中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (5): 528-546 DOI: 10.7536/PC171249 Previous Articles   Next Articles

• Review •

SmI2 and Titanocene-Mediated Coupling Reactions of α-Aminoalkyl Radicals and Applications to the Synthesis of Aza-Heterocycles

Xiao Zheng, Pei-Qiang Huang*   

  1. Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, iChEM(Collaborative Innovation Center of Chemistry for Energy Materials), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Key R&D Program of China (No. 2017YFA0207302), the National Natural Science Foundation of China (No. 21472153, 21672176, 21332007, 21172183, 21472157, 21672175), and the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) of the Ministry of Education, China.
PDF ( 968 ) Cited
Export

EndNote

Ris

BibTeX

Carbon-carbon formation at N-α-carbon is an essential transformation in the synthesis of nitrogen-containing compounds. N-α-Carbocations (iminium ions), N-α-carbanions, and N-α-aminoalkyl radicals constitute three major classes of intermediates for this goal. The carbon-carbon forming reactions based on N-α-aminoalkyl radicals is advantageous over other two classes of intermediates for being able to run the reactions under mild neutral conditions. Moreover, because N-α-aminoalkyl radicals are umpolung of N-α-carbocations (iminium ions), the approaches based on these intermediates are complementary. In this regard, Kagan reagent (samarium diiodide, SmI2), a mild single-electron reductant, has emerged as a versatile reagent for the generation and coupling of N-α-aminoalkyl radicals. In this review, recent progresses on the carbon-carbon forming reactions at N-α-carbon via Kagan reagent is summarized. A number of nitrogen-containing substrates including imines, nitrones, hemiaminals, imides and amides have been shown to be valuable precursors to generate α-aminoalkyl radicals. The in situ coupling reactions of the latter with aldehydes/ketones, or electron-deficient alkenes lead to the formation of N-α-C—C bonds. These methods allow flexible access to diverse N-α-C functionalized compounds. To overcome some limitations of Kagan reagent, methods based on the titanocene-catalyzed generation of N-α-aminoalkyl radicals have also been developed. Many of these methods have been applied to the concise syntheses of medicinal-relevant compounds, alkaloids or key intermediates.
Contents
1 Introduction
2 SmI2-mediated radical coupling of imines
3 SmI2-mediated radical coupling of nitrones
3.1 Methodology research
3.2 Synthetic application
4 SmI2-mediated radical coupling of chiral N-tert-butanesulfinyl imines
4.1 Methodology research
4.2 Synthetic application
5 SmI2-mediated radical coupling of hemiaminal
5.1 Methodology research
5.2 Synthetic application
6 SmI2-mediated radical coupling of imides, amides and nitriles
6.1 Radical coupling of imides
6.2 Radical coupling of amides
6.3 Radical coupling of nitriles
7 An extension research:titanocene-catalyzed radical coupling reactions
8 Conclusion and outlook

CLC Number: 

[1] (a) Chen W, Zhang H B. Sci. China Chem., 2016, 59:1065;
(b) Gao S H, Qiu Y Y. Sci. China Chem., 2016, 59:1093;
(c) Tao P Y, Jia Y X. Sci. China Chem., 2016, 59:1109;
(d) Wang F X, Zhang P L, Wang H B, Zhang G B, Fan C A. Sci. China Chem., 2016, 59:1188;
(e) Li Y, Li J, Ding H F, Li, A. Natl. Sci. Rev., 2017, 4:397.
[2] (a) Speckamp W N, Moolenaar M J. Tetrahedron, 2000, 56:3817;
(b) Bur S K, Martin S F. Tetrahedron, 2001, 57:3221;
(c) Marson C M. Arkivoc, 2001, part 1.1;
(d) Maryanoff B E, Zhang H C, Cohen J H, Turchi I J, Maryanoff C A. Chem. Rev., 2004, 104:1431;
(e) Royer J. Chem. Rev., 2004, 104:2311;
(f) Yazici A, Pyne S G. Synthesis, 2009:339;
(g) Yazici A, Pyne S G. Synthesis, 2009:513.
[3] (a) Beak P, Basu A, Gallagher D J, Park Y S, Thayumanavan S. Acc. Chem. Res., 1996, 29:552;
(b) Gawley R E. Curr. Org. Chem., 1997, 1:71;
(c) Kessar S V, Singh P. Chem. Rev., 1997, 97:721;
(d) Katritzky A, Qi M. Tetrahedron, 1998, 54:2647;
(e) Husson H P, Royer J. Chem. Soc. Rev., 1999, 28:383.
[4] Huang P Q. Synlett, 2006:1133.
[5] (a) Renaud P, Giraud L. Synthesis, 1996:913;
(b) Hart D. In Radicals in Organic Synthesis. Weinheim, Germany:Wiley-VCH, 2001. 279;
(c) Aurrecoechea J M, Suero R. Arkivoc, 2004, part xiv:10;
(d) Nakajima K, Miyake Y, Nishibayashi Y. Acc. Chem. Res., 2016, 49:1946.
[6] (a) Molander G A. Chem. Rev., 1992, 92:29;
(b) Molander G A. Org. React., 1994, 46:211;
(c) Molander G A, Harris C R. Chem. Rev., 1996, 96:307;
(d) Krief A, Laval A M. Chem. Rev., 1999, 99:745;
(e) Kagan H B. Tetrahedron, 2003, 59:10351;
(f) Gopalaiah K, Kagan H B. New J. Chem., 2008, 32:607;
(g) Flowers R A Ⅱ. Synlett, 2008:1427;
(h) Procter D J, Flowers, R A Ⅱ, Skrydstrup T. Organic Synthesis using Samarium Diiodide. A Practical Guide. Cambridge:RSC Publishing, 2010;
(i) Beemelmanns C, Reissig H U. Chem. Soc. Rev., 2011, 40:2199;
(j) Szostak M, Spain M, Parmar D, Procter D J. Chem. Commun., 2012, 48:330;
(k) Szostak M, Spain M, Procter D J. Chem. Soc. Rev., 2013, 42:9155;
(l) Szostak M, Fazakerley N J, Parmar D, Procter D J. Chem. Rev., 2014, 114:5959.
[7] (a) Romero N A, Nicewicz D A. Chem. Rev., 2016, 116:10075;
(b) Yi H, Zhang G T, Wang H M, Huang Z Y, Wang J, Singh A K, Lei A W. Chem. Rev., 2017, 117:9016.
[8] Martin S F, Yang C P, Laswell W L, Rüeger H. Tetrahedron Lett., 1988, 29:6685.
[9] (a) Hanamoto T, Inanaga J. Tetrahedron Lett., 1991, 32:3555;
(b) Chiara, J L, Marco-Contelles J, Khiar N, Gallego P, Destabel C, Bernabe M. J. Org. Chem., 1995, 60:6010;
(c) Miyabe H, Torieda M, Inoue K, Tajiri K, Kiguchi T, Naito T. J. Org. Chem., 1998, 63:4397;
(d) Boiron A, Zillig P, Faber D, Giese B. J. Org. Chem., 1998, 63:5877;
(e) Storch de Garcia I, Bobo S, Martin-Ortega M D, Chiara J L. Org. Lett., 1999, 1:1705;
(f) Riber D, Hazell R, Skrydstrup T. J. Org. Chem., 2000, 65:5382;
(g) Nicolaou K C, Snyder S A, Giuseppone N, Huang X H, Bella M, Reddy M V, Rao P B, Koumbis A. E, Giannakakou P, O'Brate A. J. Am. Chem. Soc., 2004, 126:10174.
[10] (a) Sturino C F, Fallis A G. J. Am. Chem. Soc., 1994, 116:7447;
(b) Riber D, Hazell R, Skrydstrup T.J. Org. Chem., 2000, 65:5382;
(c) Chiara J. L, García Á. Synlett, 2005, 2607.
[11] Enholm E J, Forbes D C, Holub D P. Synth. Commun., 1990, 20:981.
[12] Machroui F, Namy J L. Tetrahedron, 1999, 40:1315.
[13] Tanaka Y, Taniguchi N, Kimura T, Uemura M. J. Org. Chem., 2002, 67:9227.
[14] Annunziata R, Benaglia M, Caporale M, Raimondi L. Tetrahedron:Asymmetry, 2002, 13:2727.
[15] Kim M, Knettle B W, DahlDeń A, Hilmersson G, Flowers R A Ⅱ. Tetrahedron, 2003, 59:10397.
[16] Kawaji T, Hayashi K, Hashimoto I, Matsumoto T, Thiemann T, Mataka S. Tetrahedron Lett., 2005, 46:5277.
[17] Matute R, Garcia-Vinuales S, Hayes H, Ghirardello M, Daru A, Tejero T, Delso I, Merino P. Curr. Org. Syn., 2016, 13:669.
[18] (a) Masson G, Py S, Vallée Y. Angew. Chem., Int. Ed., 2002, 41:1772;
(b) Masson G, Cividino P, Py S, Vallée Y. Angew. Chem. Int. Ed., 2003, 42:2265.
[19] (a) Chavarot M, Rivard M, Rose-Munch F, Rose E, Py S. Chem. Commun., 2004,20:2330;
(b) Chavarot-Kerlidou M, Rivard M, Chamiot B, Hahn F, Rose-Munch F, Rose E, Py S, Herson P. Eur. J. Org. Chem., 2010, 2010(5):944.
[20] Burchak O N, Philouze C, Chavant P Y, Py S. Org. Lett., 2008, 10:3021.
[21] Wu S F, Zheng X, Ruan Y P, Huang P Q. Org. Biomol. Chem., 2009, 7:2967.
[22] Wu S F, Ruan Y P, Zheng X, Huang P Q. Tetrahedron, 2010, 66:1653.
[23] Zhang H K, Xu S Q, Zhuang J J, Ye J L, Huang P Q. Tetrahedron, 2012, 68:6656.
[24] Riber D, Skrydstrup T. Org. Lett., 2003, 5:229.
[25] Johannesen S A, Albu S, Hazell R G, Skrydstrup T. Chem. Commun., 2004:1962.
[26] Cividino P, Py S, Delair P, Greene A. E. J. Org. Chem., 2007, 72:485.
[27] (a) Rehák J, Fisěra L, Podolan G, Kozíšek J, Perašínová L. Synlett, 2008:1260;
(b) Rehák J, Fisěra L, Kozíšek J, Perašínová L, Steiner B, Koóš M. Arkivoc, 2008, viii:18;
(c) Rehák J, Fisěra L, Prónayovaá N. Arkivoc, 2009, part vi:146;
(d) Rehaák J, Fisěra L, Kzíšek J, Bellovicová L. Tetrahedron, 2011, 67:5762.
[28] Xu C P, Huang P Q, Py S. Org. Lett., 2012, 14:2034.
[29] Zhong Y W, Xu M H, Lin G Q. Org. Lett., 2004, 6:3953.
[30] Ebran J P, Hazell R G, Skrydstrup T. Chem. Commun., 2005, 43:5402.
[31] Prikhod'ko A, Walter O, Zevaco T A, Garcia-Rodriguez J, Mouhtady O, Py S. Eur. J. Org. Chem., 2012:3742.
[32] Masson G, Philouze C, Py S. Org. Biomol. Chem., 2005, 3:2067.
[33] Zhang Z L, Nakagawa S, Kato A, Jia Y M, Hu X G, Yu C Y. Org. Biomol. Chem., 2011, 9:7713.
[34] Masson G, Zeghida W, Cividino P, Py S, Vallée Y. Synlett, 2003:1527.
[35] (a) Desvergnes S, Py S, Vallée Y. J. Org. Chem., 2005, 70:1459;
(b) Desvergnes S, Desvergnes V, Martin O R, Itoh K, Liu H W, Py S. Bioorg. Med. Chem., 2007, 15:6443;
(c) Gilles P, Py S. Org. Lett., 2012, 14:1042.
[36] Rehák J, Fisěra L, Kozíšek J, Bellovicová L. Tetrahedron, 2011, 67:5762.
[37] (a) Zhong Y W, Izumi K, Xu M H, Lin G Q. Org. Lett., 2004, 6:4747;
(b) Zhong Y W, Dong Y Z, Fang K, Izumi K, Xu M H, Lin G Q. J. Am. Chem. Soc., 2005, 127:11956;
(c) Lin G Q, Xu M H, Zhong Y W, Sun, X W. Acc. Chem. Res., 2008, 41:831.
[38] Peltier H M, McMahon J P, Patterson A W, Ellman J A. J. Am. Chem. Soc., 2006, 128:16018.
[39] Wang B, Wang Y J. Org. Lett., 2009, 1:3410.
[40] Lin X J, Bentley P A, Xie H X. Tetrahedron Lett., 2005, 46:7849.
[41] (a) Liu R C, Wei J H, Wei B G, Lin G Q. Tetrahedron:Asymmetry, 2008, 19:2731;
(b) Liu R H, Fang K, Wang B, Xu M H, Lin G Q. J. Org. Chem., 2008, 73:3307;
(c) Wang R, Fang K, Sun B F, Xu M H, Lin G Q. Synlett, 2009:2301.
[42] Wang B, Liu R H. Eur. J. Org. Chem., 2009:2845.
[43] Xarnod C, Huang W, Ren R G, Liu R C, Wei B G. Tetrahedron, 2012, 68:6688.
[44] (a) Rao C N, Lentz D, Reissig H U. Angew. Chem., Int. Ed., 2015, 54:2750;
(b) Beemelmanns C, Reissig H U. Chem. Rec., 2015, 15:872.
[45] (a) Aurrecoechea J M, Fernández-Acebes A. Tetrahedron Lett., 1992, 33:4763;
(b) Aurrecoechea J M, Fernández-Acebes A. Synlett, 1996:39.
[46] Wang X X, Liu Y J, Zhang Y M. Tetrahedron, 2003, 59:8257.
[47] Zheng X, Feng C G, Ye J L, Huang P Q. Org. Lett., 2005, 7:553.
[48] (a) Yoda H, Ujihara Y, Takabe K. Tetrahedron Lett., 2001, 42:9225;
(b) Yoda H, Kohata N, Takabe K. Synth. Commun., 2003, 33:1087.
[49] Xiang Y G, Wang X W, Zheng X, Ruan Y P, Huang P Q. Chem. Commun., 2009:7045.
[50] (a) Liu X K, Qiu S, Xiang Y G, Ruan Y P, Zheng X, Huang P Q. J. Org. Chem., 2011, 76:4952;
(b) Hu K Z, Ma J, Qiu S, Zheng X, Huang P Q. J. Org. Chem., 2013, 78:1790.
[51] Lin G J, Zheng X, Huang P Q. Chem. Commun., 2011, 47:1545.
[52] Shi S C, Lalancette R, Szostak M. Synthesis, 2016, 48:1825.
[53] Just-Baringo X, Procter D J. Acc. Chem. Res., 2015, 48:1263.
[54] Yoda H, Matsuda K, Nomura H, Takabe K. Tetrahedron Lett., 2000, 41:1775.
[55] Farcas S, Namy J L. Tetrahedron Lett., 2000, 41:7299.
[56] Jensen C M, Lindsay K B, Taaning R H, Karaffa J, Hansen A M, Skrydstrup T. J. Am. Chem. Soc., 2005, 127:6544.
[57] Hansen A M, Lindsay K B, Antharjanam P K S, Karaffa J, Daasbjerg K, Flowers R A Ⅱ, Skrydstrup T. J. Am. Chem. Soc., 2006, 128:9616.
[58] Vacas T, Álvarez E, Chiara J L. Org. Lett., 2007, 9:5445.
[59] Liu X K, Zheng X, Ruan Y P, Ma J, Huang P Q. Org. Biomol. Chem., 2012, 10:1275.
[60] Liu J, Ye C X, Wang A, Wang A E, Huang P Q. J. Org. Chem., 2015, 80:1034.
[61] Szostak M, Sautier B, Spain M, Behlendorf M, Procter D J. Angew. Chem., Int. Ed., 2013, 52:12559.
[62] Szostak M, Spain M, Parmar D, Procter D J. Chem. Commun., 2012, 48:330.
[63] (a) Huang H M, Procter D J. J. Am. Chem. Soc., 2016, 138:7770;
(b) Huang H M, Procter D J. J. Am. Chem. Soc., 2017, 139:1661;
(c) Huang H M, Bonilla P, Procter D J. Org. Biomol. Chem. 2017, 15:4159;
(d) Huang H M, Procter D J. Angew. Chem., Int. Ed., 2017, 56:14262.
[64] (a) Shi S C, Szostak M. Org. Lett., 2015, 17:5144;
(b) Just-Baringo X, Procter D J. Acc. Chem. Res., 2015, 48:1263;
(c) Shi S C, Lalancette R, Szostak R, Szostak M. Chem. Eur. J., 2016, 22:11949.
[65] McDonald C E, Galka A M, Green A I, Keane J M, Kowalchick J E, Micklitsch C M, Wisnoski D D. Tetrahedron Lett., 2001, 42:163.
[66] (a) Xiao K J, Wang A E, Huang Y H, Huang P Q. Asian J. Org. Chem., 2012, 1:130;
(b) Xiao K J, Huang Y H, Huang P Q. Acta Chim. Sin., 2012, 70:1917;
(c) Xiao K J, Wang A E, Huang P Q. Angew. Chem. Int. Ed., 2012, 51:8314.
[67] Huang P Q, Lang Q W, Wang A E, Zheng J F. Chem. Commun., 2015, 51:1096.
[68] Molander G A, Wolfe C N. J. Org. Chem., 1998, 63:9031.
[69] (a) Rao C N, Hoz S. J. Org. Chem., 2012, 77:4029;
(b) Rao C N, Hoz S. J. Org. Chem., 2012, 77:9199.
[70] Szostak M, Sautier B, Spain M, Procter D J. Org. Lett., 2014, 16:1092.
[71] (a) Gansäuer A, Bluhm H. Chem. Rev., 2000, 100, 2771;
(b) Zhuang Z Y, Zhang W H, Jia X S, Zhai H B. Chin. J. Org. Chem., 2006, 26:145;
(c) Morcillo S P, Miguel D, Campaña A G, de Cienfuegos L Á, Justicia J, Cuerva J M. Org. Chem. Front., 2014, 1:15;
(d) Streuff J, Gansäuer A. Angew. Chem., Int. Ed., 2015, 54:1.
[72] (a) Zheng X, Dai X J, Yuan H Q, Ye C X, Ma J, Huang P Q. Angew. Chem., Int. Ed., 2013, 52:3494;
(b) Zheng X, He J, Li H H, Wang A, Dai X J, Wang A E, Huang P Q. Angew. Chem., Int. Ed., 2015, 54:13739.
[73] (a) Nomura R, Matsuno T, Endo T. J. Am. Chem. Soc., 1996, 118:11666;
(b) Aspinall H C, Greeves N, Valla C. Org. Lett., 2005, 7:1919;
(c) Ueda T, Kanomata N, Machida H. Org. Lett., 2005, 7:2365;
(d) Han X Y, Xu F, Luo Y Q, Shen Q. Eur. J. Org. Chem., 2005:1500.
[1] Zhihua Gong, Sha Hu, Xueping Jin, Lei Yu, Yuanyuan Zhu, Shuangxi Gu. Synthetic Methods and Application of Phosphoester Prodrugs [J]. Progress in Chemistry, 2022, 34(9): 1972-1981.
[2] Luo Shipeng, Huang Peiqiang. Malic acid——A Versatile Chiral Building Block in the Enantioselective Total Synthesis of Natural Products and in Synthetic Methodologies [J]. Progress in Chemistry, 2020, 32(11): 1846-1868.
[3] Lixin Dai*. Ullmann Reaction,A Centennial Memory and Recent Renaissance——Related Formation of Carbon-Heteroatom Bond [J]. Progress in Chemistry, 2018, 30(9): 1257-1297.
[4] Chen Maolong, Yin Bangshao, Song Jianxin. Recent Development of Constructing Porphyrin Arrays via Suzuki-Miyaura Cross-Coupling Reaction [J]. Progress in Chemistry, 2015, 27(6): 641-654.
[5] Shu Xin, Li Zhaoxiang, Xia Jiangbin. Synthetic Methods for Poly(thiophene)s [J]. Progress in Chemistry, 2015, 27(4): 385-394.
[6] Liu Guannan, Zhou Yu, Jiang Hualiang, Liu Hong. Recent Advances in Silver-Mediated Organic Synthesis Reactions [J]. Progress in Chemistry, 2011, 23(6): 1137-1147.
[7] Yang Liancheng, Qi Xiangyang, Xu Longhe. Formation of P-C Bonds via Palladium-Catalyzed Cross-Coupling Reactions [J]. Progress in Chemistry, 2011, 23(5): 893-902.
[8] Li Tao, Chen Deliang. Synthesis of Hierarchical Semiconductor/Semiconductor Composite Nanostructures [J]. Progress in Chemistry, 2011, 23(12): 2498-2509.
[9] Zhang Jintang, Yu Chenmin, Wang Sujing, Wang Zhiyong. The Applications of Metallic Nanoparticles in Coupling Reactions [J]. Progress in Chemistry, 2010, 22(07): 1482-1489.
[10] Guo Xinwei, Li Zhiping, Li Zhaojun. Cross-Dehydrogenative-Coupling (CDC) Reaction [J]. Progress in Chemistry, 2010, 22(07): 1434-1441.
[11] Li Hu, Shi Zhangjie. Palladium-Catalyzed C—C Bonds Formation Reactions via Selective C—H Bonds Functionalization [J]. Progress in Chemistry, 2010, 22(07): 1414-1433.
[12] Lu Yuhua Song Feijie Jia Xueshun Liu Yuanhong. Transition Metal-Catalyzed Synthesis of Furan Derivatives [J]. Progress in Chemistry, 2010, 22(01): 58-70.
[13] Lu Ping Lu Jie You Huanhuan Shi Pin Chen Qiang Dong Jian. Polymer-Supported Palladium Catalysts for Heterogeneous C-C Coupling Reactions [J]. Progress in Chemistry, 2009, 21(0708): 1434-1441.
[14] Yangang Wang,Yaojun Wang,Changlin Li,Xiaohui Liu,Yanqin Wang**,Guanzhong Lu. Synthetic Methods of Mesostructured Metal Oxides/Composites [J]. Progress in Chemistry, 2006, 18(10): 1338-1344.
[15] Zongbin Wu1|Peng Tian2**|Zhongmin Liu2,Zongqiang Mao1. Progress in Porous Phosphonates [J]. Progress in Chemistry, 2006, 18(09): 1092-1100.