中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (5): 539-552 DOI: 10.7536/PC170310 Previous Articles   Next Articles

• Review •

Surface Mechanism of Carbon-Based Materials for Catalyzing Peroxide Degradation of Organic Pollutants in Water

Shiying Yang1,2,3*, Ao Zhang1,3, Tengfei Ren3, Yitao Zhang3   

  1. 1. The Key Laboratory of Marine Environment & Ecology, Ministry of Education, Qingdao 266100, China;
    2. Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering(MEGE), Qingdao 266100, China;
    3. College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21107101, 21677135).
PDF ( 1605 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, compared to metal catalysts, metal-free carbon-based catalysts including traditional carbon materials such as activated carbon (AC), biochar (BC), activated carbon fiber (ACF) and activated carbon cloth (ACC), and new nano-carbon material such as carbon nanotubes (CNT), graphene (GE), ordered mesoporous carbon (OMC), and their surface modified materials are gradually investigated as a new peroxide activator. In the field of water treatment, the above carbon-based materials can be used to catalyze and activate peroxides such as hydrogen peroxide (H2O2), peroxymonosulfate (HSO-5, PMS) or persulfate (S2O2-8, PS) to produce highly active hydroxyl radicals (·OH) or sulfate radicals (SO4·-), which can efficiently degrade organic contaminants through advance oxidation processes (AOPs). What's more, the surface structure of carbon-based materials is rich in functional groups, such as hydroxyl, carboxyl, ketone, pyridine, pyrrole, etc., as well as abundant and varied defect shape, delocalized π electrons, hybrid C orbitals, and so on. They can work together and show the excellent catalytic properties of metal-free carbon-based materials. Therefore, different types of materials and their surface functional groups, surface structure, electron density and other factors play a significant role in the mechanism of carbon-based materials catalyzing peroxides. Accordingly, the progress of this AOP since 2010 and the surface mechanism of the above carbon-based materials in catalyzing peroxide and then degrading organic pollutants in water through the process of adsorption, complexing intermediates and electron transfer are deeply reviewed. Especially, the effects of surface physical and chemical properties on catalyzing mechanisms by the way of oxidation, nitriding, polyatomic in-situ doping and reduction modification are summarized. In addition, the influence mechanism of oxidants on the surface of carbon-based materials is also studied. At the same time, the prospects of the existing problems are pointed out.
Contents
1 Introduction
2 Material differences
2.1 Non-nano carbon material
2.2 Nano carbon material
3 The mechanism of the surface physical and
chemical properties
3.1 The effect of oxidation
3.2 The effect of nitriding
3.3 The effect of polyatomic in-situ doping
3.4 The effect of reductive treatments
4 The influence mechanism of oxidants on the surface of carbon-based materials
4.1 Physical properties
4.2 Chemical properties
5 Conclusion

CLC Number: 

[1] Neta P, Huie R E, Ross A B. J. Phys. Chem. Ref. Data, 1988, 17(3):1027.
[2] Cheng M, Zeng G M, Huang D L, Cui L, Xu P, Zhang C, Liu Y. Chem. Eng. J., 2016, 284:582.
[3] Ghanbari F, Moradi M. Chem. Eng. J., 2017, 310:41.
[4] Oh W D, Dong Z L, Lim T T. Appl. Catal. B:Environ., 2016, 194:169.
[5] 杨鑫(Yang X), 杨世迎(Yang S Y), 邵雪停(Shao X T), 王雷雷(Wang L L), 牛瑞(Niu R). 化学进展(Progress in Chemistry), 2010, 22(10):2071.
[6] Zomer R J, Neufeldt H, Xu J, Ahrends A, Bossio D, Trabucco A, Noordwijk M V, Wang M. Sci. Rep., 2016, 6:29987.
[7] Yang S Y, Li L, Xiao T, Zheng D, Zhang Y T. Appl. Surf. Sci., 2016, 383:142.
[8] Moreno-Castilla C, Fontecha-Cámara M A, álvarez-Merino M A, López-Ramón M V, Carrasco-Marín F. Adsorption, 2011, 17(3):413.
[9] Duan X G, Ao Z M, Zhou L, Sun H Q, Wang G X, Wang S B. Appl. Catal. B:Environ., 2016, 188:98.
[10] Duan X, Sun H, Ao Z, Zhou L, Wang G, Wang S. Carbon, 2016, 107:371.
[11] Indrawirawan S, Sun H Q, Duan X G, Wang S B. Appl. Catal. B:Environ., 2015, 179:352.
[12] 冯晓苗(Feng X M), 李瑞梅(Li R M), 杨晓燕(Yang X Y), 侯文华(Hou W H). 化学进展(Progress in Chemistry), 2012, 24(11):2158.
[13] Fang G D, Gao J, Liu C, Dionysiou D D, Wang Y, Zhou D M. Environ. Sci. Technol., 2014, 48(3):1902.
[14] Duan X G, Sun H Q, Kang J, Wang Y X, Indrawirawan S, Wang S B. ACS Catal., 2015, 5:4629.
[15] Zhang J, Shao X, Shi C, Yang S. Chem. Eng. J., 2013, 232(10):259.
[16] Peng W C, Liu S Z, Sun H Q, Yao Y J, Zhi L J, Wang S B. J. Mater. Chem. A, 2013, 1(19):5854.
[17] Saputra E, Muhammad S, Sun H Q, Wang S B. RSC Adv., 2013, 3(2013):21905.
[18] Sun H, Kwan C K, Suvorova A, Ang H M, Tadé M O, Wang S. Appl. Catal. B:Environ., 2014, s 154/155(5):134.
[19] Yang S Y, Xiao T, Zhang J, Chen Y, Li L. Sep. Purif. Technol., 2015, 143:19.
[20] Rui S R, Silva A M T, Figueiredo J L, Faria J L, Gomes H T. Carbon, 2013, 62(5):97.
[21] Yang S Y, Li L, Xiao T, Zhang Y T, Zheng D. Sep. Purif. Technol., 2016, 160:81.
[22] Duan X G, O'Donnell K, Sun H Q, Wang Y X, Wang S B. Small, 2015, 11(25):3036.
[23] Oliveira L C A, Silva C N, Yoshida M I, Lago R M. Carbon, 2004, 42(11):2279.
[24] Kimura M, Miyamoto I. Bull. Chem. Soc. Jpn., 1994, 67(9):2357.
[25] Georgi A, Kopinke F D. Appl. Catal. B:Environ., 2005, 58(1):9.
[26] Liang C, Lin Y T, Shih W H. Ind. Eng. Chem. Res., 2009, 48(18):8373.
[27] 杨波(Yang B), 李影影(Li Y Y), 余刚(Yu G), 邓述波(Deng S B), 卓琼芳(Zhuo Q F), 张鸿(Zhang H). 化学进展(Progress in Chemistry), 2014, 26(7):1265.
[28] Lee Y C, Lo S L, Kuo J, Huang C P. J. Hazard. Mater., 2013, 261(261C):463.
[29] 杨鑫(Yang X), 杨世迎(Yang S Y), 王雷雷(Wang L L), 邵雪停(Shao X T), 牛瑞(Niu R), 单良(Shan L), 张文义(Zhang W Y). 环境科学(Environmental Sciences), 2011, 32(7):1960.
[30] Yang S Y, Yang X, Shao X T, Niu R, Wang L L. J. Hazard. Mater., 2011, 186(1):659.
[31] Sun B, Ma J, Sedlak D L. Environ. Sci. Technol., 2016, 50(14):7618.
[32] O'Laughlin J, Mcelligott K. Forest Policy Econ., 2009, 11(7):535.
[33] Alhashimi H A, Aktas C B. Resour. Conserv. Recy., 2017, 118:13.
[34] Biederman L A, Phelps J, Ross B J, Polzin M, Harpole W S. Agr. Ecosyst. Environ., 2017, 236:78.
[35] Biederman L A, Harpole W S. GCB Bioenergy., 2013, 5:202.
[36] Huang D L, Wang Y, Zhang C, Zeng G M, Lai C, Wan J, Qin L, Zeng Y L. RSC Adv., 2016, 6:73186.
[37] Klüpfel L, Keiluweit M, Kleber M, Sander M. Environ. Sci. Technol., 2014, 48(10):5601.
[38] Yan J C, Han L, Gao W G, Song X, Chen M F. Bioresource Technol., 2015, 175:269.
[39] Liao S H, Bo P, Hao L, Di Z, Xing B S. Environ. Sci. Technol., 2014, 48(15):8581.
[40] Fang G D, Liu C, Gao J, Dionysiou D D, Zhou D M. Environ. Sci. Technol., 2015, 49(9):5645.
[41] Kappler A, Wuestner M L, Ruecker A, Harter J, Halama M, Behrens S. Environ. Sci. Technol. Lett., 2014, 1(8):339.
[42] Klinghoffer N B, Castaldi M J, Nzihou A. Fuel, 2015, 157:37.
[43] Freeman J J, Gimblett F G R. Carbon, 1987, 25(4):565.
[44] Nieh G K, Grow D T. J. Colloid Interface. Sci. 1987, 119(1):280.
[45] Nabais J M V, Carrott P J M, Carrott M M L R, Menéndez J A. Carbon, 2004, 42(7):1315.
[46] Pastranamartínez L M, Lópezramón M V, Morenocastilla C. J. Colloid Interface. Sci. 2009, 331(1):2.
[47] Yao Y, Wang L, Sun L, Zhu S, Huang Z, Mao Y, Lu W, Chen W. Chem. Eng. Sci., 2013, 101(14):424.
[48] Qu X F, Zheng J T, Zhang Y Z. J. Colloid Interface. Sci., 2007, 309(2):429.
[49] Wang L, Yao Y, Zhang Z, Sun L, Lu W, Chen W, Chen H. Chem. Eng. J., 2014, 251(4):348.
[50] Chen J B, Hong W, Huang T Y, Zhang L M, Li W W, Wang Y. Environ. Sci. Pollut. Res., 2016,23:18564.
[51] 徐秀娟(Xu X J), 秦金贵(Qin J G), 李振(Li Z). 化学进展(Progress in Chemistry), 2009, 35(12):2559.
[52] Chae H K, Siberiopérez D Y, Kim J, Go Y, Eddaoudi M, Matzger A J, O'Keeffe M, Yaghi O M. Nature, 2004, 427(6974):523.
[53] Zhang Y, Tan Y W, Stormer H L, Kim P. Nature, 2005, 438(7065):201.
[54] Sun H, Liu S, Zhou G, Ang H M, Tadé M O, Wang S. ACS Appl. Mater. Inter., 2012, 4(10):5466.
[55] Ji L L, Shao Y, Xu Z Y, Zheng S R, Zhu D Q. Environ. Sci. Technol., 2010, 44(16):6429.
[56] Baughman R H, Zakhidov A A, Heer W A D. Science, 2002, 297(5582):787.
[57] Lee H, Lee H J, Jeong J, Lee J, Park N B, Lee C. Chem. Eng. J., 2015, 266:28.
[58] Duan X G, Ao Z M,Sun H Q, Zhou L, Wang G X, Wang S B. Chem. Commun., 2015, 51(83):15249.
[59] 张凌峰(Zhang L F),胡忠攀(Hu Z P),高泽敏(Gao Z M),刘亚录(Liu Y L),袁忠勇(Yuan Z Y). 化学进展(Progress in Chemistry), 2015, 27(8):1042.
[60] Ballesteros E, Gallego M, Valcárcel M. J. Chromatogr. A, 2000, 869(1/2):101.
[61] Figueiredo J L, Pereira M F R. Catal. Today, 2010, 150(1):2.
[62] Riverautrilla J, Sánchezpolo M, Gómezserrano V, Alvarez P M, Alvimferraz M C, Dias J M. J. Hazard. Mater., 2011, 187(1/3):1.
[63] Puente G D L, Pis J J, Menéndez J A, Grange P. J. Anal. Appl. Pyrol., 1997, 43(2):125.
[64] Huang H H, Lu M C, Chen J N, Lee C T. Chemosphere, 2003, 51(9):935.
[65] Qiao W, Korai Y, Mochida I, Hori Y, Maeda T. Carbon, 2002, 40(3):351.
[66] Lahaye J. Fuel, 1998, 77(6):543.
[67] Wang S G, Li Y H, Gong X Y, Zhao H Z, Luan Z K, Xu C L,Wu D H, Chinese Sci. Bull., 2003, 48(5):441.
[68] Santos V P, Pereira M F R, Faria P C C, Órfão J J M. J. Hazard. Mater., 2009, 162(2/3):736.
[69] Glerup M, Steinmetz J, Samaille D, Stéphan O, Enouz S, Loiseau A, Roth S, Bernier P. Chem. Phys. Lett., 2004, 387(1):193.
[70] Hummelen J C, Knight B, Pavlovich J, González R, Wudl F. Science, 1995, 269(5230):1554.
[71] Qu L T, Du F, Dai L M. Nano Lett., 2008, 8(9):2682.
[72] Chizari K, Deneuve A, Ersen O, Florea I, Liu Y, Edouard D, Janowska I, Begin D, Pham-Huu C. ChemSusChem, 2012, 5(1):102.
[73] Luo J, Peng F, Wang H, Yu H. Catal. Commun., 2013, 39(17):44.
[74] Feng L, Yan Y, Chen Y, Wang L. Energ. Environ. Sci., 2011, 4(5):1892.
[75] Thurakitseree T, Kramberger C, Kumamoto A, Chiashi S, Einarsson E, Maruyama S. ACS Nano, 2013, 7(3):2205.
[76] Mangun C L, Benak K R, Economy J, Foster K L. Carbon, 2001, 39(12):1809.
[77] Yu D S, Nagelli E, Du F, Dai L M. J.Phys.Chem.Lett., 2010, 1(14):2165.
[78] Zhao Y, Yang L J, Chen S, Wang X Z, Ma Y W, Wu Q, Jiang Y F, Qian W J, Hu Z. J. Am. Chem. Soc., 2013, 135(4):1201.
[79] Razmjooei F, Singh K P, Song M Y, Yu J S. Carbon, 2014, 78:257.
[80] Duan X, Ao Z, Sun H, Indrawirawan S, Wang Y, Kang J, Liang F, Zhu Z, Wang S. ACS. Appl. Mater. Inter., 2015, 7(7):4169.
[81] Luo Z Q, Lim S H, Tian Z Q, Shang J Z, Lai L F, Macdonald B, Fu C, Shen Z X, Yu T, Lin J Y. J. Mater. Chem., 2011, 21(22):8038.
[82] Duan X G, Ao Z M, Li D G, Sun H Q, Zhou L, Suvorova A, Saunders M, Wang G X, Wang S B. Carbon, 2016, 103:404.
[83] Kundu S, Xia W, Busser W, Becker M, Schmidt D A, Havenith M, Muhler M. Phys. Chem. Chem. Phys., 2010, 12(17):4351.
[84] Indrawirawan S, Sun H Q, Duan X G, Wang S B. J. Mater. Chem. A, 2015, 3(7):3432.
[85] Sun H Q, Wang Y X, Liu S Z, Ge L, Wang L, Zhu Z H, Wang S B. Chem. Commun., 2013, 49(85):9914.
[86] Duan X, Sun H, Wang Y, Kang J, Wang S. ACS Catal., 2014, 5(2):553.
[87] Duan X G, Indrawirawan S, Sun H Q, Wang S B. Catal. Today, 2015, 249:184.
[88] Zhang L P, Niu J B, Li M T, Xia Z H. J. Phys. Chem. C, 2014, 118(7):3545.
[89] Yang L J, Jiang S J, Zhao Y, Zhu L, Chen S, Wang X Z, Wu Q, Ma J, Ma Y W, Hu Z. Angew. Chem., 2011, 123:7270.
[90] Liu H, Sun P, Feng M B, Liu H X, Yang S G, Wang L S, Wang Z Y. Appl. Catal. B:Environ., 2016, 187:1.
[91] Kurita N, Kobayashi K, Kumahora H, Tago K, Ozawa K. Chem. Phys. Lett., 1992, 198(1/2):95.
[92] Glenis S, Labes M M, Nelson A J. J. Appl. Phys., 1997, 81(6):2919.
[93] Liang J, Jiao Y, Jaroniec M, Qiao S Z. Angew. Chem. Int. Ed., 2012, 51(46):11496.
[94] Glendening E D, Landis C R, Weinhold F. WIREs Comput. Mol. Sci., 2012, 2(1):1.
[95] Frank B, Blume R, Rinaldi A, Trunschke A, Schl gl R. Angew. Chem.Int. Ed., 2011, 50(43):10226.
[96] 杨梅梅(Yang M M), 周少奇(Zhou S Q), 刘聃(Liu D), 郑可(Zheng K). 环境科学(Environmental Sciences), 2013, 34(3):962.
[97] 杨世迎(Yang S Y), 邵雪停(Shao X T), 韩强(Han Q), 王平(Wang P),王静(Wang J). 环境化学(Environ. Chem.), 2012, 31(5):692.
[98] Kong X K, Sun Z Y, Chen M, Chen C L, Chen Q W. Energ. Environ. Sci., 2013, 6(6):3260.
[99] Kong X K, Chen C L, Chen Q W. Chem. Soc. Rev., 2014, 43(8):2841.
[100] Czech B, Oleszczuk P, Wi?cek A E, Barczak M. Environ. Sci. Pollut. Res., 2015, 22(24):20198.
[101] Jaramillo J, álvarez P M, Gómez-Serrano V. Appl. Surf. Sci., 2010, 256(17):5232.
[102] Vivo-Vilches J F, Bailón-García E, Pérez-Cadenas A F, Carrasco-Marín F, Maldonado-Hódar F J. Carbon, 2014, 68(3):520.
[103] Boehm H P. Adv. Catal., 1966, 16:179.
[104] Li N, Ma X L, Zha Q F, Kim K S, Chen Y S, Song C S. Carbon, 2011, 49(15):5002.
[105] Rao A M, Eklund P C, Bandow S, Thess A, Smalley R E, Nature, 1997, 388(6639):257.
[106] Duclaux L. Carbon, 2002, 40(10):1751.
[1] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Feng Li, Qingyun He, Fang Li, Xiaolong Tang, Changlin Yu. Materials for Hydrogen Peroxide Production via Photocatalysis [J]. Progress in Chemistry, 2023, 35(2): 330-349.
[4] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[5] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[6] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[7] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[8] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[9] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[10] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[11] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[12] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[13] Wenyan Gao, Xuan Zhao, Xilin Zhou, Yaran Song, Qingrui Zhang. Strategies, Research Progress and Enlightenment of Enhancing the Heterogeneous Fenton Catalytic Reactivity: A Critical Review [J]. Progress in Chemistry, 2022, 34(5): 1191-1202.
[14] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[15] Fei Wu, Wei Ren, Cheng Cheng, Yan Wang, Heng Lin, Hui Zhang. Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water [J]. Progress in Chemistry, 2022, 34(4): 992-1010.