中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (7): 1212-1220 DOI: 10.7536/PC200721 Previous Articles   Next Articles

• Review •

Two-Dimensional Materials Modified Separator Strategies of Suppressing the Shuttle Effect in Lithium-Sulfur Batteries

Linli Guo1, Xin Zhang1, Min Xiao2, Shuanjin Wang2, Dongmei Han1,2(), Yuezhong Meng1,2()   

  1. 1 School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
    2 The Key of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
  • Received: Revised: Online: Published:
  • Contact: Dongmei Han, Yuezhong Meng
  • Supported by:
    National Natural Science Foundation of China(21978332)
Richhtml ( 37 ) PDF ( 1096 ) Cited
Export

EndNote

Ris

BibTeX

Lithium-sulfur batteries have a theoretical discharge specific capacity (1675 mAh /g) and energy density (2600 Wh /kg) that are much higher than those of lithium-ion batteries. Lithium-sulfur batteries are considered as very promising battery systems, thus they have been widely concerned and researched. However, the poor conductivity of sulfur, low utilization, and the shuttle effect of polysulfides make the cycling performance of lithium-sulfur batteries unstable. In order to overcome the impact of the shuttle effect, a variety of new separator designs and preparation methods have been developed in recent years to improve the cycle stability of the battery. This article reviews the latest research progress from the perspective of 2D material modification of the separator, and uses high-quality separators to suppress the shuttle effect, which will better achieve high stability of Li-S batteries. Besides, future developments are prospected.

Contents

1 Introduction

1.1 The structure and working principle of lithium-sulfur batteries

1.2 The challenges of lithium-sulfur batteries

2 Two-dimensional material modified separator

2.1 Graphene

2.2 MXenes

2.3 Two-dimensional transition metal dichalcogenideso

2.4 Other two-dimensional materials

3 Conclusion and outlook

Fig. 1 Typical charge-discharge curves for a non-aqueous lithium-sulfur cell[9]
Fig. 2 Schematic of the electrode configuration using an integrated structure of sulfur and G@PP separator and the corresponding battery assembly[35]
Fig. 3 (a) Schematic process of fabricating the ODC/rGO. (b) SEM image, (c) TEM image, (d) HR-TEM images, and (e) N2 adsorption desorption isotherms of the ODC/rGO (the inset is the pore size distribution)[37]
Fig. 4 Schematic configuration of the Li-S cells using PP and MPP separators[45]
Fig. 5 (a) Schematic Li-S cell with rGO@MoS2-coated separator, (b) SEM image of rGO@MoS2 composite, (c) cross-sectional SEM image of rGO@MoS2-coated separator[57]
Fig. 6 Illustration of the Preparation Process of the Ni3(HITP)2-Modified Separator by Filtration and Its Assembly into the Li-S Battery[69]
Fig. 7 Structure of the Li-S cell with an FBN separator: (a) schematic configuration of a sandwich-like Li-S cell with an FBN separator; (b) SEM image of the cross section of the coating layer of FBN nanosheets on the separator; (c) high-magnification SEM image of the surface of the FBN separator; (d) Raman spectrum of FBN nanosheets[73]
[1]
Luo Y Q, Guo L L, Xiao M, Wang S J, Ren S, Han D M, Meng Y Z. J. Mater. Chem. A, 2020, 8(9):4629.

doi: 10.1039/C9TA12910C
[2]
Goodenough J B, Park K S. J. Am. Chem. Soc., 2013, 135(4):1167.

doi: 10.1021/ja3091438 pmid: 23294028
[3]
Armand M, Tarascon J M. Nature, 2008, 451(7179):652.

doi: 10.1038/451652a
[4]
Chu S, Majumdar A. Nature, 2012, 488(7411):294.

doi: 10.1038/nature11475
[5]
Rehman S, Khan K, Zhao Y F, Hou Y L. J. Mater. Chem. A, 2017, 5(7):3014.

doi: 10.1039/C6TA10111A
[6]
Manthiram A, Fu Y Z, Su Y S. Acc. Chem. Res., 2013, 46(5):1125.

doi: 10.1021/ar300179v
[7]
Ali T, Yan C L. ChemSusChem, 2020, 13(6):1447.

doi: 10.1002/cssc.v13.6
[8]
Fang X, Peng H S. Small, 2015, 11(13):1488.

doi: 10.1002/smll.201402354 pmid: 25510342
[9]
Suriyakumar S, Stephan A M. ACS Appl. Energy Mater., 2020, 3(9):8095.

doi: 10.1021/acsaem.0c01354
[10]
Mikhaylik Y V, Akridge J R. J. Electrochem. Soc., 2004, 151(11): A1969.

doi: 10.1149/1.1806394
[11]
Hofmann A F, Fronczek D N, Bessler W G. J. Power Sources, 2014, 259:300.

doi: 10.1016/j.jpowsour.2014.02.082
[12]
Ren W C, Ma W, Zhang S F, Tang B T. Energy Storage Mater., 2019, 23:707.
[13]
Liu B, Fang R Y, Xie D, Zhang W K, Huang H, Xia Y, Wang X L, Xia X H, Tu J P. Energy Environ. Mater., 2018, 1(4):196.

doi: 10.1002/eem2.12021
[14]
Fang R P, Zhao S Y, Sun Z H, Wang D W, Cheng H M, Li F. Adv. Mater., 2017, 29(48):1606823.

doi: 10.1002/adma.v29.48
[15]
Fang R P, Li G X, Zhao S Y, Yin L C, Du K, Hou P X, Wang S G, Cheng H M, Liu C, Li F. Nano Energy, 2017, 42:205.

doi: 10.1016/j.nanoen.2017.10.053
[16]
Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W. Nature, 2014, 516(7529):78.

doi: 10.1038/nature13970
[17]
Guo Y P, Li H Q, Zhai T Y. Adv. Mater., 2017, 29(29):1700007.

doi: 10.1002/adma.201700007
[18]
Huang J Q, Zhuang T Z, Zhang Q, Peng H J, Chen C M, Wei F. ACS Nano, 2015, 9(3):3002.

doi: 10.1021/nn507178a
[19]
Cheon S E, Choi S S, Han J S, Choi Y S, Jung B H, Lim H S. J. Electrochem. Soc., 2004, 151(12): A2067.
[20]
Su Y S, Manthiram A. Nat. Commun., 2012, 3:1166.

doi: 10.1038/ncomms2163
[21]
Kong L, Peng H J, Huang J Q, Zhu W C, Zhang G, Zhang Z W, Zhai P Y, Sun P P, Xie J, Zhang Q. Energy Storage Mater., 2017, 8:153.
[22]
Rana M, Li M, He Q, Luo B, Wang L Z, Gentle I, Knibbe R. J. Energy Chem., 2020, 44:51.

doi: 10.1016/j.jechem.2019.08.017
[23]
Larcher D, Tarascon J M. Nat. Chem., 2015, 7(1):19.

doi: 10.1038/nchem.2085 pmid: 25515886
[24]
Lei T, Chen W, Lv W, Huang J W, Zhu J, Chu J W, Yan C Y, Wu C Y, Yan Y C, He W D, Xiong J, Li Y R, Yan C L, Goodenough J B, Duan X F. Joule, 2018, 2(10):2091.

doi: 10.1016/j.joule.2018.07.022
[25]
Hu Y X, Zhu X B, Wang L Z. ChemSusChem, 2020, 13(6):1366.

doi: 10.1002/cssc.v13.6
[26]
Jana M, Xu R, Cheng X B, Yeon J S, Park J M, Huang J Q, Zhang Q, Park H S. Energy Environ. Sci., 2020, 13(4):1049.

doi: 10.1039/C9EE02049G
[27]
Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y. Chem. Mater., 2017, 29(18):7633.

doi: 10.1021/acs.chemmater.7b02847
[28]
Anasori B, Xie Y, Beidaghi M, Lu J, Hosler B C, Hultman L, Kent P R C, Gogotsi Y, Barsoum M W. ACS Nano, 2015, 9(10):9507.

doi: 10.1021/acsnano.5b03591 pmid: 26208121
[29]
Anasori B, Lukatskaya M R, Gogotsi Y. Nat. Rev. Mater., 2017, 2(2):1.
[30]
Giri A, Yang H, Thiyagarajan K, Jang W, Myoung J M, Singh R, Soon A, Cho K, Jeong U. Adv. Mater., 2017, 29(26):1700291.

doi: 10.1002/adma.v29.26
[31]
Balcı E, Akkuş Ü Ö, Berber S. J. Mater. Chem. C, 2017, 5(24):5956.

doi: 10.1039/C7TC01765K
[32]
Balendhran S, Walia S, Nili H, Sriram S, Bhaskaran M. Small, 2015, 11(6):640.

doi: 10.1002/smll.201402041
[33]
Bao W Z, Liu L, Wang C Y, Choi S, Wang D, Wang G X. Adv. Energy Mater., 2018, 8(13):1702485.

doi: 10.1002/aenm.v8.13
[34]
Bao W Z, Su D W, Zhang W X, Guo X, Wang G X. Adv. Funct. Mater., 2016, 26(47):8746.

doi: 10.1002/adfm.v26.47
[35]
Zhou G M, Li L, Wang D W, Shan X Y, Pei S F, Li F, Cheng H M. Adv. Mater., 2015, 27(4):641.

doi: 10.1002/adma.201404210
[36]
Zhai P Y, Peng H J, Cheng X B, Zhu L, Huang J Q, Zhu W C, Zhang Q. Energy Storage Mater., 2017, 7:56.
[37]
Zhang L L, Wan F, Wang X Y, Cao H M, Dai X, Niu Z Q, Wang Y J, Chen J. ACS Appl. Mater. Interfaces, 2018, 10(6):5594.

doi: 10.1021/acsami.7b18894
[38]
Harris K J, Bugnet M, Naguib M, Barsoum M W, Goward G R. J. Phys. Chem. C, 2015, 119(24):13713.

doi: 10.1021/acs.jpcc.5b03038
[39]
Zheng G Y, Yang Y, Cha J J, Hong S S, Cui Y. Nano Lett., 2011, 11(10):4462.

doi: 10.1021/nl2027684
[40]
Liu F F, Jin S, Xia Q X, Zhou A G, Fan L Z J. Energ. Chem, 2021, 62:220.
[41]
Yu X F, Li Y C, Cheng J B, Liu Z B, Li Q Z, Li W Z, Yang X, Xiao B. ACS Appl. Mater. Interfaces, 2015, 7(24):13707.

doi: 10.1021/acsami.5b03737
[42]
Ren C G, Hatzell K B, Alhabeb M, Ling Z, Mahmoud K A, Gogotsi Y. J. Phys. Chem. Lett., 2015, 6(20):4026.

doi: 10.1021/acs.jpclett.5b01895
[43]
Liang X, Garsuch A, Nazar L F. Angew. Chem. Int. Ed., 2015, 54(13):3907.

doi: 10.1002/anie.201410174
[44]
Lin C, Zhang W K, Wang L, Wang Z G, Zhao W, Duan W H, Zhao Z G, Liu B, Jin J. J. Mater. Chem. A, 2016, 4(16):5993.

doi: 10.1039/C5TA10307J
[45]
Song J J, Su D W, Xie X Q, Guo X, Bao W Z, Shao G J, Wang G X. ACS Appl. Mater. Interfaces, 2016, 8(43):29427.

doi: 10.1021/acsami.6b09027
[46]
Guo D, Ming F W, Su H, Wu Y Q, Wahyudi W, Li M L, Hedhili M N, Sheng G, Li L J, Alshareef H N, Li Y X, Lai Z P. Nano Energy, 2019, 61:478.

doi: 10.1016/j.nanoen.2019.05.011
[47]
Li N, Xie Y, Peng S T, Xiong X, Han K. J. Energy Chem., 2020, 42:116.

doi: 10.1016/j.jechem.2019.06.014
[48]
Jiang G Y, Zheng N, Chen X, Ding G Y, Li Y H, Sun F G, Li Y S. Chem. Eng. J., 2019, 373:1309.

doi: 10.1016/j.cej.2019.05.119
[49]
Ogoke O, Wu G, Wang X L, Casimir A, Ma L, Wu T P, Lu J. J. Mater. Chem. A, 2017, 5(2):448.

doi: 10.1039/C6TA07864H
[50]
Bugga R V, Jones S C, Pasalic J, Seu C S, Jones J P, Torres L. J. Electrochem. Soc., 2016, 164(2):A265.

doi: 10.1149/2.0941702jes
[51]
Duphil D, Bastide S, Lévy-Clément C. J. Mater. Chem., 2002, 12(8):2430.

doi: 10.1039/B202162E
[52]
Li H, Yin Z Y, He Q Y, Li H, Huang X, Lu G, Fam D W H, Tok A I Y, Zhang Q, Zhang H. Small, 2012, 8(1):63.

doi: 10.1002/smll.201101016
[53]
Stephenson T, Li Z, Olsen B, Mitlin D. Energy Environ. Sci., 2014, 7(1):209.

doi: 10.1039/C3EE42591F
[54]
Wilson J A, Yoffe A D. Adv. Phys., 1969, 18(73):193.

doi: 10.1080/00018736900101307
[55]
Liu S F, Zhou Z F, Liu D C. Ceram. Int., 2019, 45(11):14415.

doi: 10.1016/j.ceramint.2019.04.160
[56]
Ghazi Z A, He X, Khattak A M, Khan N A, Liang B, Iqbal A, Wang J X, Sin H, Li L S, Tang Z Y. Adv. Mater., 2017, 29(21):1606817.

doi: 10.1002/adma.201606817
[57]
Tan L, Li X H, Wang Z X, Guo H J, Wang J X. ACS Appl. Mater. Interfaces, 2018, 10(4):3707.

doi: 10.1021/acsami.7b18645
[58]
Dong Y F, Lu P F, Shi H D, Qin J Q, Chen J, Ren W C, Cheng H M, Wu Z S. J. Energy Chem., 2019, 36:64.

doi: 10.1016/j.jechem.2019.04.023
[59]
Pan H Y, Tan Z, Zhou H H, Jiang L L, Huang Z Y, Feng Q X, Zhou Q, Ma S, Kuang Y F. J. Energy Chem., 2019, 39:101.

doi: 10.1016/j.jechem.2019.01.019
[60]
Bai S Y, Liu X Z, Zhu K, Wu S C, Zhou H S. Nat. Energy, 2016, 1(7):1.

doi: 10.1038/ng0492-1
[61]
Chen G P, Song X, Wang S Q, Chen X Z, Wang H H. J. Power Sources, 2018, 408:58.

doi: 10.1016/j.jpowsour.2018.10.078
[62]
Yao S S, Cui J, Huang J Q, Lu Z H, Deng Y, Chong W G W, Wu J X, Ihsan-Ul-Haq M, Ciucci F, Kim J K. Adv. Energy Mater., 2018, 8(24):1800710.

doi: 10.1002/aenm.v8.24
[63]
Chen D D, Huang S, Zhong L, Wang S J, Xiao M, Han D M, Meng Y Z. Adv. Funct. Mater., 2020, 30(7):1907717.

doi: 10.1002/adfm.v30.7
[64]
Li B Q, Peng H J, Chen X, Zhang S Y, Xie J, Zhao C X, Zhang Q. CCS Chem., 2019,128.
[65]
Li B Q, Kong L, Zhao C X, Jin Q, Chen X, Peng H J, Qin J L, Chen J X, Yuan H, Zhang Q, Huang J Q. InfoMat, 2019, 1(4):533.

doi: 10.1002/inf2.v1.4
[66]
Xu R, Sun Y Z, Wang Y F, Huang J Q, Zhang Q. Chin. Chemical Lett., 2017, 28(12):2235.

doi: 10.1016/j.cclet.2017.09.065
[67]
Wang Y, Zhou L P, Huang J Y, Wang X Y, Xu X L, Lu J G, Tian Y, Ye Z Z, Tang H C, Lee S T, Lu Y Y. Adv. Funct. Mater., 2020, 30(12):1910331.

doi: 10.1002/adfm.v30.12
[68]
Tian M, Pei F, Yao M S, Fu Z H, Lin L L, Wu G D, Xu G, Kitagawa H, Fang X L. Energy Storage Mater., 2019, 21:14.
[69]
Chen H H, Xiao Y W, Chen C, Yang J Y, Gao C, Chen Y S, Wu J S, Shen Y, Zhang W N, Li S, Huo F W, Zheng B. ACS Appl. Mater. Interfaces, 2019, 11(12):11459.

doi: 10.1021/acsami.8b22564
[70]
Lin C, Zhang W K, Wang L, Wang Z G, Zhao W, Duan W H, Zhao Z G, Liu B, Jin J. J. Mater. Chem. A, 2016, 4(16):5993.

doi: 10.1039/C5TA10307J
[71]
Dong Y F, Zheng S H, Qin J Q, Zhao X J, Shi H D, Wang X H, Chen J, Wu Z S. ACS Nano, 2018, 12(3):2381.

doi: 10.1021/acsnano.7b07672
[72]
Sun J, Sun Y M, Pasta M, Zhou G M, Li Y Z, Liu W, Xiong F, Cui Y. Adv. Mater., 2016, 28(44):9797.

doi: 10.1002/adma.201602172
[73]
Fan Y, Liu D, Rahman M M, Tao T, Lei W W, Mateti S, Yu B Z, Wang J M, Yang C, Chen Y. ACS Appl. Energy Mater., 2019, 2(4):2620.

doi: 10.1021/acsaem.8b02205
[74]
Sun W H, Sun X G, Akhtar N, Li C M, Wang W K, Wang A B, Wang K, Huang Y Q. J. Energy Chem., 2020, 48:364.

doi: 10.1016/j.jechem.2020.02.030
[1] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[2] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[3] Kang Chun, Lin Yanxin, Jing Yuanju, Wang Xinbo. Preparation and Environmental Applications of 2D Nanomaterial MXenes [J]. Progress in Chemistry, 2022, 34(10): 2239-2253.
[4] Xinye Liu, Zhichao Liang, Shanxing Wang, Yuanfu Deng, Guohua Chen. Carbon-Based Materials for Modification of Polyolefin Separators to Improve the Performance of Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1665-1678.
[5] Yun Lu, Hongjuan Shi, Yuefeng Su, Shuangyi Zhao, Lai Chen, Feng Wu. Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1598-1613.
[6] Xiangye Li, Tianjiao Bai, Xin Weng, Bing Zhang, Zhenzhen Wang, Tieshi He. Application of Electrospun Fibers in Supercapacitors [J]. Progress in Chemistry, 2021, 33(7): 1159-1174.
[7] Yusen Ding, Pu Zhang, Hong Li, Wenhuan Zhu, Hao Wei. Research Status and Prospect of Li-Se Batteries [J]. Progress in Chemistry, 2021, 33(4): 610-632.
[8] Zhuang Yan, Yaling Liu, Zhiyong Tang. Two Dimensional Electrically Conductive Metal-Organic Frameworks [J]. Progress in Chemistry, 2021, 33(1): 25-41.
[9] Hao Sun, Chengwei Song, Yuepeng Pang, Shiyou Zheng. Functional Design of Separator for Li-S Batteries [J]. Progress in Chemistry, 2020, 32(9): 1402-1411.
[10] Chaojiang Fan, Yinglin Yan, Liping Chen, Shiyu Chen, Jiaming Lin, Rong Yang. Transition-Metal Sulfides Modified Cathode of Li-S Batteries [J]. Progress in Chemistry, 2019, 31(8): 1166-1176.
[11] Wenjun Zhao, Jiangzhou Qin, Zhifan Yin, Xia Hu, Baojun Liu. 2D MXenes for Photocatalysis* [J]. Progress in Chemistry, 2019, 31(12): 1729-1736.
[12] Kai Yang, Shengnan Zhang, Dongmei Han, Min Xiao, Shuanjin Wang*, Yuezhong Meng*. Multifunctional Lithium-Sulfur Battery Separator [J]. Progress in Chemistry, 2018, 30(12): 1942-1959.
[13] Gong Xue, Yang Jinlong, Jiang Yulin, Mu Shichun. Application of Electrospinning Technique in Power Lithium-Ion Batteries [J]. Progress in Chemistry, 2014, 26(01): 41-47.