中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (7): 1039-1053 DOI: 10.7536/PC160320 Previous Articles   Next Articles

• Review and comments •

Functionalization of Cucurbit uril

Dong Yunhong, Cao Liping*   

  1. Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21472149) and the Shaanxi Provincial Natural Science Foundation (No.2016JM2025).
PDF ( 1021 ) Cited
Export

EndNote

Ris

BibTeX

The design and synthesis of new macrocyclic compounds always represent one of hot research fields in supramolecular chemistry. The development of classical macrocyclic compounds, such as crown ether, cyclodextrin, calixarene, cucurbituril and pillararene, enriches the contents of supramolecular chemistry. Meanwhile, the functionalizated macrocyclic compounds have been successfully used to create a number of applications including chemical sensors, molecular machines, biomimetic systems, supramolecular catalysts, stimuli-responsive systems, functional materials and drug delivery. Cucurbit uril bearing a rigid and hydrophobic cavity has gained great attention for its unique recognition property in water. Compared to that of other macrocyclic compounds, however, the functionalization of cucurbit uril is more difficult due to their chemical inertness. In the past few years, numerous efforts have been devoted to functionalize cucurbit uril and develop their host-guest recognition property not only in supramolecular chemistry, but also bio-chemistry, material chemistry, and medicinal chemistry. This review mainly focuses on summarizing the research progress of functionalized cucurbit uril, and comments on the bright future of their synthetic methods briefly.

Contents
1 Introduction
2 Condensation of substituted glycoluril with formaldehyde
3 Condensation of substituted glycoluril biether with glycolril
4 Condensation of substituted glycoluril biether with glycoluril oligomers
5 Oxidation of cucurbit[n]uril
6 Condensation of glycoluril oligomers with substituted aldehydes
7 Conclusion

CLC Number: 

[1] Atwood J L, Steed J W. Encyclopedia of Supramolecular Chemistry. Marcel Dekker. Inc., 2004.
[2] Pedersen C J. The Discovery of Crown Ethers. Angew. Chem. Int. Ed., 1988, 27:1021.
[3] Diederich F, Stang P J, Tykwinski R R. Modern Supramolecular Chemistry.Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA, 2008.
[4] Bradshaw J S, Izatt R M. Acc. Chem. Res., 1997, 30:338.
[5] Lee J W, Samal S, Selvapalam N, Kim H J, Kim K. Acc. Chem. Res., 2003, 36:621.
[6] Wang M X. Acc. Chem. Res., 2012, 45:182.
[7] Xue M, Yang Y, Chi X, Zhang Z, Huang F. Acc. Chem. Res., 2012, 45:1294.
[8] Guo D S, Liu Y. Acc. Chem. Res., 2014, 47:1925.
[9] Gokel G W, Leevy W M, Weber M E. Chem. Rev., 2004, 104:2723.
[10] Hapiot F, Tilloy S, Monflier E. Chem. Rev., 2006, 106:767.
[11] Harada A, Hashidzume A, Yamaguchi H, Takashima Y. Chem. Rev., 2009, 109:5974.
[12] Cragg P J, Sharma K. Chem. Soc. Rev., 2012, 41:597.
[13] Yan X, Wang F, Zheng B, Huang F. Chem. Soc. Rev., 2012, 41:6042.
[14] Zheng B, Wang F, Dong S, Huang F. Chem. Soc. Rev., 2012, 41:1621.
[15] Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L. Angew. Chem. Int. Ed., 2005, 44:4844.
[16] Assaf K I, Nau W M. Chem. Soc. Rev., 2015, 44:394.
[17] Barrow S J, Kasera S, Rowland M J, Barrio J, Del Scherman O A. Chem. Rev., 2015, 115:12320.
[18] Behrend R, Meyer E, Rusche F. Liebigs Ann. Chem., 1905, 339:1.
[19] Freeman W A, Mock W L, Shih N Y. J. Am. Chem. Soc., 1981, 103:7367.
[20] Kim J, Jung I S, Kim S Y, Lee E, Kang J K, Sakamoto S, Yamaguchi K, Kim K. J. Am. Chem. Soc., 2000, 122:540.
[21] Day A I, Blanch R J, Arnold A P, Lorenzo S, Lewis G R, Dance I. Angew. Chem. Int. Ed., 2002, 41:275.
[22] Liu S, Zavalij P Y, Isaacs L. J. Am. Chem. Soc., 2005, 127:16798.
[23] Cheng X J, Liang L L, Chen K, Ji N N, Xiao X, Zhang J X, Zhang Y Q, Xue S F, Zhu Q J, Ni X L, Tao Z. Angew. Chem. Int. Ed., 2013, 52:7252.
[24] Li Q, Qiu S, Tao Z, Xue S, Zhu M. CN 105153385 A, 2015.
[25] Zheng B, Wang F, Dong S, Huang F. Chem. Soc. Rev., 2012, 41:1621.
[26] Guo D S, Liu Y. Chem. Soc. Rev., 2012, 41:5907.
[27] Strutt N L, Zhang H, Schneebeli S T, Stoddart J F. Acc. Chem. Res., 2014, 47:2631.
[28] 夏梦蝉(Xia M C), 杨英威(Yang Y W). 化学进展(Progress in Chemistry), 2015, 27:655.
[29] Han B H., Liu Y. Chin. J. Org. Chem., 2003, 23:139.
[30] 陶朱(Tao Z), 丛航(Cong H), 黄英(Huang Y), 倪新龙(Ni X L). 瓜环化学(The Chemistry of Cucurbit uril). 北京:科学出版社(Beijing:Science Press),2014. 12.
[31] Kim K, Selvapalam N, Ko Y H, Park K M, Kim D, Kim J. Chem. Soc. Rev., 2007, 36:267.
[32] 杨辉(Yang H), 谭业邦(Tan Y B), 黄晓玲(Huang X L), 王月霞(Wang Y X). 化学进展(Progress in Chemistry), 2009, 21:164.
[33] Flinn A, Hough G C, Stoddart J F, Williams D J. Angew. Chem. Int. Ed., 1992, 31.
[34] Kellersberger K A, Anderson J D, Ward S M, Krakowiak K E, Dearden D V. J. Am. Chem. Soc., 2001, 123:11316.
[35] Sasmal S, Sinha M K, Keinan E. Org. Lett., 2004, 6:1225.
[36] Bardelang D, Udachin K A, Leek D M, Margeson J C, Chan G. Cryst. Growth Des., 2011, 11:5598.
[37] Zhao J, Kim H J, Oh J, Kim S Y, Lee J W, Sakamoto S, Yamaguchi K, Kim K. Angew. Chem. Int. Ed., 2001, 40:4233.
[38] Kim Y, Kim H, Ko Y H, Selvapalam N, Rekharsky M V, Inoue Y, Kim K. Chem.-Eur. J. 2009, 15:6143.
[39] Kim B S, Ko Y H, Kim Y, Lee H J, Selvapalam N, Lee H C, Kim K. Chem. Commun., 2008:2756.
[40] Wu F, Wu L H, Xiao X, Zhang Y Q, Xue S F, Tao Z, Day A I. J. Org. Chem., 2012, 77:606.
[41] Jiang X, Yao X, Huang X, Wang Q, Tian H. Chem. Commun., 2015, 51:2890.
[42] Ustrnul L, Kulhanek P, Lizal T, Sindelar V. Org. Lett., 2015, 17:1022.
[43] Lin J, Zhang Y, Zhang J, Xue S, Zhu Q, Tao Z. J. Mol. Struct., 2008, 875:442.
[44] Jon S Y, Selvapalam N, Oh D H, Kang J K, Kim S Y, Jeon Y J, Lee J W, Kim K. J. Am. Chem. Soc., 2003, 125:10186.
[45] Vinciguerra B, Cao L, Cannon J R, Zavalij P Y, Fenselau C, Isaacs L. J. Am. Chem. Soc., 2012, 134:13133.
[46] Zhao W X, Wang C Z, Chen L X, Cong H, Xiao X, Zhang Y Q, Xue S F, Huang Y, Tao Z, Zhu Q J. Org. Lett., 2015, 17:5072.
[47] Isobe H, Sato S, Nakamura E. Org. Lett., 2002, 4:1287.
[48] Ahmed M M, Koga K, Fukudome M, Sasaki H, Yuan D Q. Tetrahedron Lett., 2011, 52:4646.
[49] Lewin V, Rivollier J, Coudert S, Buisson D A, Baumann D, Rousseau B, Legrand F X, Kourilova H, Berthault P, Dognon J P, Heck M P, Huber G. Eur. J. Org. Chem., 2013:3857.
[50] Chakraborty A, Wu A, Witt D, Lagona J, Fettinger J C, Isaacs L. J. Am. Chem. Soc., 2002, 124:8297.
[51] Wu A, Chakraborty A, Wu A, Witt D, Lagona J, Damkaci F, Ofori M A, Chiles J K, Fettinger J C, Isaacs L. J. Org. Chem., 2002, 67:5817.
[52] Day A, Arnold A P, Blanch R J, Snushall B. J. Org. Chem., 2001, 66:8094.
[53] Day A I, Arnold A P, Blanch R J. Molecules, 2003, 8:74.
[54] Ni X L, Zhang Y Q, Zhu Q J, Xue S F, Tao Z.J.Mol.Strut.,2008, 876:322.
[55] Zhao Y J, Xue S F, Zhu Q J, Tao Z, Zhang J X, Wei Z B, Long L S, Hu M L, Xiao H P, Day A I. Chin. Sci. Bull., 2004, 49:1111.
[56] Zheng L, Zhu J, Zhang Y, Zhu Q, Xue S, Tao Z, Zhang J, Zhou X, Wei Z, Long L, Day A I. Supramol. Chem., 2008, 20:709.
[57] Huang W H, Zavalij P Y, Isaacs L. J. Am. Chem. Soc., 2008, 130:8446.
[58] Lucas D, Minami T, Iannuzzi G, Cao L, Wittenberg J B, Anzenbacher P J, Isaacs L. J. Am. Chem. Soc., 2011, 133:17966.
[59] Vinciguerra B, Cao L, Cannon J R, Zavalij P Y, Fenselau C, Isaacs L. J. Am. Chem. Soc., 2012, 134:13133.
[60] Cao L, Hettiarachchi G, Briken V, Isaacs L. Angew. Chem. Int. Ed., 2013, 52:12033.
[61] Vinciguerra B, Zavalij P, Isaacs L. Org. Lett., 2015, 17:5068.
[62] Yu Y, Li J, Zhang M, Cao L, Isaacs L. Chem. Commun., 2015, 51:3762.
[63] Jeon Y J, Kim H, Jon S, Selvapalam N, Oh D H, Seo I, Park C S, Jung S R, Koh D S, Kim K. J. Am. Chem. Soc., 2004, 126:15944.
[64] Lee H K, Park K M, Jeon Y J, Kim D, Oh D H, Kim H S, Park C K, Kim K. J. Am. Chem. Soc., 2005, 127:5006.
[65] Yun G, Hassan Z, Lee J, Kim J, Lee N S, Kim N H, Baek K, Hwang I, Park C G, Kim K. Angew. Chem. Int. Ed., 2014, 53:6414.
[66] Kim D, Kim E, Kim J, Park K M, Baek K, Jung M, Ko Y H, Sung W, Kim H S, Suh J H, Park C G, Na O S, Lee D K, Lee K E, Han S S, Kim K. Angew. Chem. Int. Ed., 2007, 46:3471.
[67] Kim E, Kim D, Jung H, Lee J, Paul S, Selvapalam N, Yang Y, Lim N, Park C G, Kim K. Angew. Chem. Int. Ed., 2010, 49:4405.
[68] Kim J, Ahn Y, Park K M, Kim Y, Ko Y H, Oh D H, Kim K. Angew. Chem. Int. Ed., 2007, 46:7393.
[69] Liu S M, Xu L, Wu C T, Feng Y Q. Talanta, 2004, 64:929.
[70] Lee D W, Park K M, Banerjee M, Ha S H, Lee T, Suh K, Paul S, Jung H, Kim J, Selvapalam N, Ryu S H, Kim K. Nat. Chem., 2011, 3:154.
[71] Zhao N, Lloyd G O, Scherman O A. Chem. Commun., 2012, 48:3070.
[72] Ahn Y, Jang Y, Selvapalam N, Yun G, Kim K. Angew. Chem. Int. Ed., 2013, 52:3140.
[73] Ayhan M M, Karoui H, Hardy M, Rockenbauer A, Charles L, Rosas R, Udachin K, Tordo P, Bardelang D, Ouari O. J. Am. Chem. Soc., 2015, 137:10238.
[74] Ma D, Gargulakova Z, Zavalij P Y, Sindelar V, Isaacs L. J. Org. Chem., 2010, 75:2934.
[75] Huang W H, Zavalij P Y, Isaacs L. Org. Lett., 2008, 10:2577.
[76] Cao L, Isaacs L. Org. Lett., 2012, 14:3072.
[77] Wittenberg J B, Zavalij P Y, Isaacs L. Angew. Chem. Int. Ed., 2013, 52:3690.
[78] Zhang M, Cao L, Isaacs L. Chem. Commun., 2014, 50:14756.
[79] Gilberg L, Khan M S A, Enderesova M, Sindelar V. Org. Lett., 2014, 16:2446.
[80] Cong H, Ni X L, Xiao X, Huang Y, Zhu Q J, Xue S F, Tao Z, Lindoy L F, Wei G. Org. Biomol. Chem., 2016, 14:4335.
[1] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[2] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[3] Xi Chen, Zheyao Li, Yayun Chen, Zhihua Chen, Yan Hu, Chuanxiang Liu. C—H Cyanoalkylation:the Direct C—H Cyanomethylation of Naphthalimide [J]. Progress in Chemistry, 2021, 33(11): 1947-1952.
[4] Qianwen Huang, Xiaowen Zhang, Mi Li, Xiaoyan Wu, Liyong Yuan. Preparation of Functional Fibrous Silica Nanoparticles and Their Applications in Adsorption and Separation [J]. Progress in Chemistry, 2020, 32(2/3): 230-238.
[5] Qiang Zhang, Wenjun Huang, Yanbin Wang, Xingjian Li, Yiheng Zhang. Functionalization of Polyurethane Based on Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction [J]. Progress in Chemistry, 2020, 32(2/3): 147-161.
[6] Jiangbo Liu, Lihua Wang, Xiaolei Zuo. Cell Membranes Functionalization Based on DNA [J]. Progress in Chemistry, 2019, 31(8): 1067-1074.
[7] Yuanming Tan, Hao Meng, Xia Zhang. Removal of Organic Dyes and Heavy Metal Ions by Functionalized MOFs and MOFs/Polymer Composite Membranes [J]. Progress in Chemistry, 2019, 31(7): 980-995.
[8] Aobo Geng, Qiang Zhong, Changtong Mei, Linjie Wang, Lijie Xu, Lu Gan. Applications of Wet-Functionalized Graphene in Rubber Composites [J]. Progress in Chemistry, 2019, 31(5): 738-751.
[9] Min Xue, Fangfang Fan, Yong Yang, Chuanfeng Chen. Syntheses and Functionality of Pillararene-Based Mechanically Interlocked Structures [J]. Progress in Chemistry, 2019, 31(4): 491-504.
[10] Qiang Pei, Aixiang Ding. The Design and Application of Quadruple Hydrogen Bonded Systems [J]. Progress in Chemistry, 2019, 31(2/3): 258-274.
[11] Yawen Li, Wantong Ao, Huilin Jin, Liping Cao. Aggregation-Induced Emission of Tetraphenylethene Derivatives with Macrocycles via Host-Guest Interactions [J]. Progress in Chemistry, 2019, 31(1): 121-134.
[12] Xiang Wang*. Macrocyclic and Supramolecular Chemistry: From Heteracalixaromatics to Coronarenes——In Memory of Professor Zhi-Tang Huang [J]. Progress in Chemistry, 2018, 30(5): 463-475.
[13] Yuping Tang, Yanmei He, Yu Feng, Qinghua Fan. Asymmetric Supramolecular Catalysis Based on Macrocyclic Host Molecules [J]. Progress in Chemistry, 2018, 30(5): 476-490.
[14] Hanxiao Wang, Ying Han, Chuanfeng Chen*. The Directional Threading of Guests and Construction of Orientational Assemblies Based on Three-Dimensional Nonsymmetrical Hosts [J]. Progress in Chemistry, 2018, 30(5): 616-627.
[15] Zhao Li, Lin Yu, Zhen Zheng, Xinling Wang*. Functionalization of High-Strength Hydrogels with Regular Network Structures [J]. Progress in Chemistry, 2017, 29(7): 706-719.
Viewed
Full text


Abstract

Functionalization of Cucurbit uril