanlin Song. Droplet Self-Propulsion Based on Heterogeneous Surfaces [J]. Progress in Chemistry, 2021, 33(1): 78-86.
[11] Meirong Kang, Fuxiang Jin, Zhen Li, Heyuan Song, Jing Chen. Research and Application of Supported Ionic Liquids [J]. Progress in Chemistry, 2020, 32(9): 1274-1293.
[12] Chen Hou, Wenqiang Chen, Linhui Fu, Sufeng Zhang, Chen Liang. Covalent Organic Frameworks(COFs) Materials in Enzyme Immobilization and Mimic Enzymes [J]. Progress in Chemistry, 2020, 32(7): 895-905.
[13] Lida Jia, Qingrui Zhang. Heterogeneous Fenton Catalytic Oxidation for Water Treatment [J]. Progress in Chemistry, 2020, 32(7): 978-988.
[14] Xinzhi Wang, Hongli Wang, Feng Shi. Alcohol Amination for N-Alkyl Amine Synthesis with Heterogeneous Catalysts [J]. Progress in Chemistry, 2020, 32(2/3): 162-178.
[15] Xingwang Lan, Guoyi Bai. Covalent Organic Framework Catalytic Materials: CO2 Conversion and Utilization [J]. Progress in Chemistry, 2020, 32(10): 1482-1493.