中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (5): 738-751 DOI: 10.7536/PC180817 Previous Articles   Next Articles

Applications of Wet-Functionalized Graphene in Rubber Composites

Aobo Geng1, Qiang Zhong1, Changtong Mei1, Linjie Wang1, Lijie Xu2, Lu Gan1,**()   

  1. 1. College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
    2. College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
  • Received: Online: Published:
  • Contact: Lu Gan
  • About author:
  • Supported by:
    Natural Science Foundation of Jiangsu Province(BK20160938); Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX18_0994)
Richhtml ( 10 ) PDF ( 1218 ) Cited
Export

EndNote

Ris

BibTeX

Vulcanized rubber products have been applied in various fields for more than 100 years, due to their high elasticity, good biological compatibility, chemical resistance, long-time use stability, etc. Additives like reinforcing fill er, lubricant, coupling agent, and accelerating agent, are necessary to be mixed with the raw rubber to give the rubber certain properties. Specifically, the rein-forcing filler plays the role of enhancing the mechanical strength, abrasive and thermal resistance, as well as prolonging the service life of the rubber. Compared with the traditional reinforcing fillers like carbon black and fumed silica, the graphene, a newly emerging nanomaterial, can reinforce the rubber properties with very small incorporation amount, due to its superior properties. However, the strong van der Vaals force amongst graphene sheets seriously inhibits its dispersion in the rubber. Meanwhile, the dispersion state of the graphene in silicone rubber matrix directly influences the reinforcing effect of the graphene. In recent years, many researchers focus on the functionalization method of the graphene, physically or chemically, to enhance the dispersion of the graphene in rubber matrix, and the interfacial interactions between graphene and rubber. The recent advances in the wet functionalization approaches conducted to the graphene and the applications of the functional graphene in fabricating rubber composites are discussed.

Fig. 1 Schematic illustration of GO and reduced GO formation[44, 45]
Table 1 Mechanical properties of physically functionalized graphene/rubber composites
Fig. 2 The preparation of pristine graphene, ZDMA- graphene and NR/ZDMA-graphene composites [62]
Table 2 Mechanical properties of GO/rubber composites
Table 3 Mechanical properties of molecules grafted graphene/rubber composites
Table 4 Thermal properties of physically functionalized graphene/rubber composites
Fig. 3 Filler-matrix interactions in SBR composite system[34]
Table 5 Thermal properties of covalently functionalized graphene/rubber composites
Fig. 4 Scheme of procedure for preparation of TEVS-GO and TEVS-GO/LSR composites[58]
Table 6 Electrical properties of physically functionalized graphene/rubber composites
Fig. 5 Schematic of the one-step method for functionalized graphene/NRL nanocomposites production[41]
Fig. 6 Schematic illustration for the fabrication of functionalized graphene/SBR-NR with a double-interconnected network[37]
Table 7 Electrical properties of in-situ reduced GO/rubber composites
Fig. 7 The preparation of rGO/rubber composites with a conductive segregated network[104]
[1]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A . Science, 2004,306(5696):666. https://www.ncbi.nlm.nih.gov/pubmed/15499015

doi: 10.1126/science.1102896 pmid: 15499015
[2]
Balandin A A . Nat. Mater., 2011,10(8):569. https://www.ncbi.nlm.nih.gov/pubmed/21778997

doi: 10.1038/nmat3064 pmid: 21778997
[3]
Dasgupta A, Rajukumar L P, Rotella C, Lei Y, Terrones M . Nano Today, 2017,12:116.
[4]
Fasolino A, Los J H, Katsnelson M I . Nat. Mater., 2007,6(11):858. https://www.ncbi.nlm.nih.gov/pubmed/17891144

doi: 10.1038/nmat2011 pmid: 17891144
[5]
Stoller M D, Park S, Zhu Y, An J, Ruoff R S . Nano Lett., 2008,8(10):3498.
[6]
Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K . Science, 2008,320(5881):1308. https://www.ncbi.nlm.nih.gov/pubmed/18388259

doi: 10.1126/science.1156965 pmid: 18388259
[7]
Yang X, Tu Y, Li L, Shang S, Tao X M . ACS Appl., Mater. Interfaces, 2010,2(6):1707. https://www.ncbi.nlm.nih.gov/pubmed/20527778

doi: 10.1021/am100222m pmid: 20527778
[8]
Li Y, Tang L, Li J . Electrochem. Commun., 2009,11(4):846.
[9]
Feng L, Chen Y, Ren J, Qu X . Biomaterials, 2011,32(11):2930. https://www.ncbi.nlm.nih.gov/pubmed/21256585

doi: 10.1016/j.biomaterials.2011.01.002 pmid: 21256585
[10]
Zhang W, Guo Z, Huang D, Liu Z, Guo X, Zhong H . Biomaterials, 2011,32(33):8555. https://www.ncbi.nlm.nih.gov/pubmed/21839507

doi: 10.1016/j.biomaterials.2011.07.071 pmid: 21839507
[11]
Qin W, Li X, Bian W W, Fan X J, Qi J Y . Biomaterials, 2010,31(5):1007. https://www.ncbi.nlm.nih.gov/pubmed/19880174

doi: 10.1016/j.biomaterials.2009.10.013 pmid: 19880174
[12]
Zhang L S, Liang X Q, Song W G, Wu Z Y . Phys. Chem. Chem. Phys., 2010,12(38):12055. https://www.ncbi.nlm.nih.gov/pubmed/20725652

doi: 10.1039/c0cp00789g pmid: 20725652
[13]
Dong L, Gari R R S, Li Z, Craig M M, Hou S . Carbon, 2010,48(3):781. https://linkinghub.elsevier.com/retrieve/pii/S0008622309007003

doi: 10.1016/j.carbon.2009.10.027
[14]
Li W, Geng X, Guo Y, Rong J, Gong Y, Wu L, Zhang X, Li P, Xu J, Cheng G, Sun M, Liu L . ACS Nano, 2011,5(9):6955. https://www.ncbi.nlm.nih.gov/pubmed/21834585

doi: 10.1021/nn201433r pmid: 21834585
[15]
Ang P K, Chen W, Wee A T S, Loh K P . J. Am. Chem. Soc., 2008,130(44):14392. https://www.ncbi.nlm.nih.gov/pubmed/18850701

doi: 10.1021/ja805090z pmid: 18850701
[16]
Petit C, Bandosz T J . Adv. Funct. Mater., 2010,20(1):111. http://doi.wiley.com/10.1002/adfm.v20%3A1

doi: 10.1002/adfm.v20:1
[17]
Wang S, Goh B M, Manga K K, Bao Q, Yang P, Loh K P . ACS Nano, 2010,4(10):6180. https://www.ncbi.nlm.nih.gov/pubmed/20825226

doi: 10.1021/nn101800n pmid: 20825226
[18]
Han T H, Lee W J, Lee D H, Kim J E, Choi E Y, Kim S O . Adv. Mater., 2010,22(18):2060. https://www.ncbi.nlm.nih.gov/pubmed/20352629

doi: 10.1002/adma.200903221 pmid: 20352629
[19]
Jahan M, Bao Q, Yang J X, Loh K P . J. Am. Chem. Soc., 2010,132(41):14487. https://www.ncbi.nlm.nih.gov/pubmed/20863117

doi: 10.1021/ja105089w pmid: 20863117
[20]
NobelPrize. Available from: [2018-08-01]. http://www.nobelprize.org/. http://www.nobelprize.org/
[21]
Cheng H K F, Sahoo N G, Tan Y P, Pan Y, Bao H, Li L, Chan S H, Zhao J . ACS Appl. Mater. Interfaces, 2012,4(5):2387. https://www.ncbi.nlm.nih.gov/pubmed/22489641

doi: 10.1021/am300550n pmid: 22489641
[22]
Darque C E, Aucouturier M . Polym. Adv. Technol., 2013,25(3):322.
[23]
Georgakilas V, Otyepka M, Bourlinos A B, Chandra V, Kim N, Kemp K C, Hobza P, Zboril R, Kim K S . Chem. Rev., 2012,112(11):6156. https://www.ncbi.nlm.nih.gov/pubmed/23009634

doi: 10.1021/cr3000412 pmid: 23009634
[24]
Aguilar-Bolados H, Brasero J, Lopez-Manchado M A, Yazdani-Pedram M . Composite Part B, 2014,67:449. https://linkinghub.elsevier.com/retrieve/pii/S1359836814003217

doi: 10.1016/j.compositesb.2014.08.010
[25]
Mohamed A, Ardyani T, Bakar S A, Sagisaka M, Umetsu Y, Hamon J J, Rahim B A, Esa S R, Khalil H P S A, Mamat M H . J. Colloid Interface Sci., 2018,516:34. https://www.ncbi.nlm.nih.gov/pubmed/29360058

doi: 10.1016/j.jcis.2018.01.041 pmid: 29360058
[26]
Vadukumpully S, Paul J, Valiyaveettil S . Carbon, 2009,47(14):3288.
[27]
Matos C F, Galembeck F, Zarbin A J G . Carbon, 2014,78(18):469.
[28]
Guardia L, Fernández-Merino M J, Paredes J I, Solís-Fernández P, Villar-Rodil S, Martínez-Alonso A, Tascón J . Carbon, 2011,49(5):1653.
[29]
Korattanawittaya S, Petcharoen K, Sangwan W, Tangboriboon N, Wattanakul K, Sirivat A . Polym. Eng. Sci., 2017,57(2):129.
[30]
Nuvoli D, Valentini L, Alzari V, Scognamillo S, Bon S B, Piccinini M, Illescas J, Mariani A . J. Mater. Chem., 2011,21(10):3428.
[31]
Xiong X, Wang J, Jia H, Fang E, Ding L . Polym. Degrad. Stab., 2013,98(11):2208.
[32]
Lin Y, Liu S, Peng J, Liu L . Compos. Sci. Technol., 2016,131:40.
[33]
Chen Y, Lin Y, Luo Y, Jia D, Liu L . Polym. Adv. Technol., 2016,27(6):830.
[34]
Yin B, Zhang X, Zhang X, Wang J, Wen Y, Jia H, Ji Q, Ding L . Polym. Adv. Technol., 2017,28(3):293.
[35]
Su Q, Pang S, Alijani V, Li C, Feng X, Muellen K . Adv. Mater., 2009,21(31):3191. http://doi.wiley.com/10.1002/adma.v21%3A31

doi: 10.1002/adma.v21:31
[36]
Stankovich S, Piner R D, Chen X Q, Wu N Q, Nguyen S T, Ruoff R S . J. Mater. Chem., 2006,16(2):155.
[37]
Lin Y, Liu S, Chen S, Wei Y, Dong X, Liu L . J. Mater. Chem. C, 2016,4(26):6345.
[38]
Choi E Y, Han T H, Hong J, Kim J E, Lee S H, Kim H W, Kim S O . J. Mater. Chem., 2010,20(10):1907. http://xlink.rsc.org/?DOI=b919074k

doi: 10.1039/b919074k
[39]
Zhou Z, Zhang X, Wu X, Lu C . Compos. Sci. Technol., 2016,125:1.
[40]
Cao J, Zhang X, Wu X, Wang S, Lu C . Carbohydr. Polym., 2016,140:88. https://www.ncbi.nlm.nih.gov/pubmed/26876831

doi: 10.1016/j.carbpol.2015.12.042 pmid: 26876831
[41]
Dong B, Wu S, Zhang L, Wu Y . Ind. Eng. Chem. Res., 2016,55(17):4919. https://pubs.acs.org/doi/10.1021/acs.iecr.6b00214

doi: 10.1021/acs.iecr.6b00214
[42]
Lin Y, Chen Y, Zeng Z, Zhu J, Wei Y, Li F, Liu L . Composites Part A, 2015,70:35. https://linkinghub.elsevier.com/retrieve/pii/S1359835X14003911

doi: 10.1016/j.compositesa.2014.12.008
[43]
Wang H, Wu J, Gong K, Hao Q, Wang X, Jiang J, Li Z, Lai G . RSC Adv., 2016,6(65):60160. http://xlink.rsc.org/?DOI=C6RA10745A

doi: 10.1039/C6RA10745A
[44]
Hummers W S, Offeman R E . J. Am. Chem. Soc., 1958,80(6):1339. ded0d295-2aff-415b-a579-89db9a3a6f8chttps://pubs.acs.org/doi/abs/10.1021/ja01539a017

doi: 10.1021/ja01539a017
[45]
Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S . Carbon, 2007,45(7):1558. https://www.ncbi.nlm.nih.gov/pubmed/7189441

doi: 10.1002/1097-0142(19800401)45:7【-逻*辑*与-】amp;amp;lt;1558::aid-cncr2820450708【-逻*辑*与-】amp;amp;gt;3.0.co;2-2 pmid: 7189441
[46]
Paredes J I, Villar-Rodil S, Martinez-Alonso A, Tascon J M D . Langmuir, 2008,24(19):10560. https://www.ncbi.nlm.nih.gov/pubmed/18759411

doi: 10.1021/la801744a pmid: 18759411
[47]
Hernandez M, del Mar Bernal M, Verdejo R, Ezquerra T A, Lopez-Manchado M A . Compos. Sci. Technol., 2012,73:40. https://linkinghub.elsevier.com/retrieve/pii/S0266353812003156

doi: 10.1016/j.compscitech.2012.08.012
[48]
Bai X, Wan C, Zhang Y, Zhai Y . Carbon, 2011,49(5):1608. ef10f05b-929a-4f0b-a468-1e196df80ee8http://dx.doi.org/10.1016/j.carbon.2010.12.043

doi: 10.1016/j.carbon.2010.12.043
[49]
Gan L, Shang S, Jiang S X . Composite Part B, 2016,84:294. https://linkinghub.elsevier.com/retrieve/pii/S1359836815005132

doi: 10.1016/j.compositesb.2015.08.073
[50]
Xing W, Tang M, Wu J, Huang G, Li H, Lei Z, Fu X, Li H . Compos. Sci. Technol., 2014,99:67. https://linkinghub.elsevier.com/retrieve/pii/S0266353814001584

doi: 10.1016/j.compscitech.2014.05.011
[51]
Song J, Chen C, Zhang Y . Compos. Part A-Appl. S., 2018,105:1. https://linkinghub.elsevier.com/retrieve/pii/S1359835X17304001

doi: 10.1016/j.compositesa.2017.11.001
[52]
Dong H, Jia Y, Chen Y, Luo Y, Zhong B, Jia D . Compos. Sci. Technol., 2018,164:267. https://linkinghub.elsevier.com/retrieve/pii/S0266353818306213

doi: 10.1016/j.compscitech.2018.05.047
[53]
Liu X, Kuang W, Guo B . Polymer, 2015,56:553. https://linkinghub.elsevier.com/retrieve/pii/S0032386114010854

doi: 10.1016/j.polymer.2014.11.048
[54]
Yang X, Zhang Y, Xu Y, Gao S, Guo S . Macromol. Res., 2017,25(3):270. http://link.springer.com/10.1007/s13233-017-5035-7

doi: 10.1007/s13233-017-5035-7
[55]
Wu J, Huang G, Li H, Wu S, Liu Y, Zheng J . Polymer, 2013,54(7):1930. 70fb7135-bd93-409d-a9ec-9ff7fe37d7d5http://dx.doi.org/10.1016/j.polymer.2013.01.049

doi: 10.1016/j.polymer.2013.01.049
[56]
Doufnoune R, Haddaoui N . J. Polym. Res., 2017,24(9):138.
[57]
Zhang Y, Zhu Y, Lin G, Ruoff R S, Hu N, Schaefer D W, Mark J E . Polymer, 2013,54(14):3605.
[58]
Zhao X W, Zang C G, Wen Y Q, Jiao Q J . J. Appl. Polym. Sci., 2015,132(38):42582.
[59]
Zhong B, Jia Z, Dong H, Luo Y, Jia D, Liu F . Chem. Eng. J., 2017,317:51.
[60]
Wu Y, Chen L, Li J, Zhou H, Zhao H, Chen J . Eur. Polym. J., 2017,89:150.
[61]
Tian L, Jin E, Mei H, Ke Q, Li Z, Kui H . J. Bionic Eng., 2017,14(1):130.
[62]
Lin Y, Liu K, Chen Y, Liu L . Polym. Composite., 2015,36(10):1775.
[63]
Yang X, Zhang Y, Xu Y, Gao S, Guo S . Polym. Bull., 2017,74(12):1.
[64]
Liu X, Sun D, Wang L, Guo B . Ind. Eng. Chem. Res., 2013,52(41):14592.
[65]
Zhang X, Wang J, Jia H, You S, Xiong X, Ding L, Xu Z . Composite Part B, 2016,84:121.
[66]
Yu Z, Shi Z, Xu H, Ma X, Tian M, Yin J . Carbon, 2017,114:649. https://www.ncbi.nlm.nih.gov/pubmed/16675415

doi: 10.1289/ehp.8422 pmid: 16675415
[67]
Zhang X, Wang J, Jia H, Yin B, Ding L, Xu Z, Ji Q . RSC Adv., 2016,6(60):54668.
[68]
Ozbas B, Toki S, Hsiao B S, Chu B, Register R A, Aksay I A, Prud'homme R K, Adamson D H . J. Polym. Sci. Pol. Phys., 2012,50(10):718.
[69]
She X, He C, Peng Z, Kong L . Polymer, 2014,55(26):6803.
[70]
Li H, Yang L, Weng G, Xing W, Wu J, Huang G . J. Mater. Chem. A, 2015,3(44):22385.
[71]
Dong B, Liu C, Zhang L, Wu Y . RSC Adv., 2015,5(22):17140.
[72]
Mao Y, Wen S, Chen Y, Zhang F, Panine P, Chan T W, Zhang L, Liang Y, Liu L . Sci. Rep., 2013,3:1.
[73]
Tang Z, Zhang L, Feng W, Guo B, Liu F, Jia D . Macromolecules, 2014,47(24):8663.
[74]
Xing W, Li H, Huang G, Cai L H, Wu J . Compos. Sci. Technol., 2017,144.
[75]
Wang J, Jia H, Tang Y, Ji D, Sun Y, Gong X, Ding L . J. Mater. Sci., 2013,48(4):1571.
[76]
Wen Y, Yin Q, Jia H, Yin B, Zhang X, Liu P, Wang J, Ji Q, Xu Z . Composite Part B, 2017,124:250. https://linkinghub.elsevier.com/retrieve/pii/S1359836816332814

doi: 10.1016/j.compositesb.2017.05.006
[77]
Gan L, Shang S, Yuen C W M, Jiang S X, Luo N M . Composite Part B, 2015,69:237. https://linkinghub.elsevier.com/retrieve/pii/S1359836814004648

doi: 10.1016/j.compositesb.2014.10.019
[78]
Huang N J, Zang J, Zhang G D, Guan L Z, Li S N, Zhao L, Tang L C . RSC Adv., 2017,7(36):22045. https://www.ncbi.nlm.nih.gov/pubmed/28603608

doi: 10.1039/c7ra02792c pmid: 28603608
[79]
Zhang Y, Cho U R . Polym. Composite., 2018,39(9):3227.
[80]
Yang Z, Liu J, Liao R, Yang G, Wu X, Tang Z, Guo B, Zhang L, Ma Y, Nie Q, Wang F . Compos. Sci. Technol., 2016,132:68.
[81]
Lin Y, Liu S, Peng J, Liu L . Composites Part A, 2016,86:19. https://linkinghub.elsevier.com/retrieve/pii/S1359835X1630046X

doi: 10.1016/j.compositesa.2016.03.029
[82]
Luo Y, Wu Y, Luo K, Cai F, Zhai T, Wu S . Compos. Sci. Technol., 2018,161:32. https://linkinghub.elsevier.com/retrieve/pii/S0266353817328324

doi: 10.1016/j.compscitech.2018.03.036
[83]
Zhao Z, Li L, Shao X, Liu X, Zhao S, Xie S, Xin Z . Polym. Test., 2018,70:396. https://linkinghub.elsevier.com/retrieve/pii/S0142941818306639

doi: 10.1016/j.polymertesting.2018.07.020
[84]
Yin B, Wang J, Jia H, He J, Zhang X, Xu Z . J. Mater. Sci., 2016,51(12):5724.
[85]
Wang L, Wang W, Fu Y, Wang J, Lvov Y, Liu J, Lu Y, Zhang L . Composite Part B, 2016,90:457.
[86]
Kotal M, Banerjee S S, Bhowmick A K . Polymer, 2016,82:121.
[87]
Kim P, Shi L, Majumdar A, McEuen P L . Phys. Rev. Lett., 2001,87(21):215502. https://www.ncbi.nlm.nih.gov/pubmed/11736348

doi: 10.1103/PhysRevLett.87.215502 pmid: 11736348
[88]
Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N . Nano Lett., 2008,8(3):902. https://www.ncbi.nlm.nih.gov/pubmed/18284217

doi: 10.1021/nl0731872 pmid: 18284217
[89]
Suriani A B, Nurhafizah M D, Mohamed A, Masrom A K, Sahajwalla V, Joshi R K . Mater. Design, 2016,99:174.
[90]
Tian L, Wang Y, Li Z, Mei H, Shang Y . Exp. Therm. Fluid Sci., 2017,85:363.
[91]
Zhang H, Lin Y, Zhang D, Wang W, Xing Y, Lin J, Hong H, Li C . Curr. Appl. Phys., 2016,16(12):1695.
[92]
Abd R J, Ahmad S H, Ratnam C T, Mahamood M A, Mohamad N . J. Mater. Sci., 2015,50(19):6365.
[93]
Tian M, Ma Q, Li X, Zhang L, Nishi T, Ning N . J. Mater. Chem. A, 2014,2(29):11144.
[94]
Rybinski P, Anyszka R, Imiela M, Sicinski M, Gozdek T . J. Therm. Anal. Calorim., 2017,127(3):2383. http://link.springer.com/10.1007/s10973-016-5841-8

doi: 10.1007/s10973-016-5841-8
[95]
Lin S C, Ma C C M, Liao W H, Wang J A, Zeng S J, Hsu S Y, Chen Y H, Hsiao S T, Cheng T Y, Lin C W, Hsiao P Y . J. Taiwan Inst. Chem. Eng., 2016,68:396.
[96]
Guezzout Z, Doufnoune R, Haddaoui N . J. Polym. Res., 2017,8:24.
[97]
Fu B, Li X, Yuan G, Chen W, Pan Y . J. Nanomater., 2014,3.
[98]
Chen X, Zhuo J, Song W, Jiao C, Qian Y, Li S . Polym. Adv. Technol., 2014,25(12):1530.
[99]
Wang F, Drzal L T, Qin Y, Huang Z . Composites Part A, 2016,87:10.
[100]
Huang X, Qi X, Boey F, Zhang H . Chem. Soc. Rev., 2012,41(2):666. https://www.ncbi.nlm.nih.gov/pubmed/21796314

doi: 10.1039/c1cs15078b pmid: 21796314
[101]
Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K . Proc. Natl. Acad. Sci. U.S. A., 2005,102(30):10451. https://www.ncbi.nlm.nih.gov/pubmed/16027370

doi: 10.1073/pnas.0502848102 pmid: 16027370
[102]
Aguilar-Bolados H, Lopez-Manchado M A, Brasero J, Aviles F, Yazdani-Pedram M . Composite Part B, 2016,87:350. https://linkinghub.elsevier.com/retrieve/pii/S1359836815005193

doi: 10.1016/j.compositesb.2015.08.079
[103]
Suriani A B, Nurhafizah M D, Mohamed A, Masrom A K, Mamat M H, Malek M F, Ahmad M K, Rosmi M S, Tanemura M . J. Mater. Sci., 2017,52(11):6611.
[104]
Zhan Y, Lavorgna M, Buonocore G, Xia H . J. Mater. Chem., 2012,22(21):10464.
[105]
He C, She X, Peng Z, Zhong J, Liao S, Gong W, Liao J, Kong L . Phys. Chem. Chem. Phys., 2015,17(18):12175. https://www.ncbi.nlm.nih.gov/pubmed/25881784

doi: 10.1039/c5cp00465a pmid: 25881784
[106]
Dong B, Zhang L, Wu Y . J. Mater. Sci., 2016,51(23):10561.
[107]
Zhan Y, Meng Y, Li Y . Mater. Lett., 2016,192.
[108]
Tian M, Zhang J, Zhang L, Liu S, Zan X, Nishi T, Ning N . J. Colloid Interface Sci., 2014,430:249. https://www.ncbi.nlm.nih.gov/pubmed/24972295

doi: 10.1016/j.jcis.2014.05.034 pmid: 24972295
[109]
Ozbas B, O'Neill C D, Register R A, Aksay I A, Prud'homme R K, Adamson D H . J. Polym. Sci. Pol. Phys., 2012,50(13):910.
[110]
Shi G, Zhao Z, Pai J H, Lee I, Zhang L, Stevenson C, Ishara K, Zhang R, Zhu H, Ma J . Adv. Funct. Mater., 2016,26(42):7614.
[111]
Guo Q, Luo Y, Liu J, Zhang X, Lu C . J. Mater. Chem. C, 2018,6(8):2139.
[1] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[2] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[3] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[4] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[5] Hui Zhang, Wei Xiong, Jianchen Lu, Jinming Cai. Magnetic Properties and Engineering of Nanographene in Ultra-High Vacuum [J]. Progress in Chemistry, 2022, 34(3): 557-567.
[6] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[7] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[8] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.
[9] Binbin Zhu, Xiaohui Zheng, Guang Yang, Xu Zeng, Wei Qiu, Bin Xu. Mechanical Property Regulation of Graphene Oxide Separation Membranes [J]. Progress in Chemistry, 2021, 33(4): 670-677.
[10] Suye Lv, Liang Zou, Shouliang Guan, Hongbian Li. Application of Graphene in Neural Activity Recording [J]. Progress in Chemistry, 2021, 33(4): 568-580.
[11] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[12] Xi Chen, Zheyao Li, Yayun Chen, Zhihua Chen, Yan Hu, Chuanxiang Liu. C—H Cyanoalkylation:the Direct C—H Cyanomethylation of Naphthalimide [J]. Progress in Chemistry, 2021, 33(11): 1947-1952.
[13] Jianlei Qi, Qinqin Xu, Jianfei Sun, Dan Zhou, Jianzhong Yin. Synthesis, Characterization and Analysis of Graphene-Supported Single-Atom Catalysts [J]. Progress in Chemistry, 2020, 32(5): 505-518.
[14] Qianwen Huang, Xiaowen Zhang, Mi Li, Xiaoyan Wu, Liyong Yuan. Preparation of Functional Fibrous Silica Nanoparticles and Their Applications in Adsorption and Separation [J]. Progress in Chemistry, 2020, 32(2/3): 230-238.
[15] Qiang Zhang, Wenjun Huang, Yanbin Wang, Xingjian Li, Yiheng Zhang. Functionalization of Polyurethane Based on Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction [J]. Progress in Chemistry, 2020, 32(2/3): 147-161.