中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (9): 1598-1613 DOI: 10.7536/PC200817 Previous Articles   Next Articles

• Review •

Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries

Yun Lu1,2(), Hongjuan Shi1,2, Yuefeng Su1,2(), Shuangyi Zhao1, Lai Chen1,2, Feng Wu1,2,3   

  1. 1 Beijing Key Laboratory, Department of Energy and Environmental Materials, School of Materials Science and Engineering, Beijing Institute of Technology,Beijing 100081, China
    2 Academician's Workshop of New Materials Technology, Chongqing Innovation Center, Beijing Institute of Technology,Chongqing 401135, China
    3 Collaborative Innovation Center for Electric Vehicles in Beijing, Beijing 100081, China
  • Received: Revised: Online: Published:
  • Contact: Yun Lu, Yuefeng Su
  • About author:
    † Yun Lu and Hongjuan Shi contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(51802019)
Richhtml ( 39 ) PDF ( 590 ) Cited
Export

EndNote

Ris

BibTeX

The blossoming of mobile electronic devices, plug-in electric vehicles and stationary energy storage have triggered the urgent demand for the exploration of the energy storage systems with high energy density and long cycle life. Lithium-sulfur battery is regarded as one of the most promising candidates of the next-generation rechargeable batteries, since the active substance sulfur is low cost and possesses high theoretical energy density of 2600 Wh·kg-1. However, the practical applications of lithium-sulfur battery are hindered by a series of severe problems, which are caused by the insulative nature of sulfur and its discharge products, and the dissolution and shuttling of polysulfides. Carbonaceous materials are generally used as sulfur hosts to improve the conductivity of the cathode. Regrettably, due to the weak interaction between non-polar carbonaceous materials and polar polysulfides, the carbonaceous materials can inhibit polysulfides only by limited physical adsorption and restrictions, thus the dramatic capacity decline derived from the notorious “shuttling effect” remains insufficiently resolved. Introducing polar or chemical adsorption sites to carbonaceous materials by element doping, such as N, S, Co and B doping, can greatly enhance the adsorption capacity of carbonaceous materials to polysulfides, so as to sufficiently improve the cycling stability of the cell. Moreover, element doping may improve the electronic conductivity of carbonaceous materials by changing their electronic structure, thus effectively increasing the utilization ratio of the active materials. This article reviews the elements doping commonly applied in carbonaceous materials such as porous carbon, carbon nanotubes and graphene for lithium-sulfur batteries, wherein single-element doping, dual-element doping, and multi-element doping are introduced separately. The effects of different doping elements on performance of carbonaceous materials are analyzed. And the development direction of element-doped carbonaceous materials in lithium-sulfur batteries are prospected.

Contents

1 Introduction

2 Rational design of element-doped carbon-based materials

3 Single element doping

3.1 Nitrogen-doped

3.2 Boron-doped

3.3 Cobalt-doped

3.4 Others

4 Double element co-doping

4.1 Nitrogen and sulfur co-doped

4.2 Nitrogen and boron co-doped

4.3 Nitrogen and cobalt co-doped

4.4 Nitrogen and nickel co-doped

4.5 Others

5 Multi-element doped carbonaceous materials

6 Conclusions and outlook

Table 1 Performances of LSBs prepared with mono-doped carbonaceous materials
Fig. 1 Four forms of N doping in graphene[51]. Copyright 2015, Elsevier
Fig. 2 Schematic diagram for preparation of N doped graphene with different N states[56]. Copyright 2012, The Royal Society of Chemistry
Fig. 3 Cycle performance of HNCM700-S, HNCM800-S, and HNCM900-S cathodes for 1000 cycles at 0.5 C[59]. Copyright 2019, WILEY-VCH
Fig. 4 Cyclic voltammogram of SC and SC-Co electrodes at a scan rate of 100 mV·s-1[74]. Copyright 2019, WILEY-VCH
Table 2 Performances of LSBs prepared with dual-element doped carbonaceous materials
Material Doping element Element content Sulfur content
(wt%)
Initial discharge
capacity/mAh·g-1
Cycles Capacity retention Binding energy
with Li2S2
NSC[82] N、S - 70% 1280, 0.2 C 100 84.37% 2.59 eV
CNSMC[81] N、S N 5.0 wt%, S 4.6 wt% 54% 1120, 1 C 100 ~71% -
NSHPC[83] N、S N 3.47 wt%, S 4.03 wt% 80% 1549, 0.1 C 100 61.14% -
SN-PCNF[84] N、S - 80% 1133, 0.1 C 150 75% 2.55 eV
N,S-codoped graphene[85] N、S N 5.4 at%, S 3.9 at% 4.6 mg·cm-2 925, 0.5 C 200 72.4% 2.06 eV
N,S-CDs/
rGO[86]
N、S N 2.9 wt%, S 3.8 wt% 76% 1296, 0.5 C 150 ~69% -
SNGE[87] N、S N 6.01 at%, S 1.15 at% 42.1% 770, 2 C 250 79.48% -
NB-PPCA[88] N、B N 3.64 wt%, B 6.89 wt% 56% 988, 1 C 500 59.4% -
G-NBCL[89] N、B N 5.3 wt%, B 2.9 wt% 70% 829, 2 C 300 82% N=B/N-B, 5.15 eV
NBCGNs[90] N、B N 6.6 at%, B 7.0 at% 65% 977, 0.2 C 300 76% 2.65 eV
C-Co-N[91] N、Co - 56% 917, 0.5 C 500 50.2% -
Co@NHCRs[92] N、Co Co 0.53 at% 60% 971, 0.5 C 100 73% -
MC-NS[93] N、Co N 2.18 wt%, Co 3.88 wt% 86% 1172, 0.2 C 100 77.4% 1.35 eV
Co-N-CNTA[94] N、Co N 8.6 at% 40% 1045, 1 C 1000 77.89% 1.79 eV
CoSA-N-C[95] N、Co N 16.3 at % 74% 1038, 1 C 1000 65% Li2S6, 0.5 eV
Co-N/G[96] N、Co N 7.25 at %, Co 0.77 at % 67% 861, 1 C 500 79% -
Co-N-C/rGO[97] N、Co - 63% 865, 0.5 C 500 71.2% -
MFCH[100] N、Ni N 9.8 wt % 50% 1150, 0.84 A·g-1 100 79% -
Ni@NG[101] N、Ni - 1 mg·c m - 2 826.2, 1 C 500 78% 1.98 eV
N,P-C[102] N、P N 3.6 at %, P 3.2 at % - 1000, 0.1 C 100 70% -
NOPC/S[103] N、O N 2.02 at%, O 8.04 at% 51.6% 1185, 0.2 C 100 64% -
NONPCM[104] N、O N 4.5 wt%, O 9.43 wt% 70% 690, 800 mA·g-1 180 91.7% N-LiSx, 2.52 eV,
MPNC[105] N、O N 6.2 wt%, O 6.89 wt% 70% ~800, 0.35 mA·cm-2 100 95% =O-LiSx, 1.47 eV
Fig. 5 The SNGE intercalation schematic diagram[84]. Copyright 2016, Royal Society of Chemistry
Fig. 6 Calculation of the binding energy of Li2S and Li2S4 with the matrix. (a) Binding energy of Li2S on pristine graphene. (b) Binding energy of Li2S at a pyridinic N site. (c) Binding energy of Li2S at a pyrrolic N site. (d) Binding energy of Li2S at an N=B/N-B site. (e) Binding energy of Li2S4 on pristine graphene. (f) Binding energy of Li2S4 at a pyridinic N site. (g) Binding energy of Li2S4 at a pyrrolic N site. (h) Binding energy of Li2S4 at an N=B/N-B site[86]. Copyright 2016, WILEY-VCH
Fig. 7 (a) Electrostatic potential maps of C, N-C, and Co@N-C; (b) DFT calculations showing the interaction between Li-S and various carbon substrates. Gray, blue, celadon, pink, yellow, and white denote C, N, Co, Li, S, and H atoms, respectively[89]. Copyright 2016, Elsevier
Fig. 8 (a~c) The voltage-time profiles of MC-NS/S, C-NS/S, and C-NP/S cathode at 0.1 C for the in situ Raman test. (d~f) Selected original Raman spectra of MC-NS/S, C-NS/S, and C-NP/S for (dis)charge processes[90]. Copyright 2019, WILEY-VCH
Fig. 9 Schematic illustration of the effect of CoSA-N-C in improving the conversion kinetics between the solid (S, Li2S) and liquid (LiPSs), and mediating the deposition of lithium sulfide nanoparticles[92]. Copyright 2020, Elsevier
Fig. 10 Energy profiles for Li sulfides on N/G and Co-N/G[93]. Copyright 2019, American Chemical Society
Fig. 11 Related performance characterization of Ni@NG. (a) Binding energies between the LiPSs and the Ni@NG or NG. (b) The catalytic mechanism of the LiPSs on the surface of Ni@NG in electrochemical process[98]. Copyright 2019, WILEY-VCH
[1]
Tsagarakis K P, Mavragani A, Jurelionis A, Prodan I, Andrian T, Bajare D, Korjakins A, Magelinskaite-Legkauskiene S, Razvan V, Stasiuliene L. Renew. Energy, 2018, 121: 412.

doi: 10.1016/j.renene.2018.01.020
[2]
Akhter M Z, Hassan M A. Appl. Mech. Mater., 2016, 819: 507.

doi: 10.4028/www.scientific.net/AMM.819
[3]
Joselin Herbert G M, Iniyan S, Sreevalsan E, Rajapandian S. Renew. Sustain. Energy Rev., 2007, 11(6): 1117.

doi: 10.1016/j.rser.2005.08.004
[4]
Lewis N S. Science, 2007, 315(5813): 798.

doi: 10.1126/science.1137014
[5]
O'Brien E. J. Biogeogr., 1998, 25(2): 379.

doi: 10.1046/j.1365-2699.1998.252166.x
[6]
Goodenough J B, Park K S. J. Am. Chem. Soc., 2013, 135(4): 1167.

doi: 10.1021/ja3091438 pmid: 23294028
[7]
Muldoon J, Bucur C B, Oliver A G, Sugimoto T, Matsui M, Kim H S, Allred G D, Zajicek J, Kotani Y. Energy Environ. Sci., 2012, 5(3): 5941.

doi: 10.1039/c2ee03029b
[8]
Chen L, Su Y F, Chen S, Li N, Bao L Y, Li W K, Wang Z, Wang M, Wu F. Adv. Mater., 2014, 26(39): 6756.

doi: 10.1002/adma.v26.39
[9]
Tian J, Su Y F, Wu F, Xu S Y, Chen F, Chen R J, Li Q, Li J H, Sun F C, Chen S. ACS Appl. Mater. Interfaces, 2016, 8(1): 582.

doi: 10.1021/acsami.5b09641
[10]
Wang M, Chen Y B, Wu F, Su Y F, Chen L, Wang D L. Electrochimica Acta, 2010, 55(28): 8815.

doi: 10.1016/j.electacta.2010.08.022
[11]
Wu F, Li N, Su Y F, Shou H F, Bao L Y, Yang W, Zhang L J, An R, Chen S. Adv. Mater., 2013, 25(27): 3722.

doi: 10.1002/adma.v25.27
[12]
Wu F, Li N, Su Y F, Zhang L J, Bao L Y, Wang J, Chen L, Zheng Y, Dai L Q, Peng J Y, Chen S. Nano Lett., 2014, 14(6): 3550.

doi: 10.1021/nl501164y
[13]
Wu F, Li W K, Chen L, Lu Y, Su Y F, Bao W, Wang J, Chen S, Bao L Y. J. Power Sources, 2017, 359: 226.

doi: 10.1016/j.jpowsour.2017.05.063
[14]
Wu F, Tian J, Liu N, Lu Y, Su Y F, Wang J, Chen R J, Ma X, Bao L Y, Chen S. Energy Storage Mater., 2017, 8: 134.
[15]
Zheng Y, Chen L, Su Y F, Tan J, Bao L Y, Lu Y, Wang J, Chen R J, Chen S, Wu F. J. Mater. Chem. A, 2017, 5(46): 24292.

doi: 10.1039/C7TA08735G
[16]
Shi M, Yang C, Song X, Liu J, Zhao L, Zhang P, Gao L. Chemical Engineering Journal, 2017, 322: 538.

doi: 10.1016/j.cej.2017.04.065
[17]
Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang Q M. Science, 2006, 313: 334.

doi: 10.1126/science.1127798
[18]
Tang H X, Lin Y R, Sodano H A. Adv. Energy Mater., 2013, 3(4): 451.

doi: 10.1002/aenm.v3.4
[19]
Wu F, Li J, Su Y F, Wang J, Yang W, Li N, Chen L, Chen S, Chen R J, Bao L Y. Nano Lett., 2016, 16(9): 5488.

doi: 10.1021/acs.nanolett.6b01981
[20]
Wu F, Zhao S Y, Chen L, Lu Y, Su Y F, Jia Y N, Bao L Y, Wang J, Chen S, Chen R J. Energy Storage Mater., 2018, 14: 383.
[21]
Zeng P, Huang L W, Han Y M, Zhang X L, Zhang R X, Chen Y G. ChemElectroChem, 2018, 5(2): 375.

doi: 10.1002/celc.201700924
[22]
Gao G P, Zheng F, Pan F, Wang L W. Adv. Energy Mater., 2018, 8(25): 1801823.

doi: 10.1002/aenm.v8.25
[23]
Ghosh D, Gad M, Lau I, Pope M A. Adv. Energy Mater., 2018, 8(27): 1801979.

doi: 10.1002/aenm.v8.27
[24]
Shi H F, Lv W, Zhang C, Wang D W, Ling G W, He Y B, Kang F Y, Yang Q H. Adv. Funct. Mater., 2018, 28(38): 1800508.

doi: 10.1002/adfm.v28.38
[25]
Yu Q H, Lu Y, Luo R J, Liu X M, Huo K F, Kim J K, He J, Luo Y S. Adv. Funct. Mater., 2018, 28(39): 1804520.

doi: 10.1002/adfm.v28.39
[26]
Zhou G M, Paek E, Hwang G S, Manthiram A. Adv. Energy Mater., 2016, 6(2): 1501355.

doi: 10.1002/aenm.201501355
[27]
Xiao Z B, Yang Z, Nie H G, Lu Y Q, Yang K Q, Huang S M. J. Mater. Chem. A, 2014, 2(23): 8683.

doi: 10.1039/C4TA00630E
[28]
Liu M, Li Q, Qin X Y, Liang G M, Han W J, Zhou D, He Y B, Li B H, Kang F Y. Small, 2017, 13(12): 1602539.

doi: 10.1002/smll.v13.12
[29]
Sun X, Jie W, Xu L, Wei C. Journal of Nanoparticle Research, 2018, 20: 1.

doi: 10.1007/s11051-017-4105-2
[30]
Gao X, Yang X, Li M, Sun Q, Liang J, Luo J, Wan J, Li W. Adv. Funct. Mater., 2019, 29: 1806724.

doi: 10.1002/adfm.v29.8
[31]
Jozwiuk A, Sommer H, Janek J, Brezesinski T. J. Power Sources, 2015, 296: 454.

doi: 10.1016/j.jpowsour.2015.07.070
[32]
Jeong T G, Moon Y H, Chun H H, Kim H S, Cho B W, Kim Y T. Chem. Commun., 2013, 49(94): 11107.

doi: 10.1039/c3cc46358c
[33]
Fu Y Z, Zu C X, Manthiram A. J. Am. Chem. Soc., 2013, 135(48): 18044.

doi: 10.1021/ja409705u
[34]
Yue X Y, Li X L, Meng J K, Wu X J, Zhou Y N. J. Power Sources, 2018, 397: 150.

doi: 10.1016/j.jpowsour.2018.07.017
[35]
Fang R P, Chen K, Yin L C, Sun Z H, Li F, Cheng H M. Adv. Mater., 2019, 31(9): 1800863.

doi: 10.1002/adma.v31.9
[36]
Zhang X, Wang Z, Yao L, Mai Y Y, Liu J Q, Hua X L, Wei H. Mater. Lett., 2018, 213: 143.

doi: 10.1016/j.matlet.2017.11.002
[37]
Zhang L, Ling M, Feng J, Mai L Q, Liu G, Guo J H. Energy Storage Mater., 2018, 11: 24.
[38]
Xiong S Z, Xie K, Diao Y, Hong X B. Electrochimica Acta, 2012, 83: 78.

doi: 10.1016/j.electacta.2012.07.118
[39]
Liu M, Ren Y X, Jiang H R, Luo C, Kang F Y, Zhao T S. Nano Energy, 2017, 40: 240.

doi: 10.1016/j.nanoen.2017.08.017
[40]
Hong X D, Shun-Li L I, Liu Y L, Modern Chemical Industry, 2018, 2: 30.
[41]
Sun Z J, Wang S J, Yan L L, Xiao M, Han D M, Meng Y Z. J. Power Sources, 2016, 324: 547.

doi: 10.1016/j.jpowsour.2016.05.122
[42]
Shi H F, Niu S Z, Lv W, Zhou G M, Zhang C, Sun Z H, Li F, Kang F Y, Yang Q H. Carbon, 2018, 138: 18.

doi: 10.1016/j.carbon.2018.05.077
[43]
Xu Z Y, Liu X, Chen J M, Wang M X, Song J R, Zhai G T, Li C X. Plasma Sci. Technol., 2002, 4(3): 1311.

doi: 10.1088/1009-0630/4/3/008
[44]
Hou T Z, Chen X, Peng H J, Huang J Q, Li B Q, Zhang Q, Li B. Small, 2016, 12(24): 3283.

doi: 10.1002/smll.v12.24
[45]
Wu J Y, Li X W, Zeng H X, Xue Y, Chen F Y, Xue Z G, Ye Y S, Xie X L. J. Mater. Chem. A, 2019, 7: 7897.

doi: 10.1039/C9TA00458K
[46]
Wu F, Zhao S Y, Lu Y, Li J, Su Y F, Chen L. Progress in Chemistry, 2017, 29(6): 593.
(吴锋, 赵双义, 卢赟, 李健, 苏岳锋, 陈来. 化学进展, 2017, 29(6): 593.).

doi: 10.7536/PC170333
[47]
Zhang Y L, Mu Z J, Yang C, Xu Z K, Zhang S, Zhang X Y, Li Y J, Lai J P, Sun Z H, Yang Y, Chao Y G, Li C J, Ge X X, Yang W X, Guo S J. Adv. Funct. Mater., 2018, 28(38): 1707578.

doi: 10.1002/adfm.v28.38
[48]
Sun D. Surface Technology, 2018, 47: 95.
[49]
Ding Y L, Kopold P, Hahn K, van Aken P A, Maier J, Yu Y. Adv. Funct. Mater., 2016, 26(7): 1112.

doi: 10.1002/adfm.v26.7
[50]
Xiao S, Liu S H, Zhang J Q, Wang Y. J. Power Sources, 2015, 293: 119.

doi: 10.1016/j.jpowsour.2015.05.048
[51]
He X C, Tang T, Liu F C, Tang N J, Li X Y, Du Y W. Carbon, 2015, 94: 1037.

doi: 10.1016/j.carbon.2015.07.089
[52]
Tang T, Zhang T, Li W, Huang X X, Wang X B, Qiu H L, Hou Y L. Nanoscale, 2019, 11(15): 7440.

doi: 10.1039/C8NR09495K
[53]
Yan H M, Cheng M, Zhong B H, Chen Y X. Ionics, 2016, 22(11): 1999.

doi: 10.1007/s11581-016-1739-5
[54]
van Dommele S, Romero-Izquirdo A, Brydson R, Jong K P D, Bitter J H. Carbon, 2008, 46(1): 138.

doi: 10.1016/j.carbon.2007.10.034
[55]
Chung H T, Zelenay P. Chem. Commun., 2015, 51(70): 13546.

doi: 10.1039/C5CC04621A
[56]
Lai L F, Potts J R, Zhan D, Wang L, Poh C K, Tang C H, Gong H, Shen Z X, Lin J Y, Ruoff R S. Energy Environ. Sci., 2012, 5(7): 7936.

doi: 10.1039/c2ee21802j
[57]
Han P, Chung S H, Manthiram A. Small, 2019, 15(16): 1900690.

doi: 10.1002/smll.v15.16
[58]
Xia Y, Fang R Y, Xiao Z, Huang H, Gan Y P, Yan R J, Lu X H, Liang C, Zhang J, Tao X Y, Zhang W K. ACS Appl. Mater. Interfaces, 2017, 9(28): 23782.

doi: 10.1021/acsami.7b05798
[59]
Wang J L, Yan X F, Zhang Z, Ying H J, Guo R N, Yang W T, Han W Q. Adv. Funct. Mater., 2019, 29(39): 1904819.

doi: 10.1002/adfm.v29.39
[60]
Zhao Y, Yin F X, Zhang Y G, Zhang C W, Mentbayeva A, Umirov N, Xie H X, Bakenov Z. Nanoscale Res. Lett., 2015, 10(1): 450.

doi: 10.1186/s11671-015-1152-4 pmid: 26586150
[61]
Qiu Y C, Li W F, Zhao W, Li G Z, Hou Y, Liu M N, Zhou L S, Ye F M, Li H F, Wei Z H, Yang S H, Duan W H, Ye Y F, Guo J H, Zhang Y G. Nano Lett., 2014, 14(8): 4821.

doi: 10.1021/nl5020475
[62]
Cheng D D, Zhao Y L, An T, Wang X, Zhou H, Fan T X. Carbon, 2019, 154: 58.

doi: 10.1016/j.carbon.2019.07.094
[63]
Wang H F, Fan C Y, Li X Y, Wu X L, Li H H, Sun H Z, Xie H M, Zhang J P, Tong C Y. Electrochimica Acta, 2017, 244: 86.

doi: 10.1016/j.electacta.2017.05.090
[64]
Wu F, Qian J, Wu W P, Ye Y S, Sun Z G, Xu B, Yang X G, Xu Y H, Zhang J T, Chen R J. Nano Res., 2017, 10(2): 426.

doi: 10.1007/s12274-016-1303-7
[65]
Xu C X, Zhou H H, Fu C P, Huang Y P, Chen L, Yang L M, Kuang Y F. Electrochimica Acta, 2017, 232: 156.

doi: 10.1016/j.electacta.2017.02.140
[66]
Xie Y, Meng Z, Cai T W, Han W Q. ACS Appl. Mater. Interfaces, 2015, 7(45): 25202.

doi: 10.1021/acsami.5b08129
[67]
Li B E, Sun Z H, Zhao Y, Tian Y, Tan T Z, Gao F, Li J D. J. Nanoparticle Res., 2018, 21(1): 1.

doi: 10.1007/s11051-018-4445-6
[68]
Fan F Y, Carter W C, Chiang Y M. Adv. Mater., 2015, 27(35): 5203.

doi: 10.1002/adma.201501559
[69]
Liu D H, Zhang C, Zhou G M, Lv W, Ling G W, Zhi L J, Yang Q H. Adv. Sci., 2018, 5(1): 1700270.

doi: 10.1002/advs.201700270
[70]
Cao Y W, Shen C R, Xia C G, He L. Chin. J. Chem. Educ., 2019, 40(6): 3.
(曹彦伟, 沈超仁, 夏春谷, 何林. 化学教育, 2019, 40(6): 3).
[71]
Li M M, Feng W J, Su W X, Song C K, Chen L J. Integr. Ferroelectr., 2019, 200(1): 82.

doi: 10.1080/10584587.2019.1592623
[72]
Xiao D J, Li Q, Zhang H F, Ma Y Y, Lu C X, Chen C M, Liu Y D, Yuan S X. J. Mater. Chem. A, 2017, 5(47): 24901.

doi: 10.1039/C7TA08483H
[73]
Li Z Q, Li C X, Ge X L, Ma J Y, Zhang Z W, Li Q, Wang C X, Yin L W. Nano Energy, 2016, 23: 15.

doi: 10.1016/j.nanoen.2016.02.049
[74]
Xie J, Li B Q, Peng H J, Song Y W, Zhao M, Chen X, Zhang Q, Huang J Q. Adv. Mater., 2019, 31(43): 1903813.

doi: 10.1002/adma.v31.43
[75]
Li S P, Chen X, Hu F, Zeng R, Huang Y H, Yuan L X, Xie J. Electrochimica Acta, 2019, 304: 11.

doi: 10.1016/j.electacta.2019.02.087
[76]
Nitze F, Fossum K, Xiong S Z, Matic A, Palmqvist A E C. J. Power Sources, 2016, 317: 112.

doi: 10.1016/j.jpowsour.2016.03.084
[77]
Du L Y, Cheng X Y, Gao F J, Li Y B, Bu Y F, Zhang Z Q, Wu Q, Yang L J, Wang X Z, Hu Z. Chem. Commun., 2019, 55(45): 6365.

doi: 10.1039/C9CC02134E
[78]
Wu F, Li J, Tian Y F, Su Y F, Wang J, Yang W, Li N, Chen S, Bao L Y. Sci. Rep., 2015, 5(1): 1.
[79]
Pang Q, Tang J T, Huang H, Liang X, Hart C, Tam K C, Nazar L F. Adv. Mater., 2015, 27(39): 6021.

doi: 10.1002/adma.201502467
[80]
Jiang S X, Chen M F, Wang X Y, Zhang Y, Huang C, Zhang Y P, Wang Y. Chem. Eng. J., 2019, 355: 478.

doi: 10.1016/j.cej.2018.08.170
[81]
Yang X D, Ran Z L, Luo F, Li Y L, Zhang P X, Mi H W. Appl. Surf. Sci., 2020, 509: 145270.

doi: 10.1016/j.apsusc.2020.145270
[82]
Zhou G M, Paek E, Hwang G S, Manthiram A. Nat. Commun., 2015, 6(1): 7760.

doi: 10.1038/ncomms8760
[83]
Chabu J M, Zeng K, Jin G Y, Zhang M Y, Li Y J, Liu Y N. Mater. Chem. Phys., 2019, 229: 226.

doi: 10.1016/j.matchemphys.2019.03.019
[84]
Wang L, Yang Z, Nie H G, Gu C C, Hua W X, Xu X J, Chen X A, Chen Y, Huang S M. J. Mater. Chem. A, 2016, 4(40): 15343.

doi: 10.1039/C6TA07027B
[85]
Zhu L, Jiang H T, Ran W X, You L J, Yao S S, Shen X Q, Tu F Y. Appl. Surf. Sci., 2019, 489: 154.

doi: 10.1016/j.apsusc.2019.05.333
[86]
Yuan S Y, Bao J L, Wang L N, Xia Y Y, Truhlar D G, Wang Y G. Adv. Energy Mater., 2016, 6(5): 1501733.

doi: 10.1002/aenm.201501733
[87]
Chen L, Feng J R, Zhou H H, Fu C P, Wang G C, Yang L M, Xu C X, Chen Z X, Yang W J, Kuang Y F. J. Mater. Chem. A, 2017, 5(16): 7403.

doi: 10.1039/C7TA01265A
[88]
Luo S Q, Zheng C M, Li Y J, Liu S K. J. Power Energy Eng., 2017, 5(12): 16.

doi: 10.4236/jpee.2017.512003
[89]
Zhang M D, Yu C, Zhao C T, Song X D, Han X T, Liu S H, Hao C, Qiu J S. Energy Storage Mater., 2016, 5: 223.
[90]
Li J B, Chen C Y, Chen Y W, Li Z H, Xie W F, Zhang X, Shao M F, Wei M. Adv. Energy Mater., 2019, 9(42): 1901935.

doi: 10.1002/aenm.v9.42
[91]
Hu C J, Yang C K, Yang J J, Han N N, Yuan R Y, Chen Y F, Liu H, Xie T H, Chen R D, Zhou H H, Liu W, Sun X M. ACS Appl. Energy Mater., 2019, 2(4): 2904.

doi: 10.1021/acsaem.9b00243
[92]
Li Y J, Wu J B, Zhang B, Wang W, Zhang G Q, Seh Z W, Zhang N, Sun J, Huang L, Jiang J J, Zhou J, Sun Y M. Energy Storage Mater., 2020, 30: 250.
[93]
Du Z Z, Chen X J, Hu W, Chuang C H, Xie S, Hu A J, Yan W S, Kong X H, Wu X J, Ji H X, Wan L J. J. Am. Chem. Soc., 2019, 141(9): 3977.

doi: 10.1021/jacs.8b12973
[94]
Chen G P, Song X, Wang S Q, Wang Y, Gao T, Ding L X, Wang H H. J. Membr. Sci., 2018, 548: 247.

doi: 10.1016/j.memsci.2017.11.026
[95]
Yang Y X, Wang Z H, Jiang T Z, Dong C, Mao Z, Lu C Y, Sun W, Sun K N. J. Mater. Chem. A, 2018, 6(28): 13593.

doi: 10.1039/C8TA05176C
[96]
Li Q, Guo J N, Zhao J, Wang C C, Yan F. Nanoscale, 2019, 11(2): 647.

doi: 10.1039/C8NR07220E
[97]
Fang R P, Zhao S Y, Pei S F, Cheng Y X, Hou P X, Liu M, Cheng H M, Liu C, Li F. Carbon, 2016, 109: 719.

doi: 10.1016/j.carbon.2016.08.050
[98]
Zhang L L, Liu D B, Muhammad Z, Wan F, Xie W, Wang Y J, Song L, Niu Z Q, Chen J. Adv. Mater., 2019, 31(40): 1903955.

doi: 10.1002/adma.v31.40
[99]
Zhang J, Shi Y, Ding Y, Peng L L, Zhang W K, Yu G H. Adv. Energy Mater., 2017, 7(14): 1602876.

doi: 10.1002/aenm.v7.14
[100]
Chen F, Yang J, Bai T, Long B, Zhou X Y. Electrochimica Acta, 2016, 192: 99.

doi: 10.1016/j.electacta.2016.01.192
[101]
Mi K, Chen S W, Xi B J, Kai S S, Jiang Y, Feng J K, Qian Y T, Xiong S L. Adv. Funct. Mater., 2017, 27(1): 1604265.

doi: 10.1002/adfm.v27.1
[102]
Song J X, Xu T, Gordin M L, Zhu P Y, Lv D, Jiang Y B, Chen Y S, Duan Y H, Wang D H. Adv. Funct. Mater., 2014, 24(9): 1243.

doi: 10.1002/adfm.v24.9
[103]
Zhao S L, Wang D W, Amal R, Dai L M. Adv. Mater., 2019, 31(9): 1801526.

doi: 10.1002/adma.v31.9
[104]
Xiao Y L, Zeng Y, Zeng H B, Zhang W J, Tian B B, Deng Y H. J. Alloys Compd., 2019, 787: 1356.

doi: 10.1016/j.jallcom.2019.01.316
[105]
Li N, Chen K H, Chen S Y, Wang F, Wang D D, Gan F Y, He X, Huang Y C. Carbon, 2019, 149: 564.

doi: 10.1016/j.carbon.2019.04.022
[106]
Lee J, Oh J, Jeon Y, Piao Y Z. ACS Appl. Mater. Interfaces, 2018, 10(31): 26485.

doi: 10.1021/acsami.8b00925
[1] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[2] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[3] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[4] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.
[5] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[6] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[7] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[8] Kang Chun, Lin Yanxin, Jing Yuanju, Wang Xinbo. Preparation and Environmental Applications of 2D Nanomaterial MXenes [J]. Progress in Chemistry, 2022, 34(10): 2239-2253.
[9] Xinye Liu, Zhichao Liang, Shanxing Wang, Yuanfu Deng, Guohua Chen. Carbon-Based Materials for Modification of Polyolefin Separators to Improve the Performance of Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1665-1678.
[10] Linli Guo, Xin Zhang, Min Xiao, Shuanjin Wang, Dongmei Han, Yuezhong Meng. Two-Dimensional Materials Modified Separator Strategies of Suppressing the Shuttle Effect in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(7): 1212-1220.
[11] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[12] Liqing Li, Panwang Wu, Jie Ma. Construction of Double Network Gel Adsorbent and Application for Pollutants Removal from Aqueous Solution [J]. Progress in Chemistry, 2021, 33(6): 1010-1025.
[13] Yubing Wang, Jie Chen, Wei Yan, Jianwen Cui. Preparation and Application of Conjugated Microporous Polymers [J]. Progress in Chemistry, 2021, 33(5): 838-854.
[14] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[15] Fusheng Pan, Yuan Yao, Jie Sun. Catalysis in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(3): 442-461.