中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (2): 330-349 DOI: 10.7536/PC220718 Previous Articles   

• Review •

Materials for Hydrogen Peroxide Production via Photocatalysis

Feng Li1,2, Qingyun He2, Fang Li2, Xiaolong Tang1,2, Changlin Yu2()   

  1. 1 School of Chemistry and Chemical Engineering, South China University of Technology,Guangzhou 510000, China
    2 School of Chemical Engineering, Guangdong University of Petrochemical Technology,Maoming 525000, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: yuchanglinjx@163.com
  • Supported by:
    National Natural Science Foundation of China(22272034); Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme of China(2019); Guangdong Basic and Applied Basic Research Foundation(2021A1515010305); Guangdong Basic and Applied Basic Research Foundation(2022A1515011900); Environment and Energy Green Catalysis Innovation Team of Colleges and Universities of Guangdong Province(2022KCXTD019)
Richhtml ( 182 ) PDF ( 2256 ) Cited
Export

EndNote

Ris

BibTeX

Hydrogen peroxide (H2O2) is a promising energy carrier and an environmentally friendly oxidant which is widely used in industry and health fields including organic synthesis, drinking water treatment, wastewater treatment and medical hygiene. With the promotion of environmental protection requirements, the demand for H2O2 is expected to increase substantially. H2O2 production by the traditional anthraquinone method (AQ) has a tedious process and pollutes the environment with a large amount of organic matter. In contrast, photocatalytic H2O2 production technology is a green process which uses O2 and H2O as raw materials, solar energy as energy source, and semiconductor as photocatalyst, with some distinct advantages, e. g, mild reaction conditions, simple and controllable operation, and no secondary pollution. Nowadays, the production of H2O2 via photocatalytic route has attracted extensive attention. This review introduces the mechanism of photocatalytic H2O2 production and the reasons for its low efficiency. The typical photocatalyst systems and strategies for enhancing photocatalytic efficiency in H2O2 production are intensively summarized and discussed. Finally, the perspective for the future development of photocatalytic H2O2 production is proposed.

Contents

1 Introduction

2 The mechanism of photocatalytic H2O2 production and the reason for its low selectivity

3 Photocatalytic H2O2 production materials

3.1 g-C3N4

3.2 Metal oxide

3.3 Transition metal sulfide

3.4 Organic framework

4 Modification strategies for photocatalyst materials

4.1 Morphology optimization

4.2 Defective engineering

4.3 Heterojunction engineering

4.4 Metal nanoparticles loading

4.5 Element doping

4.6 Introduction of quantum dot modification

4.7 Introduction of organic molecule or group

4.8 Construction of three phase reaction system

5 Conclusion and outlook

Fig.1 Mechanism diagram of photocatalytic H2O2 production
Fig.2 Three ways of photocatalytic H2O2 production:(a) Mechanism diagram of Au-Ag/TiO2 photocatalytic generation of H2O2 by one-step two-electron ORR[14], (b) Mechanism diagram of a-C3N4 photocatalytic H2O2 production by two-step single-electron ORR[17],(c) Mechanism diagram of CN1.8/ICT/CDs photocatalytic H2O2 production by two channel way[20]
Fig.3 (a) Potential diagram of the reaction involved in photocatalytic production of H2O2, (b) Potential diagram of CB bottom and VB top of photocatalysts, (c) Free energy diagram for the four- and two-electron oxygen reduction in blue and red, respectively, on Au(111)[35]
Table 1 Summary of the photocatalytic production of H2O2 with g-C3N4-based photocatalysts
Table 2 Summary of the photocatalytic production of H2O2 with metallic oxide-based photocatalysts
Table 3 Summary of the photocatalytic production of H2O2 with metal sulfide-based photocatalysts
Table 4 Summary of the photocatalytic production of H2O2 with organic framework-based photocatalysts
Fig.4 Molecular model diagram of g-C3N4 with C/N-vacancy[79]
Fig.5 Synthesis of nitrogen vacancy g-C3N4 nanosheets[26]
Fig.6 (a) Schematic illustration of the preparation process of Nv—C≡N—CN[86], (b) Defect structure changes in g-C3N4 heptazine units during synthesis[86](The blue, gray, and white spheres represent N, C and H atoms, respectively), (c) The changes in the microscopic morphology of g-C3N4 during synthesis[86]
Fig.7 (a) Schematic diagram of Z-type heterojunction, (b) Schematic diagram of S-type heterojunction
Fig.8 Photocurrents (a) and electrochemical impedance spectra(b) of as-synthesized samples[72], (c) The synthetic process of Lu3NbO7:Yb,Ho/CQDs/AgInS2/In2S3 heterostructure[72]
Fig.9 (a) Photocatalytic H2O2 production over the prepared samples under UV-vis light irradiation[99], (b) Light-driven H2O2 decomposition on the prepared samples[99], (c)O2-TPD of g-C3N4, Cu2(OH)PO4, and CN/CuPO(20 wt%)[19], (d) UV-vis DRS spectra of g-C3N4, CQD@g-C3N4, α-Fe2O3/CQD@g-C3N4, and α-Fe2O3[96]
Fig.10 (a) Schematic deposition processes of CoOx and Pd on Mo:BiVO4 and the corresponding SEM images of (b) Mo:BiVO4, (c)CoOx/Mo:BiVO4, and (d) CoOx/Mo:BiVO4/Pd. (e,f) Energy-dispersive X-ray spectroscopy (EDS) elemental mapping and line profile along with the white arrow of CoOx/Mo:BiVO4/Pd[74]
Fig.11 Schematic illustration for the fabrication of B-CNT, P-CNT, and S-CNT[114]
Fig.12 Steady-state photoluminescence spectra (a) and time-resolved photoluminescence decay spectra of the as-prepared samples (b)[119]
Fig.13 Schematic illustration of different reaction pathways toward H2O2 production using different CTFs[125]
Fig.14 (a) Schematic diagram for the preparation of UiO-66, UiO-66-B and UiO-66-B-X (X is the molar percentage of CPBA in the MOF). Simulated electron density distribution after O2 adsorption onto (b) UiO-66 and (c) UiO-66-B[126]
[1]
Hou H L, Zeng X K, Zhang X W. Angew. Chem. Int. Ed., 2020, 59(40): 17356.

doi: 10.1002/anie.v59.40
[2]
Fukuzumi S. Joule, 2017, 1(4): 689.

doi: 10.1016/j.joule.2017.07.007
[3]
Shiraishi Y, Takii T, Hagi T, Mori S, Kofuji Y, Kitagawa Y, Tanaka S, Ichikawa S, Hirai T. Nat. Mater., 2019, 18(9): 985.

doi: 10.1038/s41563-019-0398-0 pmid: 31263224
[4]
Hofrichter M, Kellner H, Herzog R, Karich A, Kiebist J, Scheibner K, Ullrich R. Antioxidants, 2022, 11(1): 163.

doi: 10.3390/antiox11010163
[5]
Sharma V K, Yu X, McDonald T J, Jinadatha C, Dionysiou D D, Feng M B. Front. Environ. Sci. Eng., 2019, 13(3): 37.

doi: 10.1007/s11783-019-1122-7
[6]
Imamovic B, Trebse P, Omeragic E, Becic E, Pecet A, Dedic M. Molecules., 2022, 27(6): 1874.

doi: 10.3390/molecules27061874
[7]
Stella Peccin M, Duarte M L, Imoto A M, Taminato M, Saconato H, Puga M E, Franco E S B, Camargo E B, Donato Gottems L B,Atallah Á N. Sao Paulo Med. J., 2022, 140(1): 56.

doi: 10.1590/1516-3180.2021.0128.r1.18052021
[8]
Pan Z Y, Xing D F. Modern Chemical Industry. 2021, 41(04): 11.
(潘智勇, 邢定峰. 现代化工, 2021, 41(04): 11.).
[9]
Li H B, Zheng B, Pan Z Y, Zong B N, Qiao M H. Front. Chem. Sci. Eng., 2018, 12(1): 124.

doi: 10.1007/s11705-017-1676-5
[10]
Perry S C, Pangotra D, Vieira L, Csepei L I, Sieber V, Wang L, Ponce de LeÓn C, Walsh F C. Nat. Rev. Chem., 2019, 3(7): 442.

doi: 10.1038/s41570-019-0110-6
[11]
Ranganathan S, Sieber V. Catalysts, 2018, 8(9): 379.

doi: 10.3390/catal8090379
[12]
Wang Q, Domen K. Chem. Rev., 2020, 120(2): 919.

doi: 10.1021/acs.chemrev.9b00201
[13]
Tsukamoto D, Shiro A, Shiraishi Y, Sugano Y, Ichikawa S, Tanaka S, Hirai T. ACS Catal., 2012, 2(4): 599.

doi: 10.1021/cs2006873
[14]
Zheng L H, Zhang J Z, Hu Y H, Long M C. J. Phys. Chem. C, 2019, 123(22): 13693.

doi: 10.1021/acs.jpcc.9b02311
[15]
Xu Z X, Li Y, Cao Y Y, Du R F, Bao Z K, Zhang S J, Shao F J, Ji W K, Yang J, Zhuang G L, Deng S W, Wei Z Z, Yao Z H, Zhong X, Wang J G. J. Energy Chem., 2022, 64: 47.

doi: 10.1016/j.jechem.2021.03.055
[16]
Chen Y M, Gu W Q, Tan L, Ao Z M, An T C, Wang S B. Appl. Catal. A Gen., 2021, 618: 118127.

doi: 10.1016/j.apcata.2021.118127
[17]
Guo H, Niu C G, Yang Y Y, Liang C, Niu H Y, Liu H Y, Li L, Tang N. Chem. Eng. J., 2021, 422: 130029.

doi: 10.1016/j.cej.2021.130029
[18]
Li Z, Xiong N N, Gu G Z. Dalton Trans., 2019, 48(1): 182.

doi: 10.1039/C8DT04081H
[19]
Wang X W, Han Z, Yu L H, Liu C T, Liu Y F, Wu G. ACS Sustainable Chem. Eng., 2018, 6(11): 14542.

doi: 10.1021/acssuschemeng.8b03171
[20]
Li Y, Zhao Y, Wu J, Han Y D, Huang H, Liu Y, Kang Z H. J. Mater. Chem. A, 2021, 9(45): 25453.

doi: 10.1039/D1TA07802J
[21]
Wei K Q, Nie H D, Li Y, Wang X, Liu Y, Zhao Y J, Shi H, Huang H, Liu Y, Kang Z H. J. Colloid Interface Sci., 2022, 616: 769.

doi: 10.1016/j.jcis.2022.02.107
[22]
Zhao Y J, Liu Y, Cao J J, Wang H, Shao M W, Huang H, Liu Y, Kang Z H. Appl. Catal. B Environ., 2020, 278: 119289.

doi: 10.1016/j.apcatb.2020.119289
[23]
Di T M, Xu Q L, Ho W, Tang H, Xiang Q J, Yu J G. ChemCatChem, 2019, 11(5): 1394.

doi: 10.1002/cctc.v11.5
[24]
Wu T, He Q Y, Liu Z F, Shao B B, Liang Q H, Pan Y, Huang J, Peng Z, Liu Y, Zhao C H, Yuan X Z, Tang L, Gong S X. J. Hazard. Mater., 2022, 424: 127177.

doi: 10.1016/j.jhazmat.2021.127177
[25]
Yu X H, Viengkeo B, He Q, Zhao X, Huang Q L, Li P P, Huang W, Li Y G. Adv. Sustainable Syst., 2021, 5(10): 2100184.

doi: 10.1002/adsu.v5.10
[26]
Liu L L, Chen F, Wu J H, Ke M K, Cui C, Chen J J, Yu H Q. Appl. Catal. B Environ., 2022, 302: 120845.

doi: 10.1016/j.apcatb.2021.120845
[27]
Hu S Z, Qu X Y, Li P, Wang F, Li Q, Song L J, Zhao Y F, Kang X X. Chem. Eng. J., 2018, 334: 410.

doi: 10.1016/j.cej.2017.10.016
[28]
Weng B, Qi M Y, Han C, Tang Z R, Xu Y J. ACS Catal., 2019, 9(5): 4642.

doi: 10.1021/acscatal.9b00313
[29]
Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nat. Mater., 2009, 8(1): 76.

doi: 10.1038/nmat2317
[30]
Tang R D, Gong D X, Deng Y C, Xiong S, Zheng J F, Li L, Zhou Z P, Su L, Zhao J. J. Hazard. Mater., 2022, 423: 126944.

doi: 10.1016/j.jhazmat.2021.126944
[31]
Si Q S, Guo W Q, Wang H Z, Liu B H, Zheng S S, Zhao Q, Luo H C, Ren N Q, Yu T. Appl. Catal. B Environ., 2021, 299: 120694.

doi: 10.1016/j.apcatb.2021.120694
[32]
Lin M X, Li F Y, Cheng W Y, Rong X M, Wang W. Chemosphere, 2022, 288: 132620.

doi: 10.1016/j.chemosphere.2021.132620
[33]
Zhang M L, Yang Y, An X Q, Zhao J J, Bao Y P, Hou L. J. Hazard. Mater., 2022, 424: 127424.

doi: 10.1016/j.jhazmat.2021.127424
[34]
Wang L X, Zhang J J, Zhang Y, Yu H G, Qu Y H, Yu J G. Small, 2022, 18(8): 2104561.

doi: 10.1002/smll.v18.8
[35]
Kulkarni A, Siahrostami S, Patel A, Nørskov JK. Chem. Rev., 2018, 118(5): 2302.

doi: 10.1021/acs.chemrev.7b00488
[36]
Watanabe E, Ushiyama H, Yamashita K. Catal. Sci. Technol., 2015, 5(5): 2769.

doi: 10.1039/C5CY00088B
[37]
Teng Z Y, Zhang Q T, Yang H B, Kato K, Yang W J, Lu Y R, Liu S X, Wang C Y, Yamakata A, Su C L, Liu B, Ohno T. Nat. Catal., 2021, 4(5): 374.

doi: 10.1038/s41929-021-00605-1
[38]
Chu C H, Huang D H, Zhu Q H, Stavitski E, Spies J A, Pan Z H, Mao J, Xin H L, Schmuttenmaer C A, Hu S, Kim J H. ACS Catal., 2019, 9(1): 626.

doi: 10.1021/acscatal.8b03738
[39]
Liu W J, Xu Z R, Zhao D T, Pan X Q, Li H C, Hu X, Fan Z Y, Wang W K, Zhao G H, Jin S, Huber G W, Yu H Q. Nat. Commun., 2020, 11: 265.

doi: 10.1038/s41467-019-14157-3
[40]
Zhao S, Zhao X. Appl. Catal. B Environ., 2019, 250: 408.

doi: 10.1016/j.apcatb.2019.02.031
[41]
Fujishima A, Honda K. Nature, 1972, 238(5358): 37.

doi: 10.1038/238037a0
[42]
Hernández S, Hidalgo D, Sacco A, Chiodoni A, Lamberti A, Cauda V, Tresso E, Saracco G. Phys. Chem. Chem. Phys., 2015, 17(12): 7775.

doi: 10.1039/c4cp05857g pmid: 25715190
[43]
Pelaez M, Nolan N T, Pillai S C, Seery M K, Falaras P, Kontos A G, Dunlop P S M, Hamilton J W J, Byrne J A, O'Shea K, Entezari M H, Dionysiou D D. Appl. Catal. B Environ., 2012, 125: 331.

doi: 10.1016/j.apcatb.2012.05.036
[44]
Zhang C L, Zhou F, Zhan S, Song Y P, Wang F G, Lai J F. Environ. Res., 2021, 197: 111129.

doi: 10.1016/j.envres.2021.111129
[45]
Domènech X, AyllÓn J A, Peral J. Environ. Sci. Pollut. Res., 2001, 8(4): 285.

doi: 10.1007/BF02987409
[46]
An X Q, Yu J C, Wang Y, Hu Y M, Yu X L, Zhang G J. J. Mater. Chem., 2012, 22(17): 8525.

doi: 10.1039/c2jm16709c
[47]
Sun M H, Wang X G, Chen Z Q, Murugananthan M, Chen Y, Zhang Y R. Appl. Catal. B Environ., 2020, 273: 119061.

doi: 10.1016/j.apcatb.2020.119061
[48]
Shi H Y, Li Y, Wang K Y, Li S K, Wang X F, Wang P, Chen F, Yu H G. Chem. Eng. J., 2022, 443: 136429.

doi: 10.1016/j.cej.2022.136429
[49]
Yu X L, An X Q, Shavel A, Ibáñez M, Cabot A. J. Mater. Chem. A, 2014, 2(31): 12317.

doi: 10.1039/C4TA01315H
[50]
Xu F Y, Zhang J J, Zhu B C, Yu J G, Xu J S. Appl. Catal. B Environ., 2018, 230: 194.

doi: 10.1016/j.apcatb.2018.02.042
[51]
Guo J R, Wang L P, Wei X, Alothman Z A, Albaqami M D, Malgras V, Yamauchi Y, Kang Y Q, Wang M Q, Guan W S, Xu X T. J. Hazard. Mater., 2021, 415: 125591.

doi: 10.1016/j.jhazmat.2021.125591
[52]
Qi S H, Yin Z Z, Deng S K, Ding C S, Chen P, Li Z L, Gan W, Guo J, Zhang M, Sun Z Q. J. Electrochem. Soc., 2022, 169(7): 073512.

doi: 10.1149/1945-7111/ac80d4
[53]
Wang S B, Guan B Y, Lu Y, Lou X W. J. Am. Chem. Soc., 2017, 139(48): 17305.

doi: 10.1021/jacs.7b10733
[54]
Chen Q, Wang X, Liu W Y, Luo T, Jin Z, Zhang Y, Huang J, Zhang H, Wang J H, Peng F M. J. Solid State Chem., 2022, 306: 122721.

doi: 10.1016/j.jssc.2021.122721
[55]
Liu C, Bao T, Yuan L, Zhang C Q, Wang J, Wan J J, Yu C Z. Adv. Funct. Mater., 2022, 32(15): 2111404.

doi: 10.1002/adfm.v32.15
[56]
Lin S, Wang Q, Huang H W, Zhang Y H. Small, 2022, 18(19): 2200914.

doi: 10.1002/smll.v18.19
[57]
Chen L, Yang Z, Chen B L. Energy Fuels, 2021, 35(13): 10746.

doi: 10.1021/acs.energyfuels.1c00688
[58]
Zhang E H, Zhu Q H, Huang J H, Liu J, Tan G Q, Sun C J, Li T, Liu S, Li Y M, Wang H Z, Wan X D, Wen Z H, Fan F T, Zhang J T, Ariga K. Appl. Catal. B Environ., 2021, 293: 120213.

doi: 10.1016/j.apcatb.2021.120213
[59]
Ghoreishian S M, Ranjith K S, Park B, Hwang S K, Hosseini R, Behjatmanesh-Ardakani R, Pourmortazavi S M, Lee H U, Son B, Mirsadeghi S, Han Y K, Huh Y S. Chem. Eng. J., 2021, 419: 129530.

doi: 10.1016/j.cej.2021.129530
[60]
Diercks C S, Yaghi O M. Science, 2017, 355(6328): eaal1585.

doi: 10.1126/science.aal1585
[61]
Krishnaraj C, Sekhar Jena H, Bourda L, Laemont A, Pachfule P, Roeser J, Chandran C V, Borgmans S, Rogge S M J, Leus K, Stevens C V, Martens J A, Van Speybroeck V, Breynaert E, Thomas A, Van Der Voort P. J. Am. Chem. Soc., 2020, 142(47): 20107.

doi: 10.1021/jacs.0c09684 pmid: 33185433
[62]
Kou M P, Wang Y Y, Xu Y X, Ye L Q, Huang Y P, Jia B H, Li H, Ren J Q, Deng Y, Chen J H, Zhou Y, Lei K, Wang L, Liu W, Huang H W, Ma T Y. Angewandte Chemie Int. Ed., 2022, 61(19): e202200413.
[63]
Wang Y, Feng L, Pang J D, Li J L, Huang N, Day G S, Cheng L, Drake H F, Wang Y, Lollar C, Qin J S, Gu Z Y, Lu T B, Yuan S, Zhou H C. Adv. Sci., 2019, 6(11): 1970064.

doi: 10.1002/advs.v6.11
[64]
Ge T, Jin X L, Cao J, Chen Z H, Xu Y X, Xie H Q, Su F Y, Li X, Lan Q, Ye L Q. J. Taiwan Inst. Chem. Eng., 2021, 129: 104.

doi: 10.1016/j.jtice.2021.09.036
[65]
Geng X L, Wang L, Zhang L, Wang H, Peng Y Y, Bian Z Y. Chem. Eng. J., 2021, 420: 129722.

doi: 10.1016/j.cej.2021.129722
[66]
Zhou L, Feng J R, Qiu B C, Zhou Y, Lei J Y, Xing M Y, Wang L Z, Zhou Y B, Liu Y D, Zhang J L. Appl. Catal. B Environ., 2020, 267: 118396.

doi: 10.1016/j.apcatb.2019.118396
[67]
Zhang X D, Zeng Y M, Shi W Y, Tao Z, Liao J J, Ai C Z, Si H W, Wang Z P, Fisher A C, Lin S W. Chem. Eng. J., 2022, 429: 131312.

doi: 10.1016/j.cej.2021.131312
[68]
Liang Q H, Liu X J, Shao B B, Tang L, Liu Z F, Zhang W, Gong S X, Liu Y, He Q Y, Wu T, Pan Y, Tong S H. Chem. Eng. J., 2021, 426(10): 130831.

doi: 10.1016/j.cej.2021.130831
[69]
Liu B Y, Du J Y, Ke G L, Jia B, Huang Y J, He H C, Zhou Y, Zou Z G. Adv. Funct. Mater., 2022, 32(15): 2111125.

doi: 10.1002/adfm.v32.15
[70]
Yu X, Hu C W, Hao D N, Liu G, Xu R, Zhu X D, Yu X, Ma Y Q, Ma L. Sol. RRL, 2021: 2000827.
[71]
Lu N, Liu N, Hui Y, Shang K F, Jiang N, Li J, Wu Y. Chemosphere., 2019, 241: 124927.

doi: 10.1016/j.chemosphere.2019.124927
[72]
Zhang K L, Zhou M, Yang K, Yu C L, Mu P, Yu Z Z, Lu K Q, Huang W Y, Dai W X. J. Hazard. Mater., 2022, 423: 127172.

doi: 10.1016/j.jhazmat.2021.127172
[73]
Shi H Y, Li Y, Wang X F, Yu H G, Yu J G. Appl. Catal. B Environ., 2021, 297: 120414.

doi: 10.1016/j.apcatb.2021.120414
[74]
Liu T, Pan Z H, Vequizo J J M, Kato K, Wu B B, Yamakata A, Katayama K, Chen B L, Chu C H, Domen K. Nat. Commun., 2022, 13: 1034.

doi: 10.1038/s41467-022-28686-x
[75]
Wu Y, Li X M, Yang Q, Wang D B, Yao F B, Cao J, Chen Z, Huang X D, Yang Y, Li X P. Chem. Eng. J., 2020, 390: 124519.

doi: 10.1016/j.cej.2020.124519
[76]
dos Reis F V E, Antonin V S, Hammer P, Santos M C, Camargo P H C. J. Catal., 2015, 326: 100.

doi: 10.1016/j.jcat.2015.04.007
[77]
Li L J, Li B D, Feng L W, Zhang X Q, Zhang Y Q, Zhao Q N, Zuo G F, Meng X G. Molecules, 2021, 26(13): 3844.

doi: 10.3390/molecules26133844
[78]
Ma P J, Zhang X, Wang C, Wang Z W, Wang K W, Feng Y B, Wang J X, Zhai Y D, Deng J G, Wang L H, Zheng K. Appl. Catal. B Environ., 2022, 300: 120736.

doi: 10.1016/j.apcatb.2021.120736
[79]
Kumar A, Raizada P, Hosseini-Bandegharaei A, Thakur V K, Nguyen V H, Singh P. J. Mater. Chem. A, 2021, 9(1): 111.

doi: 10.1039/D0TA08384D
[80]
Li S N, Dong G H, Hailili R, Yang L P, Li Y X, Wang F, Zeng Y B, Wang C Y. Appl. Catal. B Environ., 2016, 190: 26.

doi: 10.1016/j.apcatb.2016.03.004
[81]
Xie H, Zheng Y M, Guo X L, Liu Y Y, Zhang Z, Zhao J J, Zhang W J, Wang Y X, Huang Y. ACS Sustainable Chem. Eng., 2021, 9(19): 6788.

doi: 10.1021/acssuschemeng.1c01012
[82]
Lei J Y, Chen B, Lv W J, Zhou L, Wang L Z, Liu Y D, Zhang J L. ACS Sustainable Chem. Eng., 2019, 7(19): 16467.

doi: 10.1021/acssuschemeng.9b03678
[83]
Shi L, Yang L Q, Zhou W, Liu Y Y, Yin L S, Hai X, Song H, Ye J H. Small, 2018, 14(9): 1703142.

doi: 10.1002/smll.v14.9
[84]
Zheng Y M, Luo Y, Ruan Q S, Yu J, Guo X L, Zhang W J, Xie H, Zhang Z, Zhao J J, Huang Y. J. Colloid Interface Sci., 2022, 609: 75.

doi: 10.1016/j.jcis.2021.12.006
[85]
Chen X L, Kuwahara Y, Mori K, Louis C, Yamashita H. J. Mater. Chem. A, 2020, 8(4): 1904.

doi: 10.1039/C9TA11120D
[86]
Zhang X, Ma P J, Wang C, Gan L Y, Chen X J, Zhang P, Wang Y, Li H, Wang L H, Zhou X Y, Zheng K. Energy Environ. Sci., 2022, 15(2): 830.

doi: 10.1039/D1EE02369A
[87]
Tian Z L, Han C, Zhao Y, Dai W R, Lian X, Wang Y N, Zheng Y, Shi Y, Pan X, Huang Z C, Li H X, Chen W. Nat. Commun., 2021, 12: 2039.

doi: 10.1038/s41467-021-22394-8
[88]
Chen X, Zhang W W, Zhang L X, Feng L P, Zhang C X, Jiang J, Wang H. ACS Appl. Mater. Interfaces, 2021, 13(22): 25868.

doi: 10.1021/acsami.1c02953
[89]
Ma X, Wang L, Zhang Q, Jiang H L. Angew. Chem. Int. Ed., 2019, 58(35): 12175.

doi: 10.1002/anie.v58.35
[90]
Kondo Y, Kuwahara Y, Mori K, Yamashita H. J. Phys. Chem. C, 2021, 125(51): 27909.

doi: 10.1021/acs.jpcc.1c07735
[91]
Low J, Yu J G, Jaroniec M, Wageh S, Al-Ghamdi A A. Adv. Mater., 2017, 29(20): 1601694.

doi: 10.1002/adma.v29.20
[92]
Bard A J. J. Photochem., 1979, 10(1): 59.

doi: 10.1016/0047-2670(79)80037-4
[93]
Maeda K. ACS Catal., 2013, 3(7): 1486.

doi: 10.1021/cs4002089
[94]
Xu Q L, Zhang L Y, Cheng B, Fan J J, Yu J G. Chem, 2020, 6(7): 1543.

doi: 10.1016/j.chempr.2020.06.010
[95]
Mei F F, Dai K, Zhang J F, Li W Y, Liang C H. Appl. Surf. Sci., 2019, 488: 151.

doi: 10.1016/j.apsusc.2019.05.257
[96]
Chen X, Zhang W W, Zhang L X, Feng L P, Zhang C X, Jiang J, Yan T J, Wang H. J. Mater. Chem. A, 2020, 8(36): 18816.

doi: 10.1039/D0TA05753C
[97]
Zhang Y F, Park S J. J. Mater. Chem. A, 2018, 6(41): 20304.

doi: 10.1039/C8TA08385A
[98]
Zheng Y Z, Zhou H L, Zhou B S, Mao J C, Zhao Y H. Catal. Sci. Technol., 2022, 12(3): 969.

doi: 10.1039/D1CY02166D
[99]
Liu B W, Bie C B, Zhang Y, Wang L X, Li Y J, Yu J G. Langmuir, 2021, 37(48): 14114.

doi: 10.1021/acs.langmuir.1c02360
[100]
Li X B, Kang B B, Dong F, Zhang Z Q, Luo X D, Han L, Huang J T, Feng Z J, Chen Z, Xu J L, Peng B L, Wang Z L. Nano Energy, 2021, 81: 105671.

doi: 10.1016/j.nanoen.2020.105671
[101]
Yang Y, Cheng B, Yu J G, Wang L X, Ho W. Nano Res., 2021: 1.
[102]
Zhao Y J, Liu Y, Wang Z Z, Ma Y R, Zhou Y J, Shi X F, Wu Q Y, Wang X, Shao M W, Huang H, Liu Y, Kang Z H. Appl. Catal. B Environ., 2021, 289: 120035.

doi: 10.1016/j.apcatb.2021.120035
[103]
Zhao K, Su Y, Quan X, Liu Y M, Chen S, Yu H T. J. Catal., 2018, 357: 118.

doi: 10.1016/j.jcat.2017.11.008
[104]
Chen X L, Kondo Y, Li S J, Kuwahara Y, Mori K, Zhang D Q, Louis C, Yamashita H. J. Mater. Chem. A, 2021, 9(46): 26371.

doi: 10.1039/D1TA08036A
[105]
Samanta S, Martha S, Parida K. ChemCatChem, 2014, 6(5): 1453.
[106]
Jiang S J, Xiong C B, Song S Q, Cheng B. ACS Sustainable Chem. Eng., 2019, 7(2): 2018.

doi: 10.1021/acssuschemeng.8b04338
[107]
Cai J S, Huang J Y, Wang S C, Iocozzia J, Sun Z T, Sun J Y, Yang Y K, Lai Y K, Lin Z Q. Adv. Mater., 2019, 31(15): 1806314.

doi: 10.1002/adma.v31.15
[108]
Meng X G, Zong P X, Wang L, Yang F, Hou W S, Zhang S T, Li B D, Guo Z L, Liu S S, Zuo G F, Du Y, Wang T, Roy V A L. Catal. Commun., 2020, 134: 105860.

doi: 10.1016/j.catcom.2019.105860
[109]
Wang Y C, Wang Y R, Zhao J J, Chen M, Huang X B, Xu Y M. Appl. Catal. B Environ., 2021, 284: 119691.

doi: 10.1016/j.apcatb.2020.119691
[110]
Chen X L, Kondo Y, Kuwahara Y, Mori K, Louis C, Yamashita H. Phys. Chem. Chem. Phys., 2020, 22(26): 14404.

doi: 10.1039/D0CP01759K
[111]
Kim K, Park J, Kim H, Jung G Y, Kim M G. ACS Catal., 2019, 9(10): 9206.

doi: 10.1021/acscatal.9b02269
[112]
Moon G H, Kim W, Bokare A D, Sung N E, Choi W. Energy Environ. Sci., 2014, 7(12): 4023.

doi: 10.1039/C4EE02757D
[113]
Feng C Y, Tang L, Deng Y C, Wang J J, Liu Y N, Ouyang X L, Yang H R, Yu J F, Wang J J,. Appl. Catal. B Environ., 2021, 281: 119539.

doi: 10.1016/j.apcatb.2020.119539
[114]
Liu Y Y, Zheng Y M, Zhang W J, Peng Z B, Xie H, Wang Y X, Guo X L, Zhang M, Li R, Huang Y. J. Mater. Sci. Technol., 2021, 95: 127.

doi: 10.1016/j.jmst.2021.03.025
[115]
Xu F H, Lai C, Zhang M M, Li B S, Liu S Y, Chen M, Li L, Xu Y, Qin L, Fu Y K, Liu X G, Yi H, Yang X F. J. Colloid Interface Sci., 2021, 601: 196.

doi: 10.1016/j.jcis.2021.05.124
[116]
Hirakawa T, Nosaka Y. J. Phys. Chem. C, 2008, 112(40): 15818.

doi: 10.1021/jp8055015
[117]
Lee J H, Cho H, Park S O, Hwang J M, Hong Y, Sharma P, Jeon W C, Cho Y, Yang C, Kwak S K, Moon H R, Jang J W. Appl. Catal. B Environ., 2021, 284: 119690.

doi: 10.1016/j.apcatb.2020.119690
[118]
Zhao C, Wang X Y, Ye S, Liu J. Sol. RRL, 2022, 6(10): 2200427.

doi: 10.1002/solr.v6.10
[119]
Yang Y, Zhang C, Huang D L, Zeng G M, Huang J H, Lai C, Zhou C Y, Wang W J, Guo H, Xue W J, Deng R, Cheng M, Xiong W P. Appl. Catal. B Environ., 2019, 245: 87.

doi: 10.1016/j.apcatb.2018.12.049
[120]
Zheng L H, Su H R, Zhang J Z, Walekar L S, Vafaei Molamahmood H, Zhou B X, Long M C, Hu Y H. Appl. Catal. B Environ., 2018, 239: 475.

doi: 10.1016/j.apcatb.2018.08.031
[121]
Wang P, Li D Z, Chen J, Zhang X Y, Xian J J, Yang X, Zheng X Z, Li X F, Shao Y. Appl. Catal. B Environ., 2014, 160/161: 217.

doi: 10.1016/j.apcatb.2014.05.032
[122]
Li Y R, Liu Z M, Wu Y C, Chen J T, Zhao J Y, Jin F M, Na P. Appl. Catal. B Environ., 2018, 224: 508.

doi: 10.1016/j.apcatb.2017.10.023
[123]
Zeng X K, Liu Y, Kang Y, Li Q Y, Xia Y, Zhu Y L, Hou H L, Uddin M H, Gengenbach T R, Xia D H, Sun C H, McCarthy D T, Deletic A, Yu J G, Zhang X W. ACS Catal., 2020, 10(6): 3697.

doi: 10.1021/acscatal.9b05247
[124]
Hu J D, Yang T Y, Chen J J, Yang X G, Qu J F, Cai Y H. Chem. Eng. J., 2022, 430: 133039.

doi: 10.1016/j.cej.2021.133039
[125]
Chen L, Wang L, Wan Y Y, Zhang Y, Qi Z M, Wu X J, Xu H X. Adv. Mater., 2020, 32(2): 1904433.

doi: 10.1002/adma.v32.2
[126]
Li Y J, Ma F H, Zheng L R, Liu Y Y, Wang Z Y, Wang P, Zheng Z K, Cheng H F, Dai Y, Huang B B. Mater. Horiz., 2021, 8(10): 2842.

doi: 10.1039/D1MH00869B
[127]
Chen X L, Kuwahara Y, Mori K, Louis C, Yamashita H. J. Mater. Chem. A, 2021, 9(5): 2815.

doi: 10.1039/D0TA10944D
[128]
Fuku K, Takioka R, Iwamura K, Todoroki M, Sayama K, Ikenaga N. Appl. Catal. B Environ., 2020, 272: 119003.

doi: 10.1016/j.apcatb.2020.119003
[129]
Sun M H, Wang X G, Li Y, Pan H H, Murugananthan M, Han Y D, Wu J, Zhang M, Zhang Y R, Kang Z H. ACS Catal., 2022, 12(4): 2138.

doi: 10.1021/acscatal.1c05324
[130]
Järn M, Xu Q, LindÉn M. Langmuir, 2010, 26(13): 11330.

doi: 10.1021/la1006583
[131]
Li L J, Xu L P, Hu Z F, Yu J. Adv. Funct. Mater., 2021, 31(52): 2106210.
[132]
Hong Y, Cho Y, Go E M, Sharma P, Cho H, Lee B, Lee S M, Park S O, Ko M, Kwak S K, Yang C, Jang J W. Chem. Eng. J., 2021, 418: 129346.

doi: 10.1016/j.cej.2021.129346
[133]
Isaka Y, Kawase Y, Kuwahara Y, Mori K, Yamashita H. Angew. Chem. Int. Ed., 2019, 58(16): 5402.

doi: 10.1002/anie.v58.16
[134]
Moscow S, Kavinkumar V, Sriramkumar M, Jothivenkatachalam K, Saravanan P, Rajamohan N, Vasseghian Y, Rajasimman M. Chemosphere, 2022, 299: 134343.

doi: 10.1016/j.chemosphere.2022.134343
[135]
Dang X M, Wu S, Zhao H M. ACS Sustainable Chem. Eng., 2022, 10(13): 4161.

doi: 10.1021/acssuschemeng.1c07985
[136]
Shiraishi Y, Kanazawa S, Sugano Y, Tsukamoto D, Sakamoto H, Ichikawa S, Hirai T. ACS Catal., 2014, 4(3): 774.

doi: 10.1021/cs401208c
[137]
Hirakawa H, Shiota S, Shiraishi Y, Sakamoto H, Ichikawa S, Hirai T. ACS Catal., 2016, 6(8): 4976.

doi: 10.1021/acscatal.6b01187
[1] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[2] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[3] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[4] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[5] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[6] Jiang Haoyang, Xiong Feng, Qin Mulin, Gao Song, He Liuruyi, Zou Ruqiang. Conductive Phase Change Materials (PCMs) for Electro-to-Thermal Energy Conversion, Storage and Utilization [J]. Progress in Chemistry, 2023, 35(3): 360-374.
[7] Juan Ye, Ziqian Lin, Weijian Li, Hongping Xiang, Minzhi Rong, Mingqiu Zhang. Fabrication Strategies to Self-Healing Silicone Materials [J]. Progress in Chemistry, 2023, 35(1): 135-156.
[8] Jing Li, Weigang Zhu, Wenping Hu. Organic Complex Materials and Devices for Near and Shortwave Infrared Photodetection [J]. Progress in Chemistry, 2023, 35(1): 119-134.
[9] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[10] Qitong Wang, Jiale Ding, Danying Zhao, Yunhe Zhang, Zhenhua Jiang. Dielectric Polymer Materials for Energy Storage Film Capacitors [J]. Progress in Chemistry, 2023, 35(1): 168-176.
[11] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[12] Shuai Huang, Yu Tao, Yinliang Huang. Photodeformable Composite Materials Based on Liquid Crystalline Polymers [J]. Progress in Chemistry, 2022, 34(9): 2012-2023.
[13] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[14] Shunxin Gu, Qin Jiang, Pengfei Shi. Antitumor Activity and Application of Luminescent Iridium(Ⅲ) Complexes [J]. Progress in Chemistry, 2022, 34(9): 1957-1971.
[15] Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications [J]. Progress in Chemistry, 2022, 34(9): 1882-1895.