中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (11): 1351-1356 DOI: 10.7536/PC170557 Previous Articles   Next Articles

• Review •

Synthesis of o-Aminobenzamide Compounds

Xiaopeng Zhang*, Shuxiang Dong, Xuesen Fan, Guisheng Zhang   

  1. Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21772033).
PDF ( 1395 ) Cited
Export

EndNote

Ris

BibTeX

o-Aminobenzamide compounds are a class of molecules containing bifunctional groups. The amide bonds in their molecules are not only the basic constituent units of peptides and proteins, but also the structural units which are indispensable to regulate the life activity. The amide and amino groups in the molecules have good reactivities, so most of the compounds have biological and pharmacological activities in medicine, pesticides, organic synthesis and other fields with a wide range of applications. In this paper, the progress of the synthesis of o-aminobenzamide compounds is reviewed. The main approaches to o-aminobenzamide compounds are introduced with o-aminobenzoic acids, o-aminobenzoyl halides, o-aminobenzoates, isatoic anhydrides, o-halobenzoic acid and their derivatives, quinazolinones, benzamides, benzynes, indazole salts, N-substituted anilines as raw materials, respectively, and the advantages and disadvantages of each method are analyzed. Finally, the synthesis of these compounds is summarized and the prospect of their development is prospected.
Contents
1 Introduction
2 Synthesis of o-aminobenzamide compounds
2.1 From o-aminobenzoic acids
2.2 From o-aminobenzoyl halides
2.3 From o-aminobenzoates
2.4 From isatoic anhydrides
2.5 From o-halobenzoic acids and their derivatives
2.6 From quinazolinones
2.7 From benzamides
2.8 From benzynes
2.9 From indazole salts
2.10 From N-substituted anilines
3 Conclusion

CLC Number: 

[1] Gurulingappa H, Amador M L, Zhao M, Rudek M A, Hidalgo M, Khan S R. Bioorg. Med. Chem., 2004, 14(9):2213.
[2] Labrie P, Maddaford S P, Fortin S, Rakhit S, Kotra L P, Gaudreault R C. J. Med. Chem., 2006, 49(26):7646.
[3] Ott G R, Cheng M, Learn K S, Wagner J, Gingrich D E, Lisko J G. J. Med. Chem., 2016, 59(16):7478.
[4] Shoji N, Umeyama A, Iuchi A, Saito N, Takemoto T, Nomoto K, Ohizumi Y. J. Nat. Prod., 1988, 51(4):791.
[5] Kukar T, Murphy M P, Eriksen J L, Sagi S A, Weggen S, Smith T E, Ladd T, Khan M A, Kache R, Beard J, Dodson M, Merit S, Ozols V V, Anastasiadis P Z, Das P, Fauq A, Koo E H, Golde T E. Nat. Med., 2005, 11(5):545.
[6] Narsinghani T, Chaturvedi S C. Bioorg. Med. Chem. Lett., 2006, 16(2):461.
[7] Englund E E, Neumann S, Eliseeva E, McCoy J G, Titus S, Zheng W, Southall N, Shin P, Thomas C J, Inglese J, Austin C P, Gershengorn M C, Huang W M. MedChemComm, 2011, 2(10):1016.
[8] Joubert J, van Dyk S, Green I R, Malan S F. Bioorg. Med. Chem., 2011, 19(13):3935.
[9] van Straten N C R, Schoonus Gerritsma G G, van Someren R G, Draaijer J, Adang A E P, Timmers C M, Hanssen R G J M, van Boeckel C A A. ChemBioChem, 2002, 3(10):1023.
[10] Verma A, Giridhar R, Kanhed A, Sinha A, Modh P, Yadav M R. ACS Med. Chem. Lett., 2015, 6(2):226.
[11] Roy K, De A U, Sengupta C. Drug Des. Discovery, 2002, 18(1):23.
[12] Zhang X L, Liu A L, Zhao Y, Xiong L X, Li Z M. Chem. Res. Chin. Univ., 2013, 29(6):1134.
[13] Xu Z H, Zhang Y P, Fu H C, Zhong H M, Hong K, Zhu W M. Bioorg. Med. Chem. Lett., 2011, 21(13):4005.
[14] Bilokin Y V, Kovalenko S M. Heterocycl. Commun., 2000, 6(5):409.
[15] Tian X H, Song L N, Li E T, Wang Q, Yu W Q, Chang J B. RSC Adv., 2015, 5(76):62194.
[16] Miyata T, Mizuno T, Nagahama Y, Nishiguchi I, Hirashima T, Sonoda N. Heteroat. Chem., 1991, 2(4):473.
[17] Kokten S, Celik I. Synthesis, 2013, 45(18):2551.
[18] Li L C, Ren J, Liao T G, Jiang J X, Zhu H J. Eur. J. Org. Chem., 2007, 2007(6):1026.
[19] Rai A, Yadav L D S. Eur. J. Org. Chem., 2013, 2013(10):1889.
[20] Munegumi T, Kimura E, Sodeyama A, Sakurai A. Asian J. Chem., 2008, 20(4):3079.
[21] Campbell J A, McDougald G, McNab H, Rees L V C, Tyas R G. Synthesis, 2007, 20:3179.
[22] Fernandez Forner D, Eritja R, Bardella F, Ruiz Perez C, Solans X, Giralt E, Pedroso E. Tetrahedron, 1991, 47(42):8917.
[23] Ferrand G, Dumas H, Depin J C, Chavernac G. Eur. J. Med. Chem., 1987, 22(4):337.
[24] Wang Z W, Wang M X, Yao X, Li Y, Tan J, Wang L Z, Qiao W T, Geng Y Q, Liu Y X, Wang Q M. Eur. J. Med. Chem., 2012, 53:275.
[25] Ozaki K, Yamada Y, Oine T. J. Org. Chem., 1981, 46(8):1571.
[26] Yee Y K, Tebbe A L, Linebarger J H, Beight D W, Craft T J, Giffordmoore D S, Goodson T, Herron D K, Klimkowski V J, Kyle J A. J. Med. Chem., 2000, 43(5):873.
[27] Xia Z M, Wang K, Zheng J N, Ma Z Y, Jiang Z G, Wang X X, Lv X. Org. Biomol. Chem., 2012, 10(8):1602.
[28] Humphrey J M, Chamberlin A R. Chem. Rev., 1997, 28(52):2243.
[29] Sheehan J C, Hess G P. J. Am. Chem. Soc., 1955, 77(4):1067.
[30] Castro B, Dormoy J R, Evin G, Selve C. Tetrahedron Lett., 1975, 16(14):1219.
[31] Carpino L A. J. Am. Chem. Soc., 1993, 115(10):4397.
[32] Peet N P, Sunder S, Barbuch R J. J. Heterocycl. Chem., 1980, 17:1513.
[33] Rice K D, Aay N, Anand N K, Blazey C M, Bowles O J, Bussenius J, Costanzo S, Curtis J K, Defina S C, Dubenko L, Engst S, Joshi A A, Kennedy A R, Kim A I, Koltun E S, Lougheed J C, Manalo J C L, Martini J F, Nuss J M, Peto C J, Tsang T H, Yu P W, Johnston S. ACS Med. Chem. Lett., 2012, 3(5):416.
[34] Mahiwal K, Kumar P, Narasimhan B. Med. Chem. Res., 2012, 21(3):293.
[35] Correa A, Tellitu I, Dominguez E, Sanmartin R. J. Org. Chem., 2006, 71(9):3501.
[36] Coppola G M M, Ruth I. J. Heterocycl. Chem., 1978, 15(7):1169.
[37] Sawatzky E, Wehle S, Kling B, Wendrich J, Bringmann G, Sotriffer C A, Heilmann J, Decker M. J. Med. Chem., 2016, 59(5):2067.
[38] Clark P G, Lein M, Keyzers R A. Org. Biomol. Chem., 2012, 10(9):1725.
[39] Jourdan F. Eur. J. Inorg. Chem., 1885, 18(1):1444.
[40] Ullmann F. Eur. J. Inorg. Chem., 1903, 36(2):2382.
[41] Goldberg I. Eur. J. Inorg. Chem., 1906, 39(2):1691.
[42] Guram A S, Buchwald S L. J. Am. Chem. Soc., 1994, 116(17):7901.
[43] Paul F, Patt J, Hartwig J F. J. Am. Chem. Soc., 1994, 116(13):5969.
[44] 王晔峰(Wang Y F), 曾京辉(Zeng J H), 崔晓瑞(Cui X R). 有机化学(Chinese Journal of Organic Chemistry), 2010, 30(2):181.
[45] Culf A S, Cuperlovic Culf M, Ouellette R J, Decken A. Org. Lett., 2015, 17(11):2744.
[46] Pakrashi S C, Chakravarty A K. J. Org. Chem., 1972, 37(20):3143.
[47] Lee D, Kim Y, Chang S. J. Org. Chem., 2013, 78(21):11102.
[48] Zhang T, Hu X J, Wang Z, Yang T T, Sun H, Li G G, Lu H J. Chem. Eur. J., 2016, 22(9):2920.
[49] Ryu J, Shin K, Park S H, Kim J Y, Chang S. Angew. Chem. Int. Ed., 2012, 51(39):9904.
[50] Shin K, Baek Y, Chang S. Angew. Chem. Int. Ed., 2013, 52(31):8031.
[51] Figg T M, Park S, Park J, Chang S, Musaev D G. Organometallics, 2014, 33(15):4076.
[52] Kim H, Shin K, Chang S. J. Am. Chem. Soc., 2014, 136(16):5904.
[53] Kim H, Chang S. ACS Catal., 2015, 5(11):6665.
[54] Tran N T T, Tran Q H, Truong T. J. Catal., 2014, 320:9.
[55] Yan Q Q, Chen Z K, Yu W L, Yin H, Liu Z X, Zhang Y H. Org. Lett., 2015, 17(10):2482.
[56] Zhang L B, Zhang S K, Wei D, Zhu X, Hao X Q, Su J H, Niu J L, Song M P. Org. Lett., 2016, 18(6):1318.
[57] Shang M, Sun S Z, Dai H X, Yu J Q. J. Am. Chem. Soc., 2014, 136(9):3354.
[58] Tezuka N, Shimojo K, Hirano K, Komagawa S, Yoshida K, Wang C, Miyamoto K, Saito T, Takita R, Uchiyama M. J. Am. Chem. Soc., 2016, 138(29):9166.
[59] Yoshida H, Shirakawa E, Honda Y, Hiyama T. Angew. Chem. Int. Ed., 2002, 41(17):3247.
[60] Li R, Tang H R, Fu H X, Ren H L, Wang X M, Wu C R, Wu C, Shi F. J. Org. Chem., 2014, 79(3):1344.
[61] Guan Z, Nieger M, Schmidt A. Eur. J. Org. Chem., 2015, 2015(21):4710.
[62] Katritzky A R, Fan W Q, Akutagawa K. Tetrahedron, 1986, 42(14):4027.
[63] Zhang X P, Dong S X, Niu X L, Li Z W, Fan X S, Zhang G S. Org. Lett., 2016, 18(18):4634.
[1] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[2] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[3] Xi Chen, Zheyao Li, Yayun Chen, Zhihua Chen, Yan Hu, Chuanxiang Liu. C—H Cyanoalkylation:the Direct C—H Cyanomethylation of Naphthalimide [J]. Progress in Chemistry, 2021, 33(11): 1947-1952.
[4] Qianwen Huang, Xiaowen Zhang, Mi Li, Xiaoyan Wu, Liyong Yuan. Preparation of Functional Fibrous Silica Nanoparticles and Their Applications in Adsorption and Separation [J]. Progress in Chemistry, 2020, 32(2/3): 230-238.
[5] Qiang Zhang, Wenjun Huang, Yanbin Wang, Xingjian Li, Yiheng Zhang. Functionalization of Polyurethane Based on Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction [J]. Progress in Chemistry, 2020, 32(2/3): 147-161.
[6] Jiangbo Liu, Lihua Wang, Xiaolei Zuo. Cell Membranes Functionalization Based on DNA [J]. Progress in Chemistry, 2019, 31(8): 1067-1074.
[7] Yuanming Tan, Hao Meng, Xia Zhang. Removal of Organic Dyes and Heavy Metal Ions by Functionalized MOFs and MOFs/Polymer Composite Membranes [J]. Progress in Chemistry, 2019, 31(7): 980-995.
[8] Aobo Geng, Qiang Zhong, Changtong Mei, Linjie Wang, Lijie Xu, Lu Gan. Applications of Wet-Functionalized Graphene in Rubber Composites [J]. Progress in Chemistry, 2019, 31(5): 738-751.
[9] Zhao Li, Lin Yu, Zhen Zheng, Xinling Wang*. Functionalization of High-Strength Hydrogels with Regular Network Structures [J]. Progress in Chemistry, 2017, 29(7): 706-719.
[10] Zhang Guanglu, Zhang Ting, Zhou Lipeng, Sun Qingfu. Capsid-Inspired Multi-Component Self-Assembly of Nanocontainers: Structure, Functionalization, and Applications [J]. Progress in Chemistry, 2016, 28(9): 1289-1298.
[11] Sun Yue, Zhou Xiaoxin, Lou Zimo, Liu Yu, Fu Ruiqi, Xu Xinhua*. Functionalized Iron-Based Nano-Materials for Removal of Mercury from Aqueous Solution [J]. Progress in Chemistry, 2016, 28(8): 1156-1169.
[12] Dong Yunhong, Cao Liping. Functionalization of Cucurbit uril [J]. Progress in Chemistry, 2016, 28(7): 1039-1053.
[13] Li Donghan, Qi Shicheng, Zhang Xiaoa, Liao Mingyi. Preparation, Functionalization and Properties of Low Molecular Fluoropolymers [J]. Progress in Chemistry, 2016, 28(5): 673-685.
[14] Feng Yanyan, Jin Ming, Wan Decheng. A Bridge Spanning Microscopic to Macroscopic Assembly: Application of the Technique of Polymerization of Concentrated Emulsion [J]. Progress in Chemistry, 2016, 28(11): 1658-1663.
[15] Wang Xiaochi, Chang Gang, Cao Ruijun, Meng Lingjie. Structure and Properties of Near-Infrared Fluorescent Dyes and the Bioimaging Application [J]. Progress in Chemistry, 2015, 27(7): 794-805.
Viewed
Full text


Abstract

Synthesis of o-Aminobenzamide Compounds