中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (8): 1172-1183 DOI: 10.7536/PC200434 Previous Articles   Next Articles

• Review •

Defect with Catalysis

Chao Xie1, Bo Zhou1, Ling Zhou1, Yujie Wu1, Shuangyin Wang1,**()   

  1. 1. State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory for Graphene Materials and Devices, School of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
  • Received: Revised: Online: Published:
  • Contact: Shuangyin Wang
  • About author:
  • Supported by:
    the National Natural Science Foundation of China(51402100); the National Natural Science Foundation of China(21573066); the National Natural Science Foundation of China(U19A2017); the National Natural Science Foundation of China(21825201); Provincial Natural Science Foundation of Hunan(2016JJ1006); Provincial Natural Science Foundation of Hunan(2016TP1009)
Richhtml ( 92 ) PDF ( 2021 ) Cited
Export

EndNote

Ris

BibTeX

Catalysis plays a significant role in modern industrial production and daily life and the exploration of efficient catalysts is an important issue of catalysis research. In recent decades, many researchers found the important effect of catalyst defects for their catalytic activity and various defective catalysts are prepared. Nevertheless, the relationship between defect and catalysis still needs clarification. In this review, we mainly introduce solid defect chemistry fundamental, defect types in catalysts, characterization and controllable construction of defects, the roles and the dynamic evolution of defects in catalysis. Finally, the summary and outlook for “defect with catalysis” are demonstrated. We hope this review can reveal the origin and development of catalyst defect chemistry, emphasize the importance of defect for catalysis and provide some guidance for exploration and mechanism researches of defect catalysts.

Contents

1 Introduction

2 Solid defect chemistry fundamental

2.1 Classification of solid defects

2.2 Symbols and chemical reaction of solid defect

3 Types, characterization and synthesis of defects in catalysts

3.1 Defect types in catalysts

3.2 Characterization of catalyst defects

3.3 Controllable synthesis of catalyst defects

4 Relationship between defects and activity of catalysts

5 Conclusion and outlook

Table 1 Kröger-Vink symbolic notation of crystal defects[20]
Fig.1 (a) EPR spectra of TiO2/b-Si samples with different defects[40]; (b) Positron lifetime spectrum of the two CoSe2 samples[42]; (c) R space data of the Ni K-edge XANES spectra for the Mono-NTi-MMO and control samples[30]; (d) R space data of the Fe K-edge XANES spectra for CoFe LDHs[43]
Fig.2 (a) STM image of CeO2 with defects[46]; (b) STM image of TiO2(111) with CO adsorption[47]; (c) STEM image of defective graphene[49]; (d) STEM image of WS2 with sulfur vacancies[51]
Fig.3 (a) Schematic diagram of the role of oxygen vacancy in catalyzing CO oxidation[86]; (b) Volcano relationships of surface charge and catalytic activities[96]
Fig.4 (a) Catalytic performance of Au-SA/Def-TiO2 and control for CO oxidation; (b) Schematic diagram of active site structure and the catalytic stability of Au-SA/Def-TiO2[107]
Fig.5 Schematic of Pd nanoparticles/black TiO2/b-Si photocathode for water reduction, graded oxygen defects of b-TiO2 improve the separation efficiency of electron-hole pair[40]
[1]
Xu R. Natl. Sci. Rev., 2018,5:1.
[2]
Rastei M V, Pierron Bohnes V, Toulemon D, Bouillet C, Kákay A, Hertel R, Tetsi E, Begin Colin S, Pichon B P. Adv. Funct. Mater., 2019,29:1903927.
[3]
Feng Y, Wu J G, Chi Q G, Li W L, Yu Y, Fei W D. Chem. Rev., 2020,120(3):1710. https://www.ncbi.nlm.nih.gov/pubmed/31899631

doi: 10.1021/acs.chemrev.9b00507 pmid: 31899631
[4]
Huq T N, Lee L C, Eyre L, Li W, Jagt R A, Kim C, Fearn S, Pecunia V, Deschler F, MacManus-Driscoll J L, Hoye R L Z. Adv. Funct. Mater., 2020,1909983.
[5]
Wang H, Qiu Z, Xia W, Ming C, Han Y, Cao L, Lu J, Zhang P, Zhang S, Xu H, Sun Y Y. Phys. Chem. Lett., 2019,10:6996.
[6]
Zhang Y, Tao L, Xie C, Wang D, Zou Y, Chen R, Wang Y, Jia C, Wang S. Adv. Mater., 2020,32:1905923.
[7]
Gai Boyes P L. Catal. Rev., 1992,34:1.
[8]
Koketsu T, Ma J, Morgan B J, Body M, Legein C, Goddard P, Borkiewicz O J, Strasser P, Dambournet D. Energy Stor. Mater., 2020,25:154.
[9]
Squires A G, Scanlon D O, Morgan B J. Chem. Mater., 2020,32(5):1876.
[10]
Xu X, Huang Y, Xie L, Wu D, Ge Z, He J. Chem. Mater., 2020,32:1693.
[11]
Chen J, Han Y, Kong X, Deng X, Park H J, Guo Y, Jin S, Qi Z, Lee Z, Qiao Z, Ruoff R S, Ji H. Angew. Chem. Int. Ed., 2016,55:13822.
[12]
Merkle R, Maier J. Top. Catal., 2006,38:141. http://link.springer.com/10.1007/s11244-006-0079-5

doi: 10.1007/s11244-006-0079-5
[13]
Gao P, Chen Z, Gong Y, Zhang R, Liu H, Tang P, Chen X, Passerini S, Liu J. Adv. Energy Mater., 2020, DOI: 10.1002/aenm.201903780. https://www.ncbi.nlm.nih.gov/pubmed/26225131

doi: 10.1002/aenm.201301544 pmid: 26225131
[14]
Schlögl R. Angew. Chem. Int. Ed., 2015,54:3465.
[15]
Xu W, Thapa K B, Ju Q, Fang Z, Huang W. Coord. Chem. Rev., 2018,373:199.
[16]
Xu R, Wang K, Chen G, Yan W. Natl. Sci. Rev., 2018,6:191.
[17]
Maier J. Angew. Chem. Int. Ed., 1993,32(2):313.
[18]
Maier J. Angew. Chem. Int. Ed., 1993,32(4):528.
[19]
Kroger F. Annu. Rev. Mater. Sci., 1977,7:449.
[20]
Tilley R J D. Defects in Solids, John Wiley & Sons, 2008, DOI: 10.1002/9780470380758.
[21]
Banhart F, Kotakoski J, Krasheninnikov A V. ACS Nano, 2011,5:26. https://www.ncbi.nlm.nih.gov/pubmed/21090760

doi: 10.1021/nn102598m pmid: 21090760
[22]
Zhu W, Zhang L, Yang P, Hu C, Dong H, Zhao Z J, Mu, R, Gong J. ACS Energy Lett., 2018,3(9):2144.
[23]
Xu X, Zhang X, Sun H, Yang Y, Dai X, Gao J, Li X, Zhang P, Wang H H, Yu N F, Sun S G. Angew. Chem. Int. Ed., 2014,53:12522.
[24]
Bao D, Zhang Q, Meng F L, Zhong F L, Shi M M, Zhang Y, Yan J M, Jiang Q, Zhang X B. Adv. Mater., 2017, DOI: 10.1002/adma.201604799. https://www.ncbi.nlm.nih.gov/pubmed/32875631

pmid: 32875631
[25]
Dong W, Liu Y, Zeng G, Zhang S, Cai T, Yuan J, Chen H, Gao J, Liu C. Colloid Interface Sci., 2018,518:156.
[26]
Li Z, Fu J Y, Feng Y, Dong C K, Liu H, Du X W. Nat. Catal., 2019,2:1107.
[27]
Yan Y C, Li X, Tang M, Zhong H, Huang J B, Bian T, Jiang Y, Han Y, Zhang H, Yang D R. Adv. Sci., 2018,5(8):1800430.
[28]
Geng Z, Kong X, Chen W, Su H, Liu Y, Cai F, Wang G, Zeng J. Angew. Chem. Int. Ed., 2018,57:6054.
[29]
Nolan M, Fearon J E, Watson G W. Solid State Ionics, 2006,177:3069.
[30]
Zhao Y, Jia X, Chen G, Shang L, Waterhouse G I, Wu L Z, Tung C H, O’Hare D, Zhang T. J. Am. Chem. Soc., 2016,138:6517.
[31]
Xu L, Tetreault A R, Pope M A. Chem. Mater., 2020,32:148.
[32]
Yang W, Zhang L, Xie J, Zhang X, Liu Q, Yao T, Wei S, Zhang Q, Xie Y. Angew. Chem. Int. Ed., 2016,55:6716.
[33]
Fang Z, Bueken B, De Vos D E, Fischer R A. Angew. Chem. Int. Ed., 2015,54:7234.
[34]
Canivet J, Vandichel M. Farrusseng D. Dalton. Trans., 2016,45:4090. https://www.ncbi.nlm.nih.gov/pubmed/26584043

doi: 10.1039/c5dt03522h pmid: 26584043
[35]
Yu Z, Gao L, Yuan S, Wu Y. Chem. Soc. Faraday Trans., 1992,88:3245.
[36]
Guzman J, Carrettin S, Corma A. Am. Chem. Soc., 2005,127:3286.
[37]
Lee Y, He G, Akey A J, Si R, Flytzani Stephanopoulos M, Herman I P. Am. Chem. Soc., 2011,133:12952. https://pubs.acs.org/doi/10.1021/ja204479j

doi: 10.1021/ja204479j
[38]
Silva I d C, Sigoli F A, Mazali I O. J. Phys. Chem. C, 2017,121:12928.
[39]
Wu Z, Li M, Howe J, Meyer H M, Overbury S H. Langmuir, 2010,26:16595. https://www.ncbi.nlm.nih.gov/pubmed/20617854

doi: 10.1021/la101723w pmid: 20617854
[40]
Zheng JY, Lyu Y H, Wang R L, Xie C, Zhou H J, Jiang S P, Wang S Y. Nat. Commun., 2018,9:3572. https://www.ncbi.nlm.nih.gov/pubmed/30177720

doi: 10.1038/s41467-018-05580-z pmid: 30177720
[41]
Zheng J, Lyu Y, Xie C, Wang R, Tao L, Wu H, Zhou H, Jiang S, Wang S. Adv. Mater., 2018,30:1801773. http://doi.wiley.com/10.1002/adma.v30.31

doi: 10.1002/adma.v30.31
[42]
Liu Y, Cheng H, Lyu M, Fan S, Liu Q, Zhang W, Zhi Y, Wang C, Xiao C, Wei S. Am. Chem. Soc., 2014,136:15670. https://pubs.acs.org/doi/10.1021/ja5085157

doi: 10.1021/ja5085157
[43]
Zhou P, Wang Y, Xie C, Chen C, Liu H, Chen R, Huo J, Wang S. Chem. Commun., 2017,53:11778.
[44]
Wolf M J, Castleton C W M, Hermansson K, Kullgren J. Front. Chem., 2019,7:212. https://www.ncbi.nlm.nih.gov/pubmed/31245350

doi: 10.3389/fchem.2019.00212 pmid: 31245350
[45]
Nazriq N K M, Krüger P, Yamada T K. Phys. Chem. Lett., 2020,11:1753.
[46]
Esch F, Fabris S, Zhou L, Montini T, Africh C, Fornasiero P, Comelli G, Rosei R. Science, 2005,309:752. https://www.ncbi.nlm.nih.gov/pubmed/16051791

doi: 10.1126/science.1111568 pmid: 16051791
[47]
Zhao Y, Wang Z, Cui X, Huang T, Wang B, Luo Y, Yang J, Hou J. Am. Chem. Soc., 2009,131:7958.
[48]
Song D, Zhang X, Lian C, Liu H, Alexandrou I, Lazić I, Bosch E G T, Zhang D, Wang L, Yu R, Cheng Z, Song C, Ma X, Duan W, Xue Q, Zhu J. Adv. Funct. Mater., 2019,29:1903843.
[49]
Jia Y, Zhang L, Du A, Gao G, Chen J, Yan X, Brown C L, Yao X. Adv. Mater., 2016,28:9532. https://www.ncbi.nlm.nih.gov/pubmed/27622869

doi: 10.1002/adma.201602912 pmid: 27622869
[50]
Jeong H Y, Jin Y, Yun S J, Zhao J, Baik J, Keum D H, Lee H S, Lee Y H. Adv. Mater., 2017,29:1605043.
[51]
Liu H, Wang C, Zuo Z, Liu D, Luo J. Adv. Mater., 2020,32:1906540.
[52]
Huang T X, Cong X, Wu S S, Lin K Q, Yao X, He Y H, Wu J B, Bao Y F, Huang S C, Wang X, Tan P H, Ren B. Nat. Commun., 2019,10:5544. https://www.ncbi.nlm.nih.gov/pubmed/31804496

doi: 10.1038/s41467-019-13486-7 pmid: 31804496
[53]
Pfisterer J H K, Baghernejad M, Giuzio G, Domke K F. Nat. Commun., 2019,10:5702. https://www.ncbi.nlm.nih.gov/pubmed/31836705

doi: 10.1038/s41467-019-13692-3 pmid: 31836705
[54]
Lin Y, Gao T, Pan X, Kamenetska M, Thon S M. Adv. Mater., 2020, DOI: 10.1002/adma.201906602. https://www.ncbi.nlm.nih.gov/pubmed/32875631

doi: 10.1002/adma.202004555 pmid: 32875631
[55]
Ponti A, Raza M H, Pantò F, Ferretti A M, Triolo C, Patanè S, Pinna N, Santangelo S. Langmuir, 2020,36:1305. https://www.ncbi.nlm.nih.gov/pubmed/31958957

doi: 10.1021/acs.langmuir.9b03587 pmid: 31958957
[56]
Plodinec M, Nerl H C, Girgsdies F, Schlögl R, Lunkenbein T. ACS Catal., 2020,10:3183.
[57]
Klein J, Chesnyak V, Löw M, Schilling M, Engstfeld A K, Behm R J. Am. Chem. Soc., 2020,142:1278.
[58]
Deng G H, Qian Y, Wei Q, Zhang T, Rao Y. Phys. Chem. Lett., 2020,11:1738.
[59]
Liu Y, Wu Z, Naschitzki M, Gewinner S, Schöllkopf W, Li X, Paier J, Sauer J, Kuhlenbeck H, Freund H J. Am. Chem. Soc., 2020,142:2665.
[60]
Rong H, Mao J, Xin P, He D, Chen Y, Wang D, Niu Z, Wu Y, Li Y. Adv. Mater. 2016,28:2540. https://www.ncbi.nlm.nih.gov/pubmed/26836038

doi: 10.1002/adma.201504831 pmid: 26836038
[61]
Xie S, Xu Q, Huang X. ChemCatChem, 2016,8:480.
[62]
He Y, Tang P, Hu Z, He Q, Zhu C, Wang L, Zeng Q, Golani P, Gao G, Fu W, Huang Z, Gao C, Xia J, Wang X, Wang X, Zhu C, Ramasse Q M, Zhang A, An B, Zhang Y, Martí Sánchez S, Morante J R, Wang L, Tay B K, Yakobson B I, Trampert A, Zhang H, Wu M, Wang Q J, Arbiol J, Liu Z. Nat. Commun., 2020,11:57. https://www.ncbi.nlm.nih.gov/pubmed/31896753

doi: 10.1038/s41467-019-13631-2 pmid: 31896753
[63]
Wang Y, Qiao M, Li Y, Wang S. Small, 2018,14:1800136.
[64]
Wang X, Zhang Y, Si H, Zhang Q, Wu J, Gao L, Wei X, Sun Y, Liao Q, Zhang Z, Ammarah K, Gu L, Kang Z, Zhang Y. Am. Chem. Soc., 2020,142:4298.
[65]
Cai Z, Bi Y, Hu E, Liu W, Dwarica N, Tian Y, Li X, Kuang Y, Li Y, Yang X Q. Adv. Energy Mater., 2018,8:1701694.
[66]
Zhuang L, Jia Y, He T, Du A, Yan X, Ge L, Zhu Z, Yao X. Nano Res., 2018,11:3509.
[67]
Yan D, Li Y, Huo J, Chen R, Dai L, Wang S. Adv. Mater., 2017,29:1606459.
[68]
Xie C, Yan D, Chen W, Zou Y, Chen R, Zang S, Wang Y, Yao X, Wang S. Mater. Today, 2019,31:47. https://linkinghub.elsevier.com/retrieve/pii/S1369702119304456

doi: 10.1016/j.mattod.2019.05.021
[69]
Chen J, Ryu G H, Zhang Q, Wen Y, Tai K L, Lu Y, Warner J H. ACS Nano, 2019,13:14486. https://www.ncbi.nlm.nih.gov/pubmed/31794193

doi: 10.1021/acsnano.9b08220 pmid: 31794193
[70]
Yu M, Waag F, Chan C K, Weidenthaler C, Barcikowski S, Tüysüz H. ChemSusChem, 2020,13:520. https://www.ncbi.nlm.nih.gov/pubmed/31756030

doi: 10.1002/cssc.201903186 pmid: 31756030
[71]
Yan C, Fang Z, Lv C, Zhou X, Chen G, Yu G. ACS Nano, 2018,12:8670. https://www.ncbi.nlm.nih.gov/pubmed/30020773

doi: 10.1021/acsnano.8b04614 pmid: 30020773
[72]
Brazdil J F, Glaeser L C, Grasselli R K. Catal., 1983,81(1):142.
[73]
Wentrcek P R, Wise H. Catal., 1976,45:349.
[74]
Voorhoeve R J H, Remeika J P, Trimble L E. Ann N Y. Acad. Sci., 1976,272(1):3.
[75]
Beyerlein R A, Choi Feng C, Hall J B, Huggins B J, Ray G J. Top. Catal., 1997,4:27.
[76]
Sadykov V A, Tikhov S F, Tsybulya S V, Kryukova G N, Veniaminov S A, Kolomiichuk V N, Bulgakov N N, Paukshtis E A, Ivanov V P, Koshcheev S V, Zaikovskii V I, Isupova L A, Burgina L B. J. Mol. Catal. A: Chem., 2000,158:361.
[77]
Iwaoka H, Arita M, Horita Z. Acta Mater., 2016,107:168.
[78]
Lebedeva N P, Koper M T M, Feliu J M, Santen R A V. J. Phys. Chem. B, 2002,106:12938.
[79]
Nowotny J, Bak T, Nowotny M K, Sheppard L R. Int. J. Hydrog. Energy, 2007,32:2630.
[80]
Chen D, Guan Z, Zhang D, Trotochaud L, Crumlin E, Nemsak S, Bluhm H, Tuller H L, Chueh W C. Nat. Catal., 2020,3:116.
[81]
Jia Y, Jiang K, Wang H, Yao X. Chemistry, 2019,5:1371.
[82]
Yu K, L. L. Lou, Liu S, Zhou W. Adv. Sci., 2020,7(2):1901970.
[83]
Sun L, Huang X, Wang L, Janotti A. Phys. Rev. B, 2017,95:245101.
[84]
Zhang Z, Wang Y, Lu J, Zhang J, Li M, Liu X, Wang F. ACS Catal., 2018,8:2635.
[85]
Zhang G, Ji Q, Zhang K, Chen Y, Li Z, Liu H, Li J, Qu J. Nano Energy, 2019,59:10.
[86]
Pu Z Y, Liu X S, Jia A P, Xie Y L, Lu J Q, Luo M F. J. Phys. Chem. C, 2008,112:15045.
[87]
Yang J, Hu S, Fang Y, Hoang S, Li L, Yang W, Liang Z, Wu J, Hu J, Xiao W, Pan C, Luo Z, Ding J, Zhang L, Guo Y. ACS Catal., 2019,9:9751. https://pubs.acs.org/doi/10.1021/acscatal.9b02408

doi: 10.1021/acscatal.9b02408
[88]
Li Y, Wei Z, Gao F, Kovarik L, Baylon R A L, Peden C H F, Wang Y. ACS Catal., 2015,5(5):3006. https://pubs.acs.org/doi/10.1021/cs502084g

doi: 10.1021/cs502084g
[89]
Jia J, Qian C, Dong Y, Li Y F, Wang H, Ghoussoub M, Butler K T, Walsh A, Ozin G A. Chem. Soc. Rev., 2017,46:4631. https://www.ncbi.nlm.nih.gov/pubmed/28635998

doi: 10.1039/c7cs00026j pmid: 28635998
[90]
Wang M, Shen M, Jin X, Tian J, Li M, Zhou Y, Zhang L, Li Y, Shi J. ACS Catal., 2019,9:4573.
[91]
Liu B, Li C, Zhang G, Yao X, Chuang S S C, Li Z. ACS Catal., 2018,8(11):10446.
[92]
Hirakawa H, Hashimoto M, Shiraishi Y, Hirai T. Am. Chem. Soc., 2017,139:10929.
[93]
Ji P, Drake T, Murakami A, Oliveres P, Skone J H, Lin W. Am. Chem. Soc., 2018,140:10553.
[94]
Chen X, Lyu Y, Wang Z, Qiao X, Gates B C, Yang D. ACS Catal., 2020,10:2906.
[95]
Shen A, Zou Y, Wang Q, Dryfe R, Huang X, Dou S, Dai L, Wang S. Angew. Chem., 2014,53(40):10804. http://doi.wiley.com/10.1002/anie.201406695

doi: 10.1002/anie.201406695
[96]
Tao L, Qiao M, Jin R, Li Y, Xiao Z, Wang Y, Zhang N, Xie C, He Q, Jiang D. Angew. Chem. Int. Ed., 2019,1314:1031.
[97]
Wu C Y, Wolf W J, Levartovsky Y, Bechtel H A, Martin M C, Toste F D, Gross E. Nature, 2017,541:511. https://www.ncbi.nlm.nih.gov/pubmed/28068671

doi: 10.1038/nature20795 pmid: 28068671
[98]
Fichtner J, Watzele S, Garlyyev B, Kluge R M, Haimerl F, El-Sayed H A, Li W J, Maillard F M, Dubau L, Chattot R, Michalička J, Macak J M, Wang W, Wang D, Gigl T, Hugenschmidt C, Bandarenka A S. ACS Catal., 2020,10:3131. https://pubs.acs.org/doi/10.1021/acscatal.9b04974

doi: 10.1021/acscatal.9b04974
[99]
Shi R, Zhao Y, Waterhouse G I N, Zhang S, Zhang T. ACS Catal., 2019,9:9739.
[100]
Yan D, Li H, Chen C, Zou Y, Wang S. Small Methods, 2018,1800331.
[101]
Gao D, Yang S, Xi L, Risch M, Song L, Lv Y, Li C, Li C, Chen G. Chem. Mater., 2020,32:1581.
[102]
Farias M J S, Cheuquepán W, Tanaka A A, Feliu J M. ACS Catal., 2020,10:543.
[103]
Lopez N, Illas F, Pacchioni G. Am. Chem. Soc., 1999,121:813.
[104]
Kwak J H, Hu J, Mei D, Yi C W, Kim D H, Peden C H F, Allard L F, Szanyi J. Science, 2009,325:1670. https://www.ncbi.nlm.nih.gov/pubmed/19779194

doi: 10.1126/science.1176745 pmid: 19779194
[105]
Shi L, G. M. Deng, W. C. Li, Miao S, Q. N. Wang, W. P. Zhang, A. H. Lu. Angew. Chem. Int. Ed., 2015,54:13994.
[106]
Jones J, Xiong H, DeLaRiva A T, Peterson E J, Pham H, Challa S R, Qi G, Oh S, Wiebenga M H, Pereira Hernández X I, Wang Y, Datye A K. Science, 2016,353:150. https://www.ncbi.nlm.nih.gov/pubmed/27387946

doi: 10.1126/science.aaf8800 pmid: 27387946
[107]
Wan J, Chen W, Jia C, Zheng L, Dong J, Zheng X, Wang Y, Yan W, Chen C, Peng Q, Wang D, Li Y. Adv. Mater., 2018,30:1705369.
[108]
Klein B P, Harman S E, Ruppenthal L, Ruehl G M, Hall S J, Carey S J, Herritsch J, Schmid M, Maurer R J, Tonner R, Campbell C T, Gottfried J M. Chem. Mater., 2020,32:1041.
[109]
Zhang L, Yi J, Gao G, Yan X, Ning C, Chen J, Soo M T, Wood B, Yang D, Du A. Chem., 2018,4(2):285.
[110]
J. C. Li, Maurya S, Kim Y S, Li T, Wang L, Shi Q, Liu D, Feng S, Lin Y, Shao M. ACS Catal., 2020,10:2452.
[111]
Xie C, Chen W, Du S, Yan D, Zhang Y, Chen J, Liu B, Wang S. Nano Energy, 2020,71:104653.
[112]
Jiao X, Chen Z, Li X, Sun Y, Gao S, Yan W, Wang C, Zhang Q, Lin Y, Luo Y, Xie Y. Am. Chem. Soc., 2017,139:7586.
[113]
Chen F, Ma Z, Ye L, Ma T, Zhang T, Zhang Y, Huang H. Adv. Mater., 2020,32(11):1908350.
[114]
Fabbri E, Nachtegaal M, Binninger T, Cheng X, B. J. Kim, Durst J, Bozza F, Graule T, Schäublin R, Wiles L, Pertoso M, Danilovic N, Ayers K E, Schmidt T J. Nat. Mater., 2017,16:925. https://www.ncbi.nlm.nih.gov/pubmed/28714982

doi: 10.1038/nmat4938 pmid: 28714982
[115]
Bergmann A, Martinez Moreno E, Teschner D, Chernev P, Gliech M, de Araújo J F, Reier T, Dau H, Strasser P. Nat. Commun., 2015,6:8625. https://www.ncbi.nlm.nih.gov/pubmed/26456525

doi: 10.1038/ncomms9625 pmid: 26456525
[116]
Fan K, Zou H, Duan L, Sun L. Adv. Energy Mater., 2020,10:1903571. https://onlinelibrary.wiley.com/toc/16146840/10/5

doi: 10.1002/aenm.v10.5
[117]
Wang Y, Ma Y, Li X B, Gao L, Gao X Y, Wei X Z, Zhang L P, Tung C H, Qiao L, Wu L Z. J. Am. Chem. Soc., 2020,142(10):4680. https://www.ncbi.nlm.nih.gov/pubmed/32066243

doi: 10.1021/jacs.9b11768 pmid: 32066243
[118]
Chiang Y M, Lavik E B, Kosacki I, Tuller H L, Ying J Y. Appl. Phys. Lett., 1996,69:185. http://aip.scitation.org/doi/10.1063/1.117366

doi: 10.1063/1.117366
[119]
Campbell C T, Peden C H F. Science, 2005,309:713. https://www.ncbi.nlm.nih.gov/pubmed/16051777

doi: 10.1126/science.1113955 pmid: 16051777
[1] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[6] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[7] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[8] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[9] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[10] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[11] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[12] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[13] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[14] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.
[15] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
Viewed
Full text


Abstract

Defect with Catalysis