中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (3): 442-461 DOI: 10.7536/PC200572 Previous Articles   Next Articles

• Review •

Catalysis in Lithium-Sulfur Batteries

Fusheng Pan1, Yuan Yao1, Jie Sun1,*()   

  1. 1 Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University,Tianjin 300072, China
  • Received: Revised: Online: Published:
  • Contact: Jie Sun
  • Supported by:
    State Key Laboratory of Catalytic Materials and Reaction Engineering, State Key Laboratory of Catalytic Materials and Reaction Engineering(中国石油化工股份有限公司石油化工科学研究院); the National Natural Science Foundation of China(21878216); the National Natural Science Foundation of China(22005215); Tianjin Science and Technology Project(19YFSLQY0070); the National Key Research and Development Program of China(2019YFE0118800); and Hebei Province Innovation Ability Promotion Project(20312201D)
Richhtml ( 91 ) PDF ( 2051 ) Cited
Export

EndNote

Ris

BibTeX

Lithium-sulfur batteries have a theoretical energy density of up to 2600 Wh·kg-1, and the theoretical capacity of sulfur can reach 1675 mAh·g-1, which is much higher than that of commercial cathode materials of lithium-ion batteries. However, problems such as the "shuttle-effect" of polysulfides have a serious impact on the performance. Current researches mainly use physical limitation and chemisorption to limit polysulfides to the cathode region based on the "blocking" strategies. Inspired by the concept of “dredging”, the catalytic-conversion strategy can realize functions such as reducing overpotential and inducing uniform deposition of Li 2S while suppressing the "shuttle-effect" by speeding up the oxidation-reduction reaction kinetics. Herein, we review the progress of catalysis in lithium-sulfur batteries and divide them into adsorption-conversion mechanisms and redox-mediated mechanisms based on whether redox intermediates are produced. Related materials and characterization techniques and research methods commonly used are also introduced.

Fig.1 Schematic illustration of lithium-sulfur batteries[6]
Fig.2 Typical charge-discharge profile of lithium-sulfur batteries[5]
Fig.3 Cathode modification strategy based on(a) physical limitation,(b) chemisorption,(c) catalysis[9]
Fig.4 (a) Schematic illustration of preparation and catalytic effect of graphene materials loaded with electrocatalyst[30];(b) Electrochemical behavior of CNF/LiPSs/Mo/CNT cathode[35]
Fig.5 (a) Surface-mediated reduction of Li2S from LiPSs on Ti4O7[17];(b) Schematic illustration of catalytic mechanism of defect-rich heterojunction electrocatalyst and its interaction with Li2S6, as well as the partial density of states analysis of Ti and C[39]
Fig.6 (a) Schematic illustration of the reduction process on the surface of carbon and CoS2[29];(b) Promoting redox kinetics through rapid conversion of LixMo6S8 mediator[54]
Fig.7 (a) Adsorption energy of S8 on different titanium-based materials[55];(b) Sulfur-passivated TiN surface[55];(c) LiPSs adsorption and conversion process on the surface of unreduced and reduced CoP[60]
Fig.8 The first charge/discharge profiles of super P with or without nitrogen doping(Inset: the effect of nitrogen-doped super P on the polysulfide redox pathway)[68]
Fig.9 (a) Schematic illustration of POF synthesis and polysulfides catalysis on it[75];(b) CV curve of conversion between soluble LiPSs(2 < y < x ≤ 8) [75];(c) Density of states analysis of sulfur 3p orbitals in Li2S6 and carbon and nitrogen 2p orbitals in POF[75];(d) Molecular configuration of LiPSs on the surface of p-C3N4 and graphene[78]
Fig.10 (a) Schematic illustrations of LiPSs conversion process on the surface of TiN, TiO2 and TiO2-TiN heterojunction[79];(b) Electrochemical impedance spectroscopy of C@SnS2/S, C@SnO2/S and C@SNS2/SnO2/S[81];(c) Schematic illustration of LiPSs adsorption-conversion process on the TiO2-Ti3C2Tx heterostructures[85]
Fig.11 (a) Li2S initial activation model and corresponding voltage curve[18];(b) The effect of spatial heterogeneity on liquid-solid phase transfer[96]
Fig.12 (a) Reactivity of different metal oxides with LiPSs(the potential in the figure is relative to Li/Li+, the red curve is the Li-S cyclic voltammetry curve)[98];(b) Li2S6 adsorption test of VO2 and V2O5[99]
Fig.13 (a) Free radical mechanism of lithium-sulfur battery[109];(b) Electrochemical oxidation of Li2S in unsolvated and solvated states[110]
Fig.14 (a) UV-vis spectra of sulfur cathodes with WO3-x and WO3 nanoplates discharged to 2.35 V and held for different times[115];(b) Schematic illustration of the radicals-mediated LiPSs conversion process in CNTs-S/TS-1 cathode[116]
Fig.15 (a) Schematic illustration of direct oxidation(above) and RM-mediated oxidation(below) in lithium-sulfur batteries[117];(b) Schematic illustration of direct reduction(blue arrow) and RM-mediated reduction(red arrow) in lithium-sulfur batteries[118]
Fig.16 (a) Voltage profiles of Li2S cathode charged with constant current in electrolytes with different RMs, and XRD characterization of the cathode at the cut-off voltage[117];(b) The first discharge profile of lithium-sulfur battery with or without RM[118]
Fig.17 (a) Schematic illustration of the reversible transition between protonated and deprotonated states of quinonoid imines with LiPSs desorption and adsorption[124];(b) Imide-mediated redox mechanism of LiPSs[125]
Fig.18 (a) Schematic illustration of the preparation of the M1/NG-modified separator(Inset: digital photo of separators before and after modification)[130];(b) Electrochemical titrations of the Li2S6 adsorption on NG and M1/NG in DOL/DME(Inset: digital photo of the titrated solutions after 12 hours)[130];(c) The free-energy diagrams of LiPSs on NG or Ni@NG[131];(d) The catalytic mechanism of the LiPSs on the surface of Ni@NG[131]
Fig.19 (a) Gibbs free-energy profiles for the reduction of LiPSs on N/G and Co-N/G substrates[134];(b) Energy profiles of the decomposition of Li2S on N/G and Co-N/G[134]
Fig.20 (a) Initial discharge profiles of the flask cells with conventional and 50 vol% DMDS-containing electrolyte[135];(b) The redox mechanism of trimethyl disulfide(DMTS)[136];(c) Schematic illustration of structure and function of the LSB with Gra/DTT interlayer[137]
Fig.21 (a) XPS spectra of solids recovered from CuO-Li2S4 suspension[98];(b) XPS spectra of solids recovered from NiOOH-Li2S4 suspension[98];(c) UV-vis spectra of Li2S6 in different solvents[109];(d) Raman spectra of Li2S6 in different solvents[109]
Fig.22 (a) Crystal structure and theoretical band structure of TiS2[14];(b) Simulation of Li2S6 adsorption on the surface of 2[14];(c) Schematic illustration of the diffusion path of Li+ on the surface of 2[14];(d) Schematic illustration of Li2S decomposition on the surface of 2[14]
[1]
Lu Y X, Rong X H, Hu Y S, Chen L Q, Li H. Energy Storage Mater., 2019, 23:144.
[2]
Bresser D, Hosoi K, Howell D, Li H, Zeisel H, Amine K, Passerini S. J. Power Sources, 2018, 382:176.
[3]
Yang K, Zhang S N, Han D M, Xiao M, Wang S J, Meng Y Z. Progress in Chemistry, 2018, 30(12):1942.
( 杨凯, 章胜男, 韩东梅, 肖敏, 王拴紧, 孟跃中. 化学进展, 2018,30(12):1942.).
[4]
Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Nat. Mater., 2012, 11(1):19.
[5]
Seh Z W, Sun Y M, Zhang Q F, Cui Y. Chem. Soc. Rev., 2016, 45(20):5605.
[6]
Li B, Xu H F, Ma Y, Yang S B. Nanoscale Horiz., 2019, 4(1):77.
[7]
Liang J, Li F, Cheng H M. Energy Storage Mater., 2016, 2:A1.
[8]
Rehman S, Khan K, Zhao Y F, Hou Y L. J. Mater. Chem. A, 2017, 5(7):3014.
[9]
Yang Y X, Wang Z H, Jiang T Z, Dong C, Mao Z, Lu C Y, Sun W, Sun K N. J. Mater. Chem. A, 2018, 6(28):13593.
[10]
Manthiram A, Fu Y Z, Chung S H, Zu C X, Su Y S. Chem. Rev., 2014, 114(23):11751.
[11]
Yin Y X, Xin S, Guo Y G, Wan L J. Angew. Chem. Int. Ed., 2013, 52(50):13186.
[12]
Wang T Y, Kretschmer K, Choi S, Pang H, Xue H G, Wang G X. Small Methods, 2017, 1(8):1700089.
[13]
Wu F, Zhao S Y, Yu Y, Li J, Su Y F, Chen L. Progress in Chemisty, 2017, 29(6):593.
吴锋, 赵双义, 卢赟, 李健, 苏岳锋, 陈来. 化学进展, 2017, 29(6):593.
[14]
Zhou G M, Tian H Z, Jin Y, Tao X Y, Liu B F, Zhang R F, Seh Z W, Zhuo D, Liu Y Y, Sun J, Zhao J, Zu C X, Wu D S, Zhang Q F, Cui Y. PNAS, 2017, 114(5):840.
[15]
Zhao M, Li B Q, Chen X, Xie J, Yuan H, Huang J Q. Chem, 2020, 6(12):3297.
[16]
Zhao M, Chen X, Li X Y, Li B Q, Huang J Q. Adv. Mater., 2021,doi:10.1002/adma.202007298.
[17]
Pang Q, Kundu D P, Cuisinier M, Nazar L F. Nat. Commun., 2014, 5:4759.
[18]
Yang Y, Zheng G Y, Misra S, Nelson J, Toney M F, Cui Y. J. Am. Chem. Soc., 2012, 134(37):15387.
[19]
Liu D H, Zhang C, Zhou G M, Lv W, Ling G W, Zhi L J, Yang Q H. Adv. Sci., 2018, 5(1):1700270.
[20]
Lim W G, Kim S, Jo C, Lee J. Angew. Chem., 2019, 131(52):18920.
[21]
He J R, Manthiram A. Energy Storage Mater., 2019, 20:55.
[22]
Song Y Z, Cai W L, Kong L, Cai J S, Zhang Q, Sun J Y. Adv. Energy Mater., 2020, 10(11):1901075.
[23]
Zhang Z W, Peng H J, Zhao M, Huang J Q. Adv. Funct. Mater., 2018, 28(38):1707536.
[24]
Zhang M, Chen W, Xue L X, Jiao Y, Lei T, Chu J W, Huang J W, Gong C H, Yan C Y, Yan Y C, Hu Y, Wang X F, Xiong J. Adv. Energy Mater., 2020, 10(2):1903008.
[25]
Zhang Q F, Wang Y P, Seh Z W, Fu Z H, Zhang R F, Cui Y. Nano Lett., 2015, 15(6):3780.
[26]
Tao X Y, Wang J G, Liu C, Wang H T, Yao H B, Zheng G Y, Seh Z W, Cai Q X, Li W Y, Zhou G M, Zu C X, Cui Y. Nat. Commun., 2016, 7:11203.
[27]
Li L, Chen L, Mukherjee S, Gao J, Sun H, Liu Z B, Ma X L, Gupta T, Singh C V, Ren W C, Cheng H M, Koratkar N. Adv. Mater., 2017, 29(2):1602734.
[28]
Xu Z L, Lin S H, Onofrio N, Zhou L M, Shi F Y, Lu W, Kang K, Zhang Q, Lau S P. Nat. Commun., 2018, 9:4164.
[29]
Yuan Z, Peng H J, Hou T Z, Huang J Q, Chen C M, Wang D W, Cheng X B, Wei F, Zhang Q. Nano Lett., 2016, 16(1):519.
[30]
Al Salem H, Babu G, Rao C V, Arava L M R. J. Am. Chem. Soc., 2015, 137(36):11542.
[31]
Fan C Y, Xiao P, Li H H, Wang H F, Zhang L L, Sun H Z, Wu X L, Xie H M, Zhang J P. ACS Appl. Mater. Interfaces, 2015, 7(50):27959.
[32]
Babu G, Ababtain K, Ng K Y S, Arava L M R. Sci. Rep., 2015, 5:8763.
[33]
Liu L J, Chen Y, Zhang Z F, You X L, Walle M D, Li Y J, Liu Y N. J. Power Sources, 2016, 325:301.
[34]
Zhang Z, Kong L L, Liu S, Li G R, Gao X P. Adv. Energy Mater., 2017, 7(11):1602543.
[35]
Li Y J, Wang C, Wang W, Eng A Y S, Wan M T, Fu L, Mao E Y, Li G C, Tang J, Seh Z W, Sun Y M. ACS Nano, 2020, 14(1):1148.
[36]
Song M S, Han S C, Kim H S, Kim J H, Kim K T, Kang Y M, Ahn H J, Dou S X, Lee J Y. J. Electrochem. Soc., 2004, 151(6):A791.
[37]
Choi Y J, Jung B S, Lee D J, Jeong J H, Kim K W, Ahn H J, Cho K K, Gu H B. Phys. Scr., 2007, T129:62.
[38]
Sun F G, Wang J T, Long D H, Qiao W M, Ling L C, Lv C, Cai R. J. Mater. Chem. A, 2013, 1(42):13283.
[39]
Wang Y K, Zhang R F, Chen J, Wu H, Lu S Y, Wang K, Li H L, Harris C J, Xi K, Kumar R V, Ding S J. Adv. Energy Mater., 2019, 9(24):1900953.
[40]
Zheng C, Niu S Z, Lv W, Zhou G M, Li J, Fan S X, Deng Y Q, Pan Z Z, Li B H, Kang F Y, Yang Q H. Nano Energy, 2017, 33:306.
[41]
Li S, Cen Y, Xiang Q, Aslam M K, Hu B B, Li W, Tang Y, Yu Q, Liu Y P, Chen C G. J. Mater. Chem. A, 2019, 7(4):1658.
[42]
Zhu M Q, Li S M, Liu J H, Li B. Appl. Surf. Sci., 2019, 473:1002.
[43]
Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar L F. Nat. Commun., 2015, 6:5682.
[44]
Peng H J, Zhang Z W, Huang J Q, Zhang G, Xie J, Xu W T, Shi J L, Chen X, Cheng X B, Zhang Q. Adv. Mater., 2016, 28(43):9551.
[45]
Zhang S S, Tran D T. J. Mater. Chem. A, 2016, 4(12):4371.
[46]
Pang Q, Kundu D P, Nazar L F. Mater. Horiz., 2016, 3(2):130.
[47]
Fan C J, Yan Y L, Chen L P, Chen S Y, Lin J M, Yang R. Prog. Chem., 2019, 31(8):1166.
樊潮江, 燕映霖, 陈利萍, 陈世煜, 蔺佳明, 杨蓉. 化学进展, 2019, 31(8):1166.
[48]
Yan G, Xu C, Meng Z H, Hou M Z, Yan W, Lin N B, Lai L F, Zhan D. Nanoscale, 2020, 12(48):24368.
[49]
Wang H T, Zhang Q F, Yao H B, Liang Z, Lee H W, Hsu P C, Zheng G Y, Cui Y. Nano Lett., 2014, 14(12):7138.
[50]
Babu G, Masurkar N, Al Salem H, Arava L M R. J Am. Chei. Society, 2016,139∶171.
[51]
Park J, Yu B C, Park J S, Choi J W, Kim C, Sung Y E, Goodenough J B. Adv. Energy Mater., 2017, 7(11):1602567.
[52]
Xu J, Zhang W X, Fan H B, Cheng F L, Su D W, Wang G X. Nano Energy, 2018, 51:73.
[53]
Pu J, Shen Z H, Zheng J X, Wu W L, Zhu C, Zhou Q W, Zhang H G, Pan F. Nano Energy, 2017, 37:7.
[54]
Lu K, Liu Y Z, Chen J Z, Zhang Z C, Cheng Y W. ACS Nano, 2019, 13(12):14540.
[55]
Jeong T G, Choi D S, Song H, Choi J, Park S A, Oh S H, Kim H, Jung Y, Kim Y T. ACS Energy Lett., 2017, 2(2):327.
[56]
Sun Z H, Zhang J Q, Yin L C, Hu G J, Fang R P, Cheng H M, Li F. Nat. Commun., 2017, 8:14627.
[57]
Mosavati N, Chitturi V R, Salley S O, Ng K Y S. J. Power Sources, 2016, 321:87.
[58]
Mosavati N, Salley S O, Ng K Y S. J. Power Sources, 2017, 340:210.
[59]
Mi Y Y, Liu W, Li X L, Zhuang J L, Zhou H H, Wang H L. Nano Res., 2017, 10(11):3698.
[60]
Zhong Y R, Yin L C, He P, Liu W, Wu Z S, Wang H L. J. Am. Chem. Soc., 2018, 140(4):1455.
[61]
Zhou J B, Liu X J, Zhu L Q, Zhou J, Guan Y, Chen L, Niu S W, Cai J Y, Sun D, Zhu Y C, Du J, Wang G M, Qian Y T. Joule, 2018, 2(12):2681.
[62]
Cai W L, Li G R, Zhang K L, Xiao G N, Wang C, Ye K F, Chen Z W, Zhu Y C, Qian Y T. Adv. Funct. Mater., 2018, 28(2):1704865.
[63]
Peng H J, Zhang G, Chen X, Zhang Z W, Xu W T, Huang J Q, Zhang Q. Angew. Chem. Int. Ed., 2016, 55(42):12990.
[64]
Yang C P, Yin Y X, Ye H, Jiang K C, Zhang J, Guo Y G. ACS Appl. Mater. Interfaces, 2014, 6(11):8789.
[65]
Song J X, Xu T, Gordin M L, Zhu P Y, Lv D, Jiang Y B, Chen Y S, Duan Y H, Wang D H. Adv. Funct. Mater., 2014, 24(9):1243.
[66]
Qiu Y C, Li W F, Zhao W, Li G Z, Hou Y, Liu M N, Zhou L S, Ye F M, Li H F, Wei Z H, Yang S H, Duan W H, Ye Y F, Guo J H, Zhang Y G. Nano Lett., 2014, 14(8):4821.
[67]
Song J X, Gordin M L, Xu T, Chen S R, Yu Z X, Sohn H, Lu J, Ren Y, Duan Y H, Wang D H. Angew. Chem. Int. Ed., 2015, 54(14):4325.
[68]
Chen J J, Yuan R M, Feng J M, Zhang Q, Huang J X, Fu G, Zheng M S, Ren B, Dong Q F. Chem. Mater., 2015, 27(6):2048.
[69]
Yuan H D, Zhang W K, Wang J G, Zhou G M, Zhuang Z Z, Luo J M, Huang H, Gan Y P, Liang C, Xia Y, Zhang J, Tao X Y. Energy Storage Mater., 2018, 10:1.
[70]
Guo D, Wei H, Chen X, Liu M, Ding F, Yang Z, Yang Y, Wang S, Yang K, Huang S. J. Mater. Chem. A, 2017, 5(34):18193.
[71]
Du L Y, Wu Q, Yang L J, Wang X, Che R C, Lyu Z Y, Chen W, Wang X Z, Hu Z. Nano Energy, 2019, 57:34.
[72]
Wu H L, Xia L, Ren J, Zheng Q J, Xu C G, Lin D M. J. Mater. Chem. A, 2017, 5(38):20458.
[73]
Jin C B, Zhang W K, Zhuang Z Z, Wang J G, Huang H, Gan Y P, Xia Y, Liang C, Zhang J, Tao X Y. J. Mater. Chem. A, 2017, 5(2):632.
[74]
Zhou G M, Paek E, Hwang G S, Manthiram A. Nat. Commun., 2015, 6:7760.
[75]
Li B Q, Peng H J, Chen X, Zhang S Y, Xie J, Zhao C X, Zhang Q. CCS Chem., 2019:128.
[76]
Liu J H, Li W F, Duan L M, Li X, Ji L, Geng Z B, Huang K K, Lu L H, Zhou L S, Liu Z R, Chen W, Liu L W, Feng S H, Zhang Y G. Nano Lett., 2015, 15(8):5137.
[77]
Pang Q, Nazar L F. ACS Nano, 2016, 10(4):4111.
[78]
Liang J, Yin L C, Tang X N, Yang H C, Yan W S, Song L, Cheng H M, Li F. ACS Appl. Mater. Interfaces, 2016, 8(38):25193.
[79]
Zhou T H, Lv W, Li J, Zhou G M, Zhao Y, Fan S X, Liu B L, Li B H, Kang F Y, Yang Q H. Energy Environ. Sci., 2017, 10(7):1694.
[80]
Wang N, Chen B, Qin K Q, Liu E Z, Shi C S, He C N, Zhao N Q. Nano Energy, 2019, 60:332.
[81]
Wang M X, Fan L S, Wu X, Qiu Y, Wang Y, Zhang N Q, Sun K N. Chem. Eur. J., 2019, 25(21):5416.
[82]
Zhou T H, Zhao Y, Zhou G M, Lv W, Sun P J, Kang F Y, Li B H, Yang Q H. Nano Energy, 2017, 39:291.
[83]
Wang M L, Song Y Z, Sun Z T, Shao Y L, Wei C H, Xia Z, Tian Z N, Liu Z F, Sun J Y. ACS Nano, 2019, 13(11):13235.
[84]
Gu S N, Bai Z W, Majumder S, Huang B L, Chen G H. Nanoscale, 2019, 11(43):20579.
[85]
Jiao L, Zhang C, Geng C N, Wu S C, Li H, Lv W, Tao Y, Chen Z J, Zhou G M, Li J, Ling G W, Wan Y, Yang Q H. Adv. Energy Mater., 2019, 9(19):1900219.
[86]
Zhang Y J, Qu J, Ji Q Y, Zhang T T, Chang W, Hao S M, Yu Z Z. Carbon, 2019, 155:353.
[87]
He J R, Chen Y F, Lv W, Wen K C, Xu C, Zhang W L, Li Y R, Qin W, He W D. ACS Nano, 2016, 10(12):10981.
[88]
Li Y J, Fan J M, Zhang J H, Yang J F, Yuan R M, Chang J, Zheng M S, Dong Q F. ACS Nano, 2017, 11(11):11417.
[89]
Chen S X, Han X X, Luo J H, Liao J, Wang J, Deng Q, Zeng Z L, Deng S G. Chem. Eng. J., 2020, 385:123457.
[90]
Fang R P, Zhao S Y, Pei S F, Cheng Y X, Hou P X, Liu M, Cheng H M, Liu C, Li F. Carbon, 2016, 109:719.
[91]
Li Y J, Fan J M, Zheng M S, Dong Q F. Energy Environ. Sci., 2016, 9(6):1998.
[92]
Zhang M D, Yu C, Zhao C T, Song X D, Han X T, Liu S H, Hao C, Qiu J S. Energy Storage Mater., 2016, 5:223.
[93]
Barchasz C, Molton F, Duboc C, Leprêtre J C, Patoux S, Alloin F. Anal. Chem., 2012, 84(9):3973.
[94]
Cuisinier M, Cabelguen P E, Evers S, He G, Kolbeck M, Garsuch A, Bolin T, Balasubramanian M, Nazar L F. J. Phys. Chem. Lett., 2013, 4(19):3227.
[95]
Chen S R, Dai F, Gordin M L, Wang D H. RSC Adv., 2013, 3(11):3540.
[96]
Peng H J, Huang J Q, Liu X Y, Cheng X B, Xu W T, Zhao C Z, Wei F, Zhang Q. J. Am. Chem. Soc., 2017, 139(25):8458.
[97]
Lin Z, Liu Z C, Fu W J, Dudney N J, Liang C D. Angew. Chem. Int. Ed., 2013, 52(29):7460.
[98]
Liang X, Kwok C Y, Lodi-Marzano F, Pang Q, Cuisinier M, Huang H, Hart C J, Houtarde D, Kaup K, Sommer H, Brezesinski T, Janek J, Nazar L F. Adv. Energy Mater., 2016, 6(6):1501636.
[99]
Song Y Z, Zhao W, Zhu X Y, Zhang L, Li Q C, Ding F, Liu Z F, Sun J Y. ACS Appl. Mater. Interfaces, 2018, 10(18):15733.
[100]
Wang S Z, Liao J X, Yang X F, Liang J N, Sun Q, Liang J W, Zhao F P, Koo A, Kong F P, Yao Y, Gao X J, Wu M Q, Yang S Z, Li R Y, Sun X L. Nano Energy, 2019, 57:230.
[101]
Wu J W, Ma Q Y, Lian C, Yuan Y, Long D H. Chem. Eng. J., 2019, 370:556.
[102]
Kong W B, Wang D T, Yan L J, Luo Y F, Jiang K L, Li Q Q, Zhang L, Lu S G, Fan S S, Li J, Wang J P. Carbon, 2018, 139:896.
[103]
Wang R X, Wang K L, Gao S, Jiang M, Han J, Zhou M, Cheng S J, Jiang K. Nanoscale, 2018, 10(35):16730.
[104]
Lu Q, Sun Y, Liao K M, Zou X H, Hamada I, Zhou W, Ni M, Shao Z P. Electrochimica Acta, 2019, 298:421.
[105]
Yang T, Liu K L, Ren R Z, Zhang J Z, Zheng X W, Wang C Y, Chen M M. Chem. Eng. J., 2020, 381:122685.
[106]
Wang J, Jia L J, Zhong J, Xiao Q B, Wang C, Zang K T, Liu H T, Zheng H C, Luo J, Yang J, Fan H Y, Duan W H, Wu Y, Lin H Z, Zhang Y G. Energy Storage Mater., 2019, 18:246.
[107]
Wang Q, Zheng J M, Walter E, Pan H L, Lv D, Zuo P J, Chen H H, Deng Z D, Liaw B Y, Yu X Q, Yang X Q, Zhang J G, Liu J, Xiao J. J. Electrochem. Soc., 2015, 162(3):A474.
[108]
Zou Q L, Lu Y C. J. Phys. Chem. Lett., 2016, 7(8):1518.
[109]
Zhang G, Peng H J, Zhao C Z, Chen X, Zhao L D, Li P, Huang J Q, Zhang Q. Angew. Chem. Int. Ed., 2018, 57(51):16732.
[110]
Cuisinier M, Hart C, Balasubramanian M, Garsuch A, Nazar L F. Adv. Energy Mater., 2015, 5(16):1401801.
[111]
Lin H B, Zhang S L, Zhang T R, Cao S, Ye H L, Yao Q F, Zheng G W, Lee J Y. ACS Nano, 2019, 13(6):7073.
[112]
Liu M M, Zhang C C, Su J M, Chen X, Ma T Y, Huang T, Yu A S. ACS Appl. Mater. Interfaces, 2019, 11(23):20788.
[113]
Yi Y K, Li H P, Chang H H, Yang P, Tian X L, Liu P, Qu L, Li M T, Yang B L, Li H M, Zhu W S, Dai S. Chem. Eur. J., 2019, 25(34):8112.
[114]
Lee G H, Lee S, Kim J C, Kim D W, Kang Y K, Kim D W. Adv. Energy Mater., 2017, 7(6):1601741.
[115]
Lin H B, Zhang S L, Zhang T R, Ye H L, Yao Q F, Zheng G W, Lee J Y. Adv. Energy Mater., 2018, 8(30):1801868.
[116]
Chan D, Xiao Z B, Guo Z Q, Lai Y C, Zhang Y G, Zhou S Y, Ding X W, Nie H G, Yang Z. Nanoscale, 2019, 11(36):16968.
[117]
Meini S, Elazari R, Rosenman A, Garsuch A, Aurbach D. J. Phys. Chem. Lett., 2014, 5(5):915.
[118]
Zhao M, Peng H J, Wei J Y, Huang J Q, Li B Q, Yuan H, Zhang Q. Small Methods, 2020, 4(6):1900344.
[119]
Yeom J, Kabir M H, Lim B, Ahn H S, Kim S Y, Lee C. Sci. Rep., 2016, 6:35305.
[120]
Gerber L C H, Frischmann P D, Fan F Y, Doris S E, Qu X H, Scheuermann A M, Persson K, Chiang Y M, Helms B A. Nano Lett., 2016, 16(1):549.
[121]
Kim S, Cho M, Chanthad C, Lee Y. J. Energy Chem., 2020, 44:154.
[122]
Hernández G, Lago N, Shanmukaraj D, Armand M, Mecerreyes D. Mater. Today Energy, 2017, 6:264.
[123]
Tsao Y, Lee M, Miller E C, Gao G P, Park J, Chen S C, Katsumata T, Tran H, Wang L W, Toney M F, Cui Y, Bao Z N. Joule, 2019, 3(3):872.
[124]
Chen C Y, Peng H J, Hou T Z, Zhai P Y, Li B Q, Tang C, Zhu W C, Huang J Q, Zhang Q. Adv. Mater., 2017, 29(23):1606802.
[125]
Wu X, Liu N N, Guan B, Qiu Y, Wang M X, Cheng J H, Tian D, Fan L S, Zhang N Q, Sun K N. Adv. Sci., 2019, 6(21):1900958.
[126]
Qiao B T, Wang A Q, Yang X F, Allard L F, Jiang Z, Cui Y T, Liu J Y, Li J, Zhang T. Nat. Chem., 2011, 3(8):634.
[127]
Pei G X, Liu X Y, Wang A Q, Lee A F, Isaacs M A, Li L, Pan X L, Yang X F, Wang X D, Tai Z J, Wilson K, Zhang T. ACS Catal., 2015, 5(6):3717.
[128]
Lin J, Wang A Q, Qiao B T, Liu X Y, Yang X F, Wang X D, Liang J X, Li J, Liu J Y, Zhang T. J. Am. Chem. Soc., 2013, 135(41):15314.
[129]
Pan Y, Liu S J, Sun K A, Chen X, Wang B, Wu K L, Cao X, Cheong W C, Shen R, Han A J, Chen Z, Zheng L R, Luo J, Lin Y, Liu Y Q, Wang D S, Peng Q, Zhang Q, Chen C, Li Y D. Angew. Chem. Int. Ed., 2018, 57(28):8614.
[130]
Zhang K, Chen Z X, Ning R Q, Xi S B, Tang W, Du Y H, Liu C B, Ren Z Y, Chi X, Bai M H, Shen C, Li X, Wang X W, Zhao X X, Leng K, Pennycook S J, Li H P, Xu H, Loh K P, Xie K Y. ACS Appl. Mater. Interfaces, 2019, 11(28):25147.
[131]
Zhang L L, Liu D B, Muhammad Z, Wan F, Xie W, Wang Y J, Song L, Niu Z Q, Chen J. Adv. Mater., 2019, 31(40):1903955.
[132]
Liu Z Z, Zhou L, Ge Q, Chen R J, Ni M, Utetiwabo W, Zhang X L, Yang W. ACS Appl. Mater. Interfaces, 2018, 10(23):19311.
[133]
Wang C G, Song H W, Yu C C, Ullah Z, Guan Z X, Chu R R, Zhang Y F, Zhao L Y, Li Q, Liu L W. J. Mater. Chem. A, 2020, 8(6):3421.
[134]
Du Z Z, Chen X J, Hu W, Chuang C H, Xie S, Hu A J, Yan W S, Kong X H, Wu X J, Ji H X, Wan L J. J. Am. Chem. Soc., 2019, 141(9):3977.
[135]
Chen S R, Dai F, Gordin M L, Yu Z X, Gao Y, Song J X, Wang D H. Angew. Chem. Int. Ed., 2016, 55(13):4231.
[136]
Wu M, Cui Y, Bhargav A, Losovyj Y, Siegel A, Agarwal M, Ma Y, Fu Y Z. Angew. Chem. Int. Ed., 2016, 55(34):10027.
[137]
Hua W X, Yang Z, Nie H G, Li Z Y, Yang J Z, Guo Z Q, Ruan C P, Chen X, Huang S M. ACS Nano, 2017, 11(2):2209.
[138]
Cañas N A, Fronczek D N, Wagner N, Latz A, Friedrich K A. J. Phys. Chem. C, 2014, 118(23):12106.
[139]
Lowe M A, Gao J, Abruña H D. RSC Adv., 2014, 4(35):18347.
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[3] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[6] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[7] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[8] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[9] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[10] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[11] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[12] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[13] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[14] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[15] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
Viewed
Full text


Abstract

Catalysis in Lithium-Sulfur Batteries