中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (2/3): 147-161 DOI: 10.7536/PC190804   Next Articles

Functionalization of Polyurethane Based on Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction

Qiang Zhang1, Wenjun Huang1, Yanbin Wang1, Xingjian Li1,**(), Yiheng Zhang2   

  1. 1. School of Materials Science and Engineering, Linyi University, Linyi 276000, China
    2. School of Chemical and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
  • Received: Online: Published:
  • Contact: Xingjian Li
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21176128); National Natural Science Foundation of China(51172116)
Richhtml ( 45 ) PDF ( 1077 ) Cited
Export

EndNote

Ris

BibTeX

As an important industrial material, polyurethane(PU) has many unique and excellent properties, which makes PU materials possess a wide range of applications in many fields. Due to the lack of further modified functional groups on the PU backbone, the high value-addition of PU materials is limited, and its widespread application in high-tech fields is hindered. Therefore, the modification and functionalization of PU is one of the hot topics in academia and industry. At present, there are many methods for modification and functionalization of PU materials. Among them, the Cu(Ⅰ) catalyzed Huisgen 1, 3-dipolar cycloaddition(CuAAC) between an azide and an alkyne compound forming trans 1, 2, 3-triazole compounds, which is the essence of click chemistry reaction, has the characteristics of simple operation, flexibility and high efficiency. It plays a unique and important role in the functional modification research of PU materials. This paper briefly introduces the design idea of functional modification of PU materials based on CuAAC reaction. The functional modification research and application of biocompatibility, hydrophobicity, fluorescence, antibacteria, flame retardancy, shape memory effect, mechanical properties and thermal stability of PU materials based on CuAAC reaction are highlighted. Finally, the main problems of the modified PU via CuAAC reaction are summarized, and the research direction is prospected.

Fig.1 (a) The model of click reaction. (b) Mechanism for Cu(Ⅰ) catalyzed azide-alkyne cycloaddition
Fig.2 Synthesis strategy of alkynyl and azido functionalized polyurethanes
Fig.3 The copper catalyzed CuAAC reaction between the alkyne-functionalized WPU and Rf- N 3 [ 40 ]
Fig.4 (a)Surface click chemistry reaction between azide-functionalized PU nanocapsules and alkyne fluorescent dye. (b) The molecular structure of alkyne fluorescent dye.(c)SEM image of nanocapsules made after the reactions[44]
Fig.5 (a) Schematic representation of the synthesis of PTFM. (b) Lab-scale flame test of castor polyol based polyurethane foams. (c) Lab-scale flame test of polyurethane triazole foams[55]
Fig.6 (a)Schematic representation of the synthesis of the azide-functionalized GO sheets. (b) and (c) images of thermo-responsive and photo-responsive shape recovery of the PU/GO nanocomposites using CuAAC[71]
Fig.7 Synthetic route for different generations of triazole-rich hyperbranched polyols[79]
Fig.8 (a) A typical CuAAC click cross-linking of WPU functionalized by azide and alkyne. (b) Microparticle interdiffusion and film-forming mechanism of clickable WPU[83]
[1]
Król P . Prog. Mater. Sci., 2007,52(6):915.
[2]
He Y, Xie D, Zhang X . J. Mater. Sci., 2014,49(21):7339.
[3]
Petrović Z S, Ferguson J . Prog. Polym. Sci., 1991,16(5):695.
[4]
Cooper S L, Tobolsky A V . J. Appl. Polym. Sci., 1966,10(12):1837.
[5]
Noble K L . Prog. Org. Coat., 1997,32(1-4):131.
[6]
Chattopadhyay D K, Raju K V S N . Prog. Polym. Sci., 2007,32(3):352.
[7]
Akindoyo J O, Beg M D H, Ghazali S, Islam M R, Jeyaratnama N, Yuvarajc A R . RSC Adv., 2016,6(115):114453.
[8]
Williams C K . Chem. Soc. Rev., 2007,36(10):1573. https://www.ncbi.nlm.nih.gov/pubmed/17721582

doi: 10.1039/b614342n pmid: 17721582
[9]
Billiet L, Fournier D, Du Prez F . Polymer, 2009,50(16):3877.
[10]
Xie Z, Lu C, Chen X, Chen L, Hu X, Shi Q, Jing X . Eur. Polym. J., 2007,43(5):2080. https://linkinghub.elsevier.com/retrieve/pii/S0014305707001425

doi: 10.1016/j.eurpolymj.2007.03.001
[11]
Zhang Y, He X, Ding M, He W, Li J, Li J, Tan H . Biomacromolecules, 2018,19(2):279. https://www.ncbi.nlm.nih.gov/pubmed/29253335

doi: 10.1021/acs.biomac.7b01016 pmid: 29253335
[12]
Chattopadhyay D K, Webster D C . Prog. Polym. Sci., 2009,34(10):1068.
[13]
KyuKim B, Lee S Y, Xu M . Polymer, 1996,37(26):5781.
[14]
Kim H, Miura Y, Macosko C W . Chem. Mater., 2010,22(11):3441.
[15]
Kang S Y, Ji Z, Tseng L F, Turner S A, Villanueva D A, Johnson R, Albano A, Langer R . Adv. Mater., 2018,30(18):e1706237. https://www.ncbi.nlm.nih.gov/pubmed/29543353

doi: 10.1002/adma.201706237 pmid: 29543353
[16]
Kolb H C, Finn M G, Sharpless K B . Angew. Chem. Int. Ed., 2001,40(11):2004. https://www.ncbi.nlm.nih.gov/pubmed/11433435

doi: 10.1002/1521-3773(20010601)40:11【-逻*辑*与-】amp;amp;lt;2004::aid-anie2004【-逻*辑*与-】amp;amp;gt;3.3.co;2-x pmid: 11433435
[17]
Meldal M, Tornøe C W . Chem. Rev., 2008,108(8):2952. https://www.ncbi.nlm.nih.gov/pubmed/18698735

doi: 10.1021/cr0783479 pmid: 18698735
[18]
Worrell B T, Malik J A, Fokin V V . Science, 2013,340(6131):457. https://www.ncbi.nlm.nih.gov/pubmed/23558174

doi: 10.1126/science.1229506 pmid: 23558174
[19]
Hein J E, Fokin V V . Chem. Soc. Rev., 2010,39(4):1302. https://www.ncbi.nlm.nih.gov/pubmed/20309487

doi: 10.1039/b904091a pmid: 20309487
[20]
Sumerlin B S, Vogt A P . Macromolecules, 2010,43(1):1.
[21]
Golas P L, Matyjaszewski K . Chem. Soc. Rev., 2010,39(4):1338. https://www.ncbi.nlm.nih.gov/pubmed/20309490

doi: 10.1039/b901978m pmid: 20309490
[22]
Ciaccia M, Núñez-Villanueva D, Hunter C A . J. Am. Chem. Soc., 2019,141(27):10862. https://www.ncbi.nlm.nih.gov/pubmed/31251047

doi: 10.1021/jacs.9b04973 pmid: 31251047
[23]
Xue J, Liu L, Liao J, Shen Y, Li N . J. Mater. Chem. A, 2018,6(24):11317.
[24]
Yang C, Flynn J P, Niu J . Angew. Chem. Int. Ed., 2018,57(49):16194. https://www.ncbi.nlm.nih.gov/pubmed/30326185

doi: 10.1002/anie.201811051 pmid: 30326185
[25]
Fournier D, Du Prez F . Macromolecules, 2008,41(13):4622.
[26]
Kantheti S, Narayan R, Raju K V S N . RSC Adv., 2015,5(5):3687.
[27]
Collin M P, Hobbie S N, Böttger E C, Vasella A . Helv. Chim. Acta., 2008,91(10):1838.
[28]
Horne W S, Yadav M K, Stout C D, Ghadiri M R . J. Am. Chem. Soc., 2004,126(47):15366. https://www.ncbi.nlm.nih.gov/pubmed/15563148

doi: 10.1021/ja0450408 pmid: 15563148
[29]
Anderson J M, Hiltner A, Wiggins M J, Schubert M A, Collier T O, Kao W J, Mathur A B . Polym. Int., 1998,46(3):163.
[30]
Hsiao S H, Hsu S H . ACS Appl. Mater. Interfaces, 2018,10(35):29273. https://www.ncbi.nlm.nih.gov/pubmed/30133249

doi: 10.1021/acsami.8b08362 pmid: 30133249
[31]
Guan J, Fujimoto K L, Sacks M S, Wagner W R . Biomaterials, 2005,26(18):3961. https://www.ncbi.nlm.nih.gov/pubmed/15626443

doi: 10.1016/j.biomaterials.2004.10.018 pmid: 15626443
[32]
Rana S, Lee S Y, Cho J W . Polym. Bull., 2010,64(4):401.
[33]
Meng F, Qiao Z, Yao Y, Luo J . RSC Adv., 2018,8(35):19642.
[34]
Garg K, Chatterjee D, Wadgaonkar P P . J. Polym. Sci. Part A: Polym. Chem., 2017,55(6):1008. https://www.ncbi.nlm.nih.gov/pubmed/28781424

doi: 10.1002/pola.28627 pmid: 28781424
[35]
Xue Y, Ma D, Zhang T, Lin S, Shao S, Gu N . J. Macromol. Sci. A, 2014,51(5):456.
[36]
Ott C, Easton C D, Gengenbach T R, McArthur S L, Gunatillake P A . Polym. Chem., 2011,2(12):2782.
[37]
Huang J, Xu W . J. Appl. Polym. Sci., 2011,122(2):1251.
[38]
Lowe A B, Hoyle C E, Bowman C N . J. Mater. Chem., 2010,20(23):4745.
[39]
Goldmann A S, Barner L, Kaupp M, Vogt A P, Barner-Kowollik C . Prog. Polym. Sci., 2012,37(7):975.
[40]
Li X, Sun D, Zhang Y . J. Polym. Res., 2014,21(1):1.
[41]
Fournier D, De Geest B G, Du Prez F E . Polymer, 2009,50(23):5362. e36922ea-a3f9-4602-99e5-5d9aac9b65c1 http://www.sciencedirect.com/science/article/pii/S0032386109008040

doi: 10.1016/j.polymer.2009.09.047
[42]
Nguyen L T, Devroede J, Plasschaert K, Jonckheere L, Haucourt N, Du Prez F E . Polym. Chem., 2013,4(5):1546.
[43]
Velencoso M M, Gonzalez A S B, Garcıa-Martınez J C, Ramos M J, Lucas A D, Rodriguez J F . Polym. Int., 2013,62(5):783. http://doi.wiley.com/10.1002/pi.2013.62.issue-5

doi: 10.1002/pi.2013.62.issue-5
[44]
Baier G, Siebert J M, Landfester K, Musyanovych A . Macromolecules, 2012,45(8):3419.
[45]
Kantheti S, Narayan R, Raju K V S N . Polym. Int., 2015,64(2):267.
[46]
Ding Y, Sun Z, Shi R, Cui H, Liu Y, Mao H, Wang B, Zhu D, Yan F . ACS Appl. Mater. Interfaces, 2019,11(3):2860. https://www.ncbi.nlm.nih.gov/pubmed/30586274

doi: 10.1021/acsami.8b19746 pmid: 30586274
[47]
Palermo E F, Lienkamp K, Gillies E R, Ragogna P J . Angew. Chem. Int.Ed., 2019,58(12):3690. https://www.ncbi.nlm.nih.gov/pubmed/30653795

doi: 10.1002/anie.201813810 pmid: 30653795
[48]
Basko M, Bednarek M, Billiet L, Kubisa P, Goethals E, Du Prez. F . J. Polym. Sci. Part A: Polym. Chem., 2011,49(7):1597.
[49]
Peng K, Dai X, Mao H, Zou H, Yang Z, Tu W, Hu J . J. Coat. Tech. Res., 2018,15(6):1239. https://doi.org/10.1007/s11998-018-0068-1

doi: 10.1007/s11998-018-0068-1
[50]
邹滔 (Zou T), 王若男 (Wang R N), 彭开美 (Peng K M), 涂伟萍 (Tu W P), 胡剑青 (Hu J Q) . 化工进展( Chemical Industry and Engineering Progress), 2018,37(7):2704.
[51]
Peng K, Hu J, Dai X, Yang Z, Wang R, Tu W . RSC Adv., 2019,9(23):13159.
[52]
Kantheti S, Narayan R, Raju K V S N . J. Coat. Tech. Res., 2013,10(5):609.
[53]
Morgan A B, Tour J M . Macromolecules, 1998,31(9):2857.
[54]
Knudseny R L, Jensenz B J . High Perform. Polym., 1996,8(1):57. http://journals.sagepub.com/doi/10.1088/0954-0083/8/1/004

doi: 10.1088/0954-0083/8/1/004
[55]
Bertini F, Audisio G, Kiji J, Masayuki F . J. Anal. Appl. Pyrol., 2003,68/69:61.
[56]
Levchik S V, Weil E D . J. Fire Sci., 2006,24(5):345.
[57]
Borreguero A M, Sharma P, Spiteri C, Velencoso C M, Carmona M S, Moses J E, Rodríguez J F . React. Funct. Polym., 2013,73(9):1207.
[58]
Sykam K, Meka K K R, Donempudi S . ACS Omega, 2019,4(1):1086. https://www.ncbi.nlm.nih.gov/pubmed/31459384

doi: 10.1021/acsomega.8b02968 pmid: 31459384
[59]
李兴建( Li X J), 杨子江 (Yang Z J), 孙道兴 (Sun D X), 张宜恒 (Zhang Y H) . 高分子材料科学与工程( Polymer Materials Science and Engineering), 2015,31(9):17.
[60]
Sun D, Li R, Li X, Wang W, Hu J . Comb. Chem. High T. Scr., 2012,15(7):522. https://www.ncbi.nlm.nih.gov/pubmed/22480239

doi: 10.2174/138620712801619186 pmid: 22480239
[61]
李兴建( Li X J), 鞠云鹏 (Ju Y P), 常德功 (Chang D G), 张宜恒 (Zhang Y H) . 高等学校化学学报( Chemical Journal of Chinese Universities), 2016,37(8):1580.
[62]
Zhao Q, Qi H J, Xie T . Prog. Polym. Sci., 2015,49/50:79.
[63]
郑宁( Zheng N), 谢涛 (Xie T) . 高分子学报( Acta Polymerica Sinica), 2017, ( 11):1715.
[64]
Zhang G G, Peng W J, Wu J J, Zhao Q, Xie T . Nat. Commun., 2018,9:4002. https://www.ncbi.nlm.nih.gov/pubmed/30275498

doi: 10.1038/s41467-018-06420-w pmid: 30275498
[65]
李兴建( Li X J), 王亚茹 (Wang Y R), 郑朝晖 (Zheng Z H), 丁小斌 (Ding X B), 彭宇行 (Peng Y X) . 化学进展( Progress in Chemistry), 2013,25(10):1726.
[66]
Rousseau I A . Polym. Eng. Sci., 2008,48(11):2075.
[67]
Mu T, Liu L, Lan X, Liu Y, Leng J . Compos. Sci. Technol., 2018,160(26):169.
[68]
Leng J, Lan X, Liu Y, Du S . Prog. Mater. Sci., 2011,56(7):1077.
[69]
Yadav S K, Yoo H J, Cho J W . J. Polym. Sci. Part B: Polym. Phys., 2013,51(1):39.
[70]
Kantheti S, Gaddam R R, Narayan R, Raju K V S N . RSC Adv., 2014,4(47):24420.
[71]
Mahapatra S S, Ramasamy M S, Yoo H J, Yi D H, Cho J W . J. Appl. Polym. Sci., 2016,133(17):43358.
[72]
Sun D, Miao X, Zhang K, Kim H, Yuan Y . J. Colloid Interf. Sci., 2011,361(2):483. https://www.ncbi.nlm.nih.gov/pubmed/21669435

doi: 10.1016/j.jcis.2011.05.062 pmid: 21669435
[73]
Sravendra R S, Jae W, Cho J W, Indresh K I . J. Nanosci. Nanotechno., 2010,10(9):5700. https://www.ncbi.nlm.nih.gov/pubmed/21133094

doi: 10.1166/jnn.2010.2434 pmid: 21133094
[74]
Yadav S K, Mahapatra S S, Cho J W . Polymer, 2012,53(10):2023. https://linkinghub.elsevier.com/retrieve/pii/S0032386112002182

doi: 10.1016/j.polymer.2012.03.010
[75]
Mahapatra S S, Yadav S K, Cho J W . J. Appl. Polym. Sci., 2017,134(12):44631.
[76]
Bakhshi H, Yeganeh H, Mehdipour-Ataei S, Solouk A, Irani S . Macromolecules, 2013,46(19):7777.
[77]
Wang G, Guo S, Ding Y . Macromol. Chem. Phys., 2015,216(18):1894.
[78]
Kantheti S, Narayan R, Raju K V S N . J. Coat. Technol. Res., 2013,10(5):609.
[79]
Kantheti S, Narayan R, Raju K V S N . Ind. Eng. Chem. Res., 2014,53(20):8357. https://pubs.acs.org/doi/10.1021/ie500627x

doi: 10.1021/ie500627x
[80]
Kantheti S, Sarath P S, Narayan R, Raju K V S N . React. Funct. Polym., 2013,73(12):1597. da234b11-d15c-4e24-8e4d-cd25cf4b2ea8 http://dx.doi.org/10.1016/j.reactfunctpolym.2013.09.002

doi: 10.1016/j.reactfunctpolym.2013.09.002
[81]
李兴建( Li X J), 胡静 (Hu J), 孙道兴 (Sun D X), 张宜恒 (Zhang Y H) . 高等学校化学学报( Chemical Journal of Chinese Universities), 2013,34(12):2871. b77a2d70-3644-430e-9241-aa4faf217b11 http://www.cjcu.jlu.edu.cn/CN/abstract/abstract25156.shtml

doi: 10.7503/cjcu20130789
[82]
Li X, Hu J, Sun D, Zhang Y . J. Coat. Technol. Res., 2014,11(4):517.
[83]
Hu J, Peng K, Guo J, Shan D, Kim G B, Li Q, Gerhard E, Zhu L, Tu W, Lv W, Hickner M A, Yang J . ACS Appl. Mater. Interfaces, 2016,8(27):17499. https://www.ncbi.nlm.nih.gov/pubmed/27326894

doi: 10.1021/acsami.6b02131 pmid: 27326894
[84]
Babaei N, Yeganeh H, Gharibi R . Eur. Polym. J., 2019,112:636.
[85]
Tanver A, Huang M H, Luo Y, Khalid S, Hussain T . RSC Adv., 2015,5(79):64478.
[86]
Becer C R, Hoogenboom R, Schubert U S . Angew. Chem. Int. Ed., 2009,48(27):4900. https://www.ncbi.nlm.nih.gov/pubmed/19475588

doi: 10.1002/anie.200900755 pmid: 19475588
[87]
Qin A, Tang L, Lam J W Y, Jim C K W, Yu Y, Zhao H, Sun J, Tang B T . Adv. Funct. Mater., 2009,19(12):1891.
[88]
Agard N J, Prescher J A, Bertozzi C R . J. Am. Chem. Soc., 2004,126(46):15046. https://www.ncbi.nlm.nih.gov/pubmed/15547999

doi: 10.1021/ja044996f pmid: 15547999
[89]
Pramudya I, Kim C, Chung H . Polym. Chem., 2018,9(26):3638.
[90]
Hoyle C E, Bowman C N . Angew. Chem. Int. Ed., 2010,49(9):1540. https://www.ncbi.nlm.nih.gov/pubmed/20166107

doi: 10.1002/anie.200903924 pmid: 20166107
[91]
Jin K, Leitsch E K, Chen X, Heath W H, Torkelson J M . Macromolecules, 2018,51(10):3620.
[92]
Hoogenboom R . Angew. Chem. Int. Ed., 2010,49(20):3415. https://www.ncbi.nlm.nih.gov/pubmed/20394091

doi: 10.1002/anie.201000401 pmid: 20394091
[93]
Anseth K S, Klok H A . Biomacromolecules, 2016,17(1):1. https://www.ncbi.nlm.nih.gov/pubmed/26750314

doi: 10.1021/acs.biomac.5b01660 pmid: 26750314
[94]
Tasdelen M A, Yagci Y . Angew. Chem. Int. Ed., 2013,52(23):5930. https://www.ncbi.nlm.nih.gov/pubmed/23653429

doi: 10.1002/anie.201208741 pmid: 23653429
[95]
Meudtner R M, Hecht S . Macromol. Rapid Commun., 2008,29(4):347.
[96]
Yuan J, Fang X, Zhang L, Hong G, Lin Y, Zheng Q, Xu Y, Ruan Y, Weng W, Xia H, Chen G . J. Mater. Chem., 2012,22(23):11515. http://xlink.rsc.org/?DOI=c2jm31347b

doi: 10.1039/c2jm31347b
[1] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[2] Liao Yiming, Wu Baoqi, Tang Rongzhi, Lin Feng, Tan Yu. Strain-Promoted Azide-Alkyne Cycloaddition [J]. Progress in Chemistry, 2022, 34(10): 2134-2145.
[3] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[4] Jinke Wu, Jianjun Wang, Lixing Dai, Donghao Sun, Jiajia Chen. Metal Coordination Polyurethanes [J]. Progress in Chemistry, 2021, 33(12): 2188-2202.
[5] Xi Chen, Zheyao Li, Yayun Chen, Zhihua Chen, Yan Hu, Chuanxiang Liu. C—H Cyanoalkylation:the Direct C—H Cyanomethylation of Naphthalimide [J]. Progress in Chemistry, 2021, 33(11): 1947-1952.
[6] Xiaozhen Ma, Qing Luo, Dongdong Qin, Jing Chen, Jin Zhu, Ning Yan. Lignin-Based Polyurethane [J]. Progress in Chemistry, 2020, 32(5): 617-626.
[7] Qianwen Huang, Xiaowen Zhang, Mi Li, Xiaoyan Wu, Liyong Yuan. Preparation of Functional Fibrous Silica Nanoparticles and Their Applications in Adsorption and Separation [J]. Progress in Chemistry, 2020, 32(2/3): 230-238.
[8] Jiangbo Liu, Lihua Wang, Xiaolei Zuo. Cell Membranes Functionalization Based on DNA [J]. Progress in Chemistry, 2019, 31(8): 1067-1074.
[9] Yuanming Tan, Hao Meng, Xia Zhang. Removal of Organic Dyes and Heavy Metal Ions by Functionalized MOFs and MOFs/Polymer Composite Membranes [J]. Progress in Chemistry, 2019, 31(7): 980-995.
[10] Aobo Geng, Qiang Zhong, Changtong Mei, Linjie Wang, Lijie Xu, Lu Gan. Applications of Wet-Functionalized Graphene in Rubber Composites [J]. Progress in Chemistry, 2019, 31(5): 738-751.
[11] Ping Liu, Jing Wang, Hongye Hao, Yunfan Xue, Junjie Huang, Jian Ji. Photochemical Surface Modification of Biomedical Materials [J]. Progress in Chemistry, 2019, 31(10): 1425-1439.
[12] Dengxu Wang, Jinfeng Cao, Dongdong Han, Wensi Li, Shengyu Feng. Novel Organosilicon Synthetic Methodologies [J]. Progress in Chemistry, 2019, 31(1): 110-120.
[13] Zhao Li, Lin Yu, Zhen Zheng, Xinling Wang*. Functionalization of High-Strength Hydrogels with Regular Network Structures [J]. Progress in Chemistry, 2017, 29(7): 706-719.
[14] Xiaopeng Zhang*, Shuxiang Dong, Xuesen Fan, Guisheng Zhang. Synthesis of o-Aminobenzamide Compounds [J]. Progress in Chemistry, 2017, 29(11): 1351-1356.
[15] Zhang Guanglu, Zhang Ting, Zhou Lipeng, Sun Qingfu. Capsid-Inspired Multi-Component Self-Assembly of Nanocontainers: Structure, Functionalization, and Applications [J]. Progress in Chemistry, 2016, 28(9): 1289-1298.