中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (7): 706-719 DOI: 10.7536/PC170418 Previous Articles   Next Articles

• Review •

Functionalization of High-Strength Hydrogels with Regular Network Structures

Zhao Li, Lin Yu, Zhen Zheng, Xinling Wang*   

  1. School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21274085).
PDF ( 2858 ) Cited
Export

EndNote

Ris

BibTeX

As a cross-linked polymeric material with plenty of water inside, polymer hydrogel has been widely used in many fields such as food, cosmetics and biomedicine. However, traditional polymer hydrogel is lack of good mechanical performance, which limits its further applications in high-tech fields. In the past decades, the emergence of a series of high-strength polymer hydrogels with homogenous or special network structures has been improved this situation largely. Among these hydrogels, composite hydrogel, double network hydrogel, Tetra-PEG hydrogel and topological gel are representatives. However, in order to be applied in high-tech fields such as artificial tissues, wearable devices and 3D printing, the hydrogels should possess functionality as well as high strength. Therefore, on the basis of numerous of extensive studies on structures and basic properties of the high-strength polymer hydrogels, functionalizing these high-strength polymer hydrogels has been attracted much attention. Herein, recent progress in functionalization of the high-strength polymer hydrogels has been reviewed, and the four types of high-strength polymer hydrogels mentioned above are mainly involved. Finally, challenges in research and the perspective on the future directions of these fields are briefly discussed.
Contents
1 Introduction
2 Functionalization of high-strength polymer hydrogel
2.1 Functionalization of composite hydrogel
2.2 Functionalization of double network hydrogel
2.3 Functionalization of Tetra-PEG hydrogel
2.4 Functionalization of topological gel
3 Conclusion

CLC Number: 

[1] Tanaka T. Sci. Am., 1981, 244(1):124.
[2] 李钒(Li F), 张金龙(Zhang J L), 尹玉姬(Yin Y J). 化工进展(Chemical Industry and Engineering Progress), 2012, 31(11):2511.
[3] Lake G J, Thomas A G. Proc. R. Soc. London, Ser. A, 1967, 300(1460):108.
[4] Kerin A J, Wisnom M R, Adams M A. Proc. Inst. Mech. Eng. Part H-J. Eng. Med., 1998, 212(H4):273.
[5] 陶凯忠(Tao K Z), 陈尔瑜(Chen E Y), 丁光宏(Ding G H). 解剖科学进展(Progress of Anatomical Sciences), 1998, 4(4):289.
[6] 康宏(Kang H), 包广洁(Bao G J), 董玙(Dong Y), 易新竹(Yi X Z), 巢永烈(Chao Y L), 陈孟诗(Chen M S). 华西口腔医学杂志(West China Journal of Stomatology), 2000, 18(2):85.
[7] Bellucci G, Seedhom B B. Rheumatology, 2001, 40(12):1337.
[8] 高峰(Gao F), 杨有庚(Yang Y G), 马洪顺(Ma H S). 中国组织工程研究与临床康复(Journal of Clinical Rehabilitative Tissue Engineering Research), 2008, 12(26):5105.
[9] 沙川华(Sha C H), 陈孟诗(Chen M S), 吴佳(Wu J), 毛霜霜(Mao S S), 李雪(Li X). 体育科学(China Sport Science), 2010, 30(3):42.
[10] 周沫(Zhou M), 李幼忱(Li Y C), 张乃丽(Zhang N L), 陈学英(Chen X Y), 李宝明(Li B M), 赵亚平(Zhao Y P), 李宝兴(Li B X). 中国矫形外科杂志(Orthopedic Journal of China), 2011, 19(22):1898.
[11] Bonn D, Kellay H, Prochnow M, Ben-Djemiaa K, Meunier J. Science, 1998, 280(5361):265.
[12] Gong J P. Soft Matter, 2010, 6(12):2583.
[13] Haraguchi K. Polym. J., 2011, 43(3):223.
[14] 王雪珍(Wang X Z), 汪辉亮(Wang H L). 高分子通报(Chinese Polymer Bulletin), 2008(3):1.
[15] Haraguchi K, Takehisa T. Adv. Mater., 2002, 14(16):1120.
[16] Huang T, Xu H G, Jiao K X, Zhu L P, Brown H R, Wang H L. Adv. Mater., 2007, 19(12):1622.
[17] Gong J P, Katsuyama Y, Kurokawa T, Osada Y. Adv. Mater., 2003, 15(14):1155.
[18] Sakai T, Matsunaga T, Yamamoto Y, Ito C, Yoshida R, Suzuki S, Sasaki N, Shibayama M, Chung U I. Macromolecules, 2008, 41(14):5379.
[19] Okumura Y, Ito K. Adv. Mater., 2001, 13(7):485.
[20] Haraguchi K, Farnworth R, Ohbayashi A, Takehisa T. Macromolecules, 2003, 36(15):5732.
[21] Sakai T, Akagi Y, Matsunaga T, Kurakazu M, Chung U, Shibayama M. Macromol. Rapid Commun., 2010, 31(22):1954.
[22] Chang C W, van Spreeuwel A, Zhang C, Varghese S. Soft Matter, 2010, 6(20):5157.
[23] Bitoh Y, Akuzawa N, Urayama K, Takigawa T, Kidowaki M, Ito K. Macromolecules, 2011, 44(21):8661.
[24] Matsunaga T, Asai H, Akagi Y, Sakai T, Chung U, Shibayama M. Macromolecules, 2011, 44(5):1203.
[25] Sakai T, Kurakazu M, Akagi Y, Shibayama M, Chung U. Soft Matter, 2012, 8(9):2730.
[26] Kato K, Yasuda T, Ito K. Macromolecules, 2013, 46(1):310.
[27] Chen Q, Zhu L, Zhao C, Wang Q M, Zheng J. Adv. Mater., 2013, 25(30):4171.
[28] Jiang F Z, Huang T, He C C, Brown H R, Wang H L. J. Phys. Chem. B, 2013, 117(43):13679.
[29] Nakajima T, Furukawa H, Tanaka Y, Kurokawa T, Osada Y, Gong J P. Macromolecules, 2009, 42(6):2184.
[30] Matsunaga T, Sakai T, Akagi Y, Chung U I, Shibayama M. Macromolecules, 2009, 42(16):6245.
[31] Matsunaga T, Sakai T, Akagi Y, Chung U, Shibayama M. Macromolecules, 2009, 42(4):1344.
[32] Shibayama M. J. Phys. Soc. Jpn., 2009, 78(4):041008.
[33] Akagi Y, Katashima T, Katsumoto Y, Fujii K, Matsunaga T, Chung U, Shibayama M, Sakai T. Macromolecules, 2011, 44(14):5817.
[34] Akagi Y, Gong J P, Chung U, Sakai T. Macromolecules, 2013, 46(3):1035.
[35] Fleury G, Schlatter G, Brochon C, Hadziioannou G. Adv. Mater., 2006, 18(21):2847.
[36] Murata N, Konda A, Urayama K, Takigawa T, Kidowaki M, Ito K. Macromolecules, 2009, 42(21):8485.
[37] Ito K. Curr. Opin. Solid State Mat. Sci., 2010, 14(2):28.
[38] Kato K, Ito K. Soft Matter, 2011, 7(19):8737.
[39] Konda A, Mayumi K, Urayama K, Takigawa T, Ito K. Macromolecules, 2012, 45(16):6733.
[40] Nishi K, Fujii K, Katsumoto Y, Sakai T, Shibayama M. Macromolecules, 2014, 47(10):3274.
[41] 金淑萍(Jin S P), 柳明珠(Liu M Z), 陈世兰(Chen S L), 卞凤玲(Bian F L), 陈勇(Chen Y), 王斌(Wang B), 詹发禄(Zhan F L), 刘守信(Liu S X). 物理化学学报(Acta Physico-Chimica Sinica), 2007, 23(3):438.
[42] 查刘生(Zha L S), 王秀琴(Wang X Q), 邹先波(Zou X B), 陆晨(Lu C). 石油化工(Petrochemical Technology), 2012, 41(2):131.
[43] 姚康德(Yao K D), 成国祥(Cheng G X). 智能材料(Smart Materials). 北京:化学工业出版社(Beijing:Chemical Industry Press), 2002. 1.
[44] Tanaka T. Phys. Rev. Lett., 1978, 40(12):820.
[45] Tanaka T, Fillmore D, Shao-Tang S, Nishio I, Swislow G, Shah A. Phys. Rev. Lett., 1980, 45(20):1636.
[46] Ilavsky M. Macromolecules, 1982, 15(3):782.
[47] 钟大根(Zhong D G), 刘宗华(Liu Z H), 左琴华(Zuo Q H), 黄彧琛(Huang Y C), 薛巍(Xue W). 材料导报A:综述篇(Materials Review A), 2012, 26(6):83.
[48] Ilavsky M, Hrouz J, Ulbrich K. Polym. Bull., 1982, 7(2):107.
[49] Hirokawa Y, Tanaka T. AIP Conf. Proc., 1984(107):203.
[50] Hirotsu S, Hirokawa Y, Tanaka T. J. Chem. Phys., 1987, 87(2):1392.
[51] Ohmine I, Tanaka T. J. Chem. Phys., 1982, 77(11):5725.
[52] Suzuki A, Tanaka T. Nature, 1990, 346(6282):345.
[53] Mamada A, Tanaka T, Kungwatchakun D, Irie M. Macromolecules, 1990, 23(5):1517.
[54] Tanaka T, Nishio I, Sun S T, Ueno-Nishio S. 1982, 218(4571):467.
[55] Ahn S K, Kasi R M, Kim S C, Sharma N, Zhou Y X. Soft Matter, 2008, 4(6):1151.
[56] Pasparakis G, Vamvakaki M. Polym. Chem., 2011, 2(6):1234.
[57] Doring A, Birnbaum W, Kuckling D. Chem. Soc. Rev., 2013, 42(17):7391.
[58] Jochum F D, Theato P. Chem. Soc. Rev., 2013, 42(17):7468.
[59] Kuksenok O, Deb D, Dayal P, Balazs A C. Annu. Rev. Chem. Biomol. Eng., 2014, 5(1):35.
[60] Yun J, Im J S, Oh A, Jin D H, Bae T S, Lee Y S, Kim H I. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., 2011, 176(3):276.
[61] Wang W B, Wang J, Kang Y R, Wang A Q. Compos. Pt. B-Eng., 2011, 42(4):809.
[62] 李丽霞(Li L X), 邢晓东(Xing X D), 刘祖亮(Liu Z L), 皮俊梅(Pi J M). 江苏大学学报(自然科学版)(Journal of Jiangsu University (Natural Science Edition)), 2012, 33(6):696.
[63] Li W, Wang J S, Ren J S, Qu X G. Adv. Mater., 2013, 25(46):6737.
[64] Ha E J, Kim B S, Park C H, Lee J O, Paik H J. J. Appl. Phys., 2013, 114(5):766.
[65] Birch N P, Barney L E, Pandres E, Peyton S R, Schiffman J D. Biomacromolecules, 2015, 16(6):1837.
[66] Cha R T, He Z B, Ni Y H. Carbohydr. Polym., 2012, 88(2):713.
[67] Glazer P J, Leuven J, An H, Lemay S G, Mendes E. Adv. Funct. Mater., 2013, 23(23):2964.
[68] Zheng H Y, Li C Y, He C C, Dong Y Q, Liu Q S, Qin P F, Zeng C, Wang H L. J. Mater. Chem. C, 2014, 2(29):5829.
[69] Sun P Y, Wang J, Yao X, Peng Y, Tu X X, Du P F, Zheng Z, Wang X L. ACS Appl. Mater. Interfaces, 2014, 6(15):12495.
[70] Haraguchi K. Organic-Inorganic Hybrid Nanomaterials, Eds. by Kalia S, Haldorai Y. Springer Int. Publishing, 2015. 267:187.
[71] Zhao L Z, Zhou C H, Wang J, Tong D S, Yu W H, Wang H. Soft Matter, 2015, 11(48):9229.
[72] Haraguchi K, Takehisa T, Fan S. Macromolecules, 2002, 35(27):10162.
[73] Yao C, Liu Z, Yang C, Wang W, Ju X J, Xie R, Chu L Y. Adv. Funct. Mater., 2015, 25(20):2980.
[74] Haraguchi K, Uyama K, Tanimoto H. Macromol. Rapid Commun., 2011, 32(16):1253.
[75] Haraguchi K, Murata K, Takehisa T. Macromolecules, 2012, 45(1):385.
[76] Kotobuki N, Murata K, Haraguchi K. J. Biomed. Mater. Res. Part A, 2013, 101(2):537.
[77] Wang Q, Mynar J L, Yoshida M, Lee E, Lee M, Okuro K, Kinbara K, Aida T. Nature, 2010, 463(7279):339.
[78] Tamesue S, Ohtani M, Yamada K, Ishida Y, Spruell J M, Lynd N A, Hawker C J, Aida T. J. Am. Chem. Soc., 2013, 135(41):15650.
[79] Liu J, Song G, He C, Wang H. Macromol. Rapid Commun., 2013, 34(12):1002.
[80] Zhu C H, Lu Y, Peng J, Chen J F, Yu S H. Adv. Funct. Mater., 2012, 22(19):4017.
[81] Shi K, Liu Z, Wei Y Y, Wang W, Ju X J, Xie R, Chu L Y. ACS Appl. Mater. Interfaces, 2015, 7(49):27289.
[82] Li Q C, Barret D G, Messersmith P B, Holten-Andersen N. ACS Nano, 2016, 10(1):1317.
[83] 刘壮(Liu Z), 谢锐(Xie R), 巨晓洁(Ju X J), 汪伟(Wang W), 褚良银(Chu L Y). 化工进展(Chemical Industry and Engineering Progress), 2016, 35(6):1812.
[84] Cai T, Wang G N, Thompson S, Marquez M, Hu Z B. Macromolecules, 2008, 41(24):9508.
[85] Xia L W, Xie R, Ju X J, Wang W, Chen Q M, Chu L Y. Nat. Commun., 2013, 42226.
[86] Dai T Y, Qing X T, Lu Y, Xia Y Y. Polymer, 2009, 50(22):5236.
[87] Zhu J J, Guan S, Hu Q Q, Gao G H, Xu K, Wang P X. Chem. Eng. J., 2016, 306:953.
[88] Chen Q, Zhu L, Chen H, Yan H L, Huang L N, Yang J, Zheng J. 2015, 25(10):1598.
[89] Jia H Y, Huang Z J, Fei Z F, Dyson P J, Zheng Z, Wang X L. ACS Appl. Mater. Interfaces, 2016, 8(45):31339.
[90] Sun T L, Kurokawa T, Kuroda S, Bin Ihsan A, Akasaki T, Sato K, Haque M A, Nakajima T, Gong J P. Nat. Mater., 2013, 12(10):932.
[91] Sun J Y, Zhao X, Illeperuma W R K, Chaudhuri O, Oh K H, Mooney D J, Vlassak J J, Suo Z. Nature, 2012, 489(7414):133.
[92] Lin P, Ma S H, Wang X L, Zhou F. Adv. Mater., 2015, 27(12):2054.
[93] Zhong M, Liu Y T, Liu X Y, Shi F K, Zhang L Q, Zhu M F, Xie X M. Soft Matter, 2016, 12(24):5420.
[94] Zheng S Y, Ding H Y, Qian J, Yin J, Wu Z L, Song Y H, Zheng Q. Macromolecules, 2016, 49(24):9637.
[95] Hu Y, Du Z S, Deng X L, Wang T, Yang Z H, Zhou W Y, Wang C Y. Macromolecules, 2016, 49(15):5660.
[96] Liu J, Wang S, Tang Z H, Huang J, Guo B C, Huang G S. Macromolecules, 2016, 49(22):8593.
[97] Tang Z H, Huang J, Guo B C, Zhang L Q, Liu F. Macromolecules, 2016, 49(5):1781.
[98] Henise J, Hearn B R, Ashley G W, Santi D V. Bioconjugate Chem., 2015, 26(2):270.
[99] Jia H Y, Li Z, Wang X L, Zheng Z. J. Mater. Chem. A, 2015, 3(3):1158.
[100] Jia H Y, Huang Z J, Li Z, Zheng Z, Wang X L. RSC Adv., 2016, 6(54):48863.
[101] Apostolides D E, Sakai T, Patrickios C S. Macromolecules, 2017, 50(5):2155.
[102] Kamata H, Akagi Y, Kayasuga-Kariya Y, Chung U, Sakai T. Science, 2014, 343(6173):873.
[103] Fujii K, Asai H, Ueki T, Sakai T, Imaizumi S, Chung U, Watanabe M, Shibayama M. Soft Matter, 2012, 8(6):1756.
[104] Fujii K, Makino T, Hashimoto K, Sakai T, Kanakubo M, Shibayama M. Chem. Lett., 2015, 44(1):17.
[105] Li Z, Zheng Z, Su S, Yu L, Wang X L. Macromolecules, 2016, 49(1):373.
[106] Harada A, Kamachi M. Macromolecules, 1990, 23(10):2821.
[107] Li Z, Zheng Z, Su S, Yu L, Wang X. Soft Matter, 2016, 12(34):7089.
[108] Kataoka T, Kidowaki M, Zhao C M, Minamikawa H, Shimizu T, Ito K. J. Phys. Chem. B, 2006, 110(48):24377.
[109] Sakai T, Murayama H, Nagano S, Takeoka Y, Kidowaki M, Ito K, Seki T. Adv. Mater., 2007, 19(15):2023.
[110] Karaky K, Brochon C, Schlatter G, Hadziioannou G. Soft Matter, 2008, 4(6):1165.
[111] Murayama H, Bin Imran A, Nagano S, Seki T, Kidowaki M, Ito K, Takeoka Y. Macromolecules, 2008, 41(5):1808.
[112] Katsuno C, Konda A, Urayama K, Takigawa T, Kidowaki M, Ito K. Adv. Mater., 2013, 25(33):4636.
[113] Bin Imran A, Esaki K, Gotoh H, Seki T, Ito K, Sakai Y, Takeoka Y. Nat. Commun., 2014, 5:1.
[114] Sugihara N, Tominaga Y, Shimomura T, Ito K. Electrochim. Acta, 2015, 169:433.
[1] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[2] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[3] Liqing Li, Panwang Wu, Jie Ma. Construction of Double Network Gel Adsorbent and Application for Pollutants Removal from Aqueous Solution [J]. Progress in Chemistry, 2021, 33(6): 1010-1025.
[4] Xi Chen, Zheyao Li, Yayun Chen, Zhihua Chen, Yan Hu, Chuanxiang Liu. C—H Cyanoalkylation:the Direct C—H Cyanomethylation of Naphthalimide [J]. Progress in Chemistry, 2021, 33(11): 1947-1952.
[5] Qianwen Huang, Xiaowen Zhang, Mi Li, Xiaoyan Wu, Liyong Yuan. Preparation of Functional Fibrous Silica Nanoparticles and Their Applications in Adsorption and Separation [J]. Progress in Chemistry, 2020, 32(2/3): 230-238.
[6] Qiang Zhang, Wenjun Huang, Yanbin Wang, Xingjian Li, Yiheng Zhang. Functionalization of Polyurethane Based on Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction [J]. Progress in Chemistry, 2020, 32(2/3): 147-161.
[7] Jiangbo Liu, Lihua Wang, Xiaolei Zuo. Cell Membranes Functionalization Based on DNA [J]. Progress in Chemistry, 2019, 31(8): 1067-1074.
[8] Yuanming Tan, Hao Meng, Xia Zhang. Removal of Organic Dyes and Heavy Metal Ions by Functionalized MOFs and MOFs/Polymer Composite Membranes [J]. Progress in Chemistry, 2019, 31(7): 980-995.
[9] Aobo Geng, Qiang Zhong, Changtong Mei, Linjie Wang, Lijie Xu, Lu Gan. Applications of Wet-Functionalized Graphene in Rubber Composites [J]. Progress in Chemistry, 2019, 31(5): 738-751.
[10] Xiaopeng Zhang*, Shuxiang Dong, Xuesen Fan, Guisheng Zhang. Synthesis of o-Aminobenzamide Compounds [J]. Progress in Chemistry, 2017, 29(11): 1351-1356.
[11] Zhang Guanglu, Zhang Ting, Zhou Lipeng, Sun Qingfu. Capsid-Inspired Multi-Component Self-Assembly of Nanocontainers: Structure, Functionalization, and Applications [J]. Progress in Chemistry, 2016, 28(9): 1289-1298.
[12] Sun Yue, Zhou Xiaoxin, Lou Zimo, Liu Yu, Fu Ruiqi, Xu Xinhua*. Functionalized Iron-Based Nano-Materials for Removal of Mercury from Aqueous Solution [J]. Progress in Chemistry, 2016, 28(8): 1156-1169.
[13] Dong Yunhong, Cao Liping. Functionalization of Cucurbit uril [J]. Progress in Chemistry, 2016, 28(7): 1039-1053.
[14] Li Donghan, Qi Shicheng, Zhang Xiaoa, Liao Mingyi. Preparation, Functionalization and Properties of Low Molecular Fluoropolymers [J]. Progress in Chemistry, 2016, 28(5): 673-685.
[15] Feng Yanyan, Jin Ming, Wan Decheng. A Bridge Spanning Microscopic to Macroscopic Assembly: Application of the Technique of Polymerization of Concentrated Emulsion [J]. Progress in Chemistry, 2016, 28(11): 1658-1663.