中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (8): 1067-1074 DOI: 10.7536/PC190138 Previous Articles   Next Articles

Cell Membranes Functionalization Based on DNA

Jiangbo Liu1,2, Lihua Wang1, Xiaolei Zuo3,**()   

  1. 1. Division of Physical Biology & Bioimaging Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. Institute of Molecular Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
  • Received: Online: Published:
  • Contact: Xiaolei Zuo
  • About author:
  • Supported by:
    “Shuguang Program” supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission, China(18SG16)
Richhtml ( 23 ) PDF ( 507 ) Cited
Export

EndNote

Ris

BibTeX

Cell membranes play an important role in the process of material transportation, energy conversion and signal transduction between the cell and the external environment. Researching and controlling the interaction of molecules on the cell membranes is important to understand and manipulate the physiological functions of cells. Deoxyribonucleic acid(DNA) molecules have precise self-assembly and programmable properties and are a new tool for researching molecular interactions in bio-membranes. In this review, the method of modifying cell membranes with DNA molecules are outlined, followed by the work of monitoring and controlling the interaction of cell membranes molecules and the research of cell junction based on DNA. Simultaneously, the limitations of these research are analyzed. Finally, we summarize and prospect the research on DNA-based cell membranes functionalization. We hope that in-depth research in this field can promote new understanding of cell membranes function and obtain new methods for controlling cell function.

Fig. 1 Main methods of DNA modification on cell membranes[27]. Reproduced with permission from copyright(2012) American Chemical Society
Fig. 2 The visualization of glycosylation states of proteins with DNA[46]. Reproduced with permission from copyright(2018) American Chemical Society
Fig. 3 DNA-mediated chemically induced receptor tyrosine kinases dimerization[47]. (a) ATP-responsive D-CID. (b) Confocal fluorescence microscopy images for the study of ATP-responsible D-CID on a cell surface. (c) ATP induced fluorescence decay monitored by flow cytometry. (d) ATP-triggered c-Met phosphorylation determined by western blotting. Reproduced with permission from copyright(2018) Wiley
Fig. 4 DPAC reconstitutes the multicellular organization of organoid-like tissues[55].(a) Scheme showing the DPAC,(b) Incubation of cells with lipid modified oligonucleotides results in chemical remodeling of cell surfaces,(c) Procedure of DPAC,(d) Cell image during DPAC, scale bars, 100 μm. Reproduced with permission from copyright(2015) Nature Publishing Group
[1]
Sezgin E, Levental I, Mayor S, Eggeling C . Nat. Rev. Mol. Cell Biol., 2017,18:361. http://www.nature.com/articles/nrm.2017.16

doi: 10.1038/nrm.2017.16
[2]
Vries L D, Zheng B, Fischer T, Elenko E, Farquhar M G . Annu. Rev. Pharmacol. Toxicol., 2000,40:235. https://www.ncbi.nlm.nih.gov/pubmed/10836135

doi: 10.1146/annurev.pharmtox.40.1.235 pmid: 10836135
[3]
Reitsma S, Slaaf D W, Vink H, Zandvoort M A M J V, Egbrink M G A O . Pflugers. Arch.- Eur. J. Physiol., 2007,454:345.
[4]
Shi Y, Massagué J . Cell, 2003,113:685. https://www.ncbi.nlm.nih.gov/pubmed/12809600

doi: 10.1016/s0092-8674(03)00432-x pmid: 12809600
[5]
Barbieri E, Fiore P P D, Sigismund S . Curr. Opin. Cell Biol., 2016,39:21. https://www.ncbi.nlm.nih.gov/pubmed/26872272

doi: 10.1016/j.ceb.2016.01.012 pmid: 26872272
[6]
Conner S D, Schmid S L . Nature, 2003,422:37. https://www.ncbi.nlm.nih.gov/pubmed/12621426

doi: 10.1038/nature01451 pmid: 12621426
[7]
Krol S, Del G S, Grupillo M, Diaspro A, Gliozzi A, Marchetti P . Nano Lett., 2006,6:1933. https://www.ncbi.nlm.nih.gov/pubmed/16968004

doi: 10.1021/nl061049r pmid: 16968004
[8]
Boura C, Menu P, Payan E, Picart C, Voegel J, Muller S, Stoltz J . Biomaterials, 2003,24:3521. https://www.ncbi.nlm.nih.gov/pubmed/12809781

doi: 10.1016/s0142-9612(03)00214-x pmid: 12809781
[9]
Sangmin L, Heebeom K, Hee N J, Seung J H, Hyun S M, So J L, Hwa K S, Seok H Y, Seo Y J, Ick C K . ACS Nano, 2014,8:2048. https://www.ncbi.nlm.nih.gov/pubmed/24499346

doi: 10.1021/nn406584y pmid: 24499346
[10]
Chu T W, Yang J Y, Zhang R, Sima M, Kope$\check{c}$ek J . ACS Nano, 2014,8:719. https://www.ncbi.nlm.nih.gov/pubmed/24308267

doi: 10.1021/nn4053827 pmid: 24308267
[11]
Serganov A, Nudler E . Cell, 2013,152:17. https://www.ncbi.nlm.nih.gov/pubmed/23332744

doi: 10.1016/j.cell.2012.12.024 pmid: 23332744
[12]
Ge Z L, Gu H Z, Li Q, Fan C H . J. Am. Chem. Soc., 2018,140:17808. https://www.ncbi.nlm.nih.gov/pubmed/30516961

doi: 10.1021/jacs.8b10529 pmid: 30516961
[13]
Rothemund P W K . Nature, 2006,440:297. https://www.ncbi.nlm.nih.gov/pubmed/16541064

doi: 10.1038/nature04586 pmid: 16541064
[14]
Douglas S M, Dietz H, Liedl T, Högberg B, Graf F, Shih W M . Nature, 2009,459:414. https://www.ncbi.nlm.nih.gov/pubmed/19458720

doi: 10.1038/nature08016 pmid: 19458720
[15]
Pei H, Lu N, Wen Y L, Song S P, Liu Y, Yan H, Fan C H . Adv. Mater., 2010,22:4754. https://www.ncbi.nlm.nih.gov/pubmed/20839255

doi: 10.1002/adma.201002767 pmid: 20839255
[16]
Lin M H, Wang J J, Zhou G B, Wang J B, Wu N, Lu J X, Gao J M, Chen X Q, Shi J Y, Zuo X L, Fan C H . Angew. Chem., 2015,127:2179.
[17]
Li J, Pei H, Zhu B, Liang L, Wen M, He Y, Chen N, Li D, Huang Q, Fan C H . ACS Nano, 2011,5:8783. https://www.ncbi.nlm.nih.gov/pubmed/21988181

doi: 10.1021/nn202774x pmid: 21988181
[18]
Pei H, Liang L, Yao G B, Li J, Huang Q, Fan C H . Angew. Chem., 2012,51:9185.
[19]
Liang L, Li J, Li Q, Huang Q, Shi J Y, Yan H, Fan C H . Angew. Chem., 2014,53:7745. https://www.ncbi.nlm.nih.gov/pubmed/24827912

doi: 10.1002/anie.201403236 pmid: 24827912
[20]
Yuan J C, Benjamin G, Muscat R A, Georg S . Nat. Nanotechnol., 2015,10:748. https://www.ncbi.nlm.nih.gov/pubmed/26329111

doi: 10.1038/nnano.2015.195 pmid: 26329111
[21]
Arb T, Plouffe B, Rd C T, Shukla A K, Tarrasch J T, Dosey A M, Kahsai A W, Strachan R T, Pani B, Mahoney J P . Cell, 2016,166:907. https://www.ncbi.nlm.nih.gov/pubmed/27499021

doi: 10.1016/j.cell.2016.07.004 pmid: 27499021
[22]
Gao X X, Lowry P R, Zhou X, Charlene D, Wei Z K, Wong G W, Zhang J . Proc. Natl. Acad. Sci. U. S. A., 2011,108:14509. https://www.ncbi.nlm.nih.gov/pubmed/21873248

doi: 10.1073/pnas.1019386108 pmid: 21873248
[23]
Hsiao S C, Shum B J, Hiroaki O, Douglas E S, Gartner Z J, Mathies R A, Bertozzi C R, Francis M B . Langmuir, 2009,25:6985. https://www.ncbi.nlm.nih.gov/pubmed/19505164

doi: 10.1021/la900150n pmid: 19505164
[24]
Saxon E, Bertozzi C R . Science, 2000,287:2007. https://www.ncbi.nlm.nih.gov/pubmed/10720325

doi: 10.1126/science.287.5460.2007 pmid: 10720325
[25]
Shi P, Zhao N, Lai J, Coyne J, Gaddes E R, Wang Y . Angew. Chem., 2018,57:6800. https://www.ncbi.nlm.nih.gov/pubmed/29380466

doi: 10.1002/anie.201712596 pmid: 29380466
[26]
Kamitani R, Niikura K, Okajima T, Matsuo Y, Ijiro K . ChemBioChem, 2010,10:230. https://www.ncbi.nlm.nih.gov/pubmed/19090520

doi: 10.1002/cbic.200800621 pmid: 19090520
[27]
Selden N S, Todhunter M E, Jee N Y, Liu J S, Broaders K E, Gartner Z J . J. Am. Chem. Soc., 2012,134:765.
[28]
Taylor M J, Husain K, Gartner Z J, Mayor S, Vale R D . Cell, 2017,169:108. https://www.ncbi.nlm.nih.gov/pubmed/28340336

doi: 10.1016/j.cell.2017.03.006 pmid: 28340336
[29]
Tan W H, Donovan M J, Jianhui J . Chem. Rev., 2013,113:2842. https://www.ncbi.nlm.nih.gov/pubmed/23509854

doi: 10.1021/cr300468w pmid: 23509854
[30]
Yu F H, Kwame S, Suwussa B, Huan T C, Tan W H . Langmuir, 2008,24:11860. https://www.ncbi.nlm.nih.gov/pubmed/18817428

doi: 10.1021/la801969c pmid: 18817428
[31]
Shanguang D H, Li Y, Tang Z W, Cao Z H, William C H, Prabodhika M, Kwame S, Yang C Y, Tan W H . Proc. Natl. Acad. Sci. U. S. A., 2006,103:11838. https://www.ncbi.nlm.nih.gov/pubmed/16873550

doi: 10.1073/pnas.0602615103 pmid: 16873550
[32]
Song P, Ye D K, Zuo X L, Li J, Wang J B, Liu H J, Hwang M T, Chao J, Su S, Wang L H, Shi J Y, Wang L H, Huang W, Lal R, Fan C H . Nano Lett., 2017,17:5193. https://www.ncbi.nlm.nih.gov/pubmed/28771008

doi: 10.1021/acs.nanolett.7b01006 pmid: 28771008
[33]
Zhao B, O’Brien C, Mudiyanselage A P K K K, Li N, You M . J. Am. Chem. Soc., 2017,139:18182. https://www.ncbi.nlm.nih.gov/pubmed/29211468

doi: 10.1021/jacs.7b11176 pmid: 29211468
[34]
Zhang Y, Ge C, Zhu C, Salaita K . Nat. Commun., 2014,5:5167. https://www.ncbi.nlm.nih.gov/pubmed/25342432

doi: 10.1038/ncomms6167 pmid: 25342432
[35]
Dutta P K, Zhang Y, Blanchard A, Ge C, Rushdi M, Weiss K, Zhu C, Ke Y, Salaita K . Nano Lett., 2018,18:4803. https://www.ncbi.nlm.nih.gov/pubmed/29911385

doi: 10.1021/acs.nanolett.8b01374 pmid: 29911385
[36]
Tatsumi K, Ohashi K, Teramura Y, Utoh R, Kanegae K, Watanabe N, Mukobata S, Nakayama M, Iwata H, Okano T . Biomaterials, 2012,33:821. https://www.ncbi.nlm.nih.gov/pubmed/22027599

doi: 10.1016/j.biomaterials.2011.10.016 pmid: 22027599
[37]
Versluis F, Voskuhl J, van Kolck B, Zope H, Bremmer M, Albregtse T, Kros A . J. Am. Chem. Soc., 2013,135:8057. https://www.ncbi.nlm.nih.gov/pubmed/23659206

doi: 10.1021/ja4031227 pmid: 23659206
[38]
Weber R J, Liang S I, Selden N S, Desai T A, Gartner Z J . Biomacromolecules, 2014,15:4621. https://www.ncbi.nlm.nih.gov/pubmed/25325667

doi: 10.1021/bm501467h pmid: 25325667
[39]
Patwa A, Gissot A, Bestel I, Barthélémy P . Chem. Soc. Rev., 2011,40:5844. https://www.ncbi.nlm.nih.gov/pubmed/21611637

doi: 10.1039/c1cs15038c pmid: 21611637
[40]
Borisenko G G, Zaitseva M A, Chuvilin A N, Pozmogova G E . Nucleic Acids Res., 2009,37:28.
[41]
Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov V N, Hein B, Middendorff C V, Schönle A . Nature, 2009,457:1159. https://www.ncbi.nlm.nih.gov/pubmed/19098897

doi: 10.1038/nature07596 pmid: 19098897
[42]
Hess S T, Gould T J, Gudheti M V, Maas S A, Mills K D, Zimmerberg J . Proc. Natl. Acad. Sci. U. S. A., 2007,104:17370. https://www.ncbi.nlm.nih.gov/pubmed/17959773

doi: 10.1073/pnas.0708066104 pmid: 17959773
[43]
You M, Lyu Y, Han D, Qiu L, Liu Q, Chen T, Wu C S, Peng L, Zhang L, Bao G, Tan W H . Nat. Nanotechnol., 2017,12:453. https://www.ncbi.nlm.nih.gov/pubmed/28319616

doi: 10.1038/nnano.2017.23 pmid: 28319616
[44]
Zhang Y D, Winfree E . J. Am. Chem. Soc., 2009,131:17303. https://www.ncbi.nlm.nih.gov/pubmed/19894722

doi: 10.1021/ja906987s pmid: 19894722
[45]
Groves J T, Parthasarathy R, Forstner M B . Annu. Rev. Biomed. Eng., 2008,10:311. https://www.ncbi.nlm.nih.gov/pubmed/18429702

doi: 10.1146/annurev.bioeng.10.061807.160431 pmid: 18429702
[46]
Li J, Liu S, Sun L, Li W, Zhang S Y, Yang S, Li J, Yang H H . J. Am. Chem. Soc., 2018,140:16589. https://www.ncbi.nlm.nih.gov/pubmed/30407002

doi: 10.1021/jacs.8b08442 pmid: 30407002
[47]
Li H, Wang M, Shi T, Yang S, Zhang J, Wang H H, Nie Z . Angew. Chem., 2018,57:10226. https://www.ncbi.nlm.nih.gov/pubmed/29944203

doi: 10.1002/anie.201806155 pmid: 29944203
[48]
Stanton B Z, Chory E J, Crabtree G R . Science, 2018,359:1117.
[49]
Anderson P W . Science, 1972,177:393. https://www.ncbi.nlm.nih.gov/pubmed/17796623

doi: 10.1126/science.177.4047.393 pmid: 17796623
[50]
Wang X F, Ha T . Science, 2013,340:991.
[51]
Blakely B L, Dumelin C E, Britta T, McGregor L M, Choi C K, Anthony P C, Duesterberg V K, Baker B M, Block S M, Liu D R . Nat. Methods, 2014,11:1229. https://www.ncbi.nlm.nih.gov/pubmed/25306545

doi: 10.1038/nmeth.3145 pmid: 25306545
[52]
Teramura Y . Biomaterials, 2015,48:119. https://www.ncbi.nlm.nih.gov/pubmed/25701037

doi: 10.1016/j.biomaterials.2015.01.032 pmid: 25701037
[53]
Gartner Z J, Bertozzi C R . Proc. Natl. Acad. Sci. U.S. A., 2009,106:4606. https://www.ncbi.nlm.nih.gov/pubmed/19273855

doi: 10.1073/pnas.0900717106 pmid: 19273855
[54]
Cerchiari A E, Garbe J C, Jee N Y, Todhunter M E, Broaders K E, Peehl D M, Desai T A, Labarge M A, Matthew T, Gartner Z J . Proc. Natl. Acad. Sci. U.S. A., 2015,112:2287. https://www.ncbi.nlm.nih.gov/pubmed/25633040

doi: 10.1073/pnas.1410776112 pmid: 25633040
[55]
Todhunter M E, Jee N Y, Hughes A J, Coyle M C, Cerchiari A, Farlow J, Garbe J C, Labarge M A, Desai T A, Gartner Z J . Nat. Methods, 2015,12:975. https://www.ncbi.nlm.nih.gov/pubmed/26322836

doi: 10.1038/nmeth.3553 pmid: 26322836
[56]
SantaLucia J, Hicks D . Annu. Rev. Biophys. Biomol. Struct., 2004,33:415. https://www.ncbi.nlm.nih.gov/pubmed/15139820

doi: 10.1146/annurev.biophys.32.110601.141800 pmid: 15139820
[57]
Rinker S, Ke Y G, Liu Y, Chhabra R, Yan H . Nat. Nanotechnol., 2008,3:418. https://www.ncbi.nlm.nih.gov/pubmed/18654566

doi: 10.1038/nnano.2008.164 pmid: 18654566
[58]
Song G T, Chen M L, Chen C, Wang C Y, Hu D, Ren J S, Qu X G . Biochimie, 2010,92:121. https://www.ncbi.nlm.nih.gov/pubmed/19879317

doi: 10.1016/j.biochi.2009.10.007 pmid: 19879317
[59]
Campbell N H, Karim N H A, Parkinson G N, Gunaratnam M, Petrucci V, Todd A K, Vilar R, Neidle S . J. Med. Chem., 2012,55:209.
[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[3] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[4] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[5] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[6] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[7] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[8] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[9] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[10] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[11] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[12] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[13] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[14] Geng Gao, Keyu Zhang, Qianwen Wang, Libo Zhang, Dingfang Cui, Yaochun Yao. Metal Oxalate-Based Anode Materials: A New Choice for Energy Storage Materials Applied in Metal Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 434-446.
[15] Xiaoqiong Feng, Yunlong Ma, Hong Ning, Shiying Zhang, Changsheng An, Jinfeng Li. Transition Metal Chalcogenide Cathode Materials Applied in Aluminum-Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 319-327.