中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (04): 502-511 DOI: 10.7536/PC130819 Previous Articles   Next Articles

• Review •

Silicon Carbide as a Novel Support for Heterogeneous Catalysis

Wang Zhoujun1,2, Fu Qiang2, Bao Xinhe*2   

  1. 1. College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
    2. Dalian Institute of Chemical Physics, the Chinese Academy of Sciences, Dalian 116023, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No.21033009, 21222305, 21073183), National Key Scientific Research Projects (No.2011CB932700), National Basic Research Development Program of China (No.2011CBA00503) and National Science Foundation for Postdoctoral Scientists of China (No.20110491548)

PDF ( 1931 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, increasing attention has been attracted for silicon carbide (SiC) in the field of catalysis as a potential catalyst support owing to its excellent thermal conductivity, relative chemical inertness, and high mechanical strength. SiC-supported catalysts are reported to exhibit superior catalytic performance in strong exothermal, severely corrosive and liquid-phase reactions. Nowadays, the researches towards SiC as a catalyst support focus on the following issues: the synthesis of high surface area SiC, the formation of carbide-derived carbon (CDC) on the low surface area SiC, and the surface functionalization of SiC. In this review, we address all of the above-mentioned issues. This article is arranged in three sections ranging from the experimental results over technical SiC-supported catalysts to surface chemistry studies on SiC single crystals. The first section introduces the structure and properties of SiC; the second section covers SiC as a novel support in heterogeneous catalysis; and the surface science studies on the 6H-SiC(0001) substrate are highlighted in the last section.

Contents
1 Introduction
2 Silicon carbide: structure and properties
2.1 SiC polytypes
2.2 Physical and chemical properties
3 SiC as a novel support in heterogeneous catalysis
3.1 Synthesis of high surface area SiC and its application in heterogeneous catalysis
3.2 Formation of carbide-derived carbon (CDC) on low surface area SiC and its application in heterogeneous catalysis
4 Surface studies on the 6H-SiC(0001) substrate
4.1 Surface reconstruction in ultrahigh vacuum (UHV)
4.2 Metal-support interactions on carbon nanomesh surface
4.3 N functionalization on graphene overlayer
5 Conclusions and outlook

CLC Number: 

[1] Ostwald W. Zeitschrift für Physikalische Chemie, 1894, 15: 705.
[2] Ertl G, Knözinger H, Weitkamp J. Handbook of heterogeneous catalysis. Weinheim: VCH, 1997.
[3] Anastas P T, Warner J C. Green chemistry: Theory and practice. Oxford: Oxford Science Publications, 1998.
[4] Somorjai G A. Introduction to surface chemistry and catalysis. New York: Wiley, 1994.
[5] Ertl G. Angew. Chem. Int. Ed., 2008, 47: 3524.
[6] Wang Z J, Yan Z, Liu C J, Goodman D W. ChemCatChem, 2011, 3: 551.
[7] Jacobsen C J H. J. Catal., 2001, 200: 1.
[8] Xu B Q, Wei J M, Wang H Y, Sun K Q, Zhu Q M. Catal. Today, 2001, 68: 217.
[9] Zhou Y, Li X, Pan X, Bao X. J. Mater. Chem., 2012, 22: 14155.
[10] Li X, Pan X, Zhou Y, Bao X. Carbon, 2013, 57: 34.
[11] Li X, Wang F, Pan X, Bao X. Chin. J. Catal., 2013, 34: 257.
[12] Wang Z, Fu Q, Bao X. Langmuir, 2010, 26: 7227.
[13] Wang Z, Fu Q, Xu X, Zhang H, Li W, Gao M, Tan D, Bao X. Chem. Phys. Lett., 2011, 503: 247.
[14] 王珍(Wang Z). 中国科学院大连化学物理研究所博士论文(Doctoral Dissertation of Dalian Institute of Chemical Physics, Chinese Academy of Sciences), 2011.
[15] Wang Z J, Fu Q, Wang Z, Bao X. Surf. Sci., 2012, 606: 1313.
[16] Wang Z J, Wei M, Jin L, Ning Y, Yu L, Fu Q, Bao X. Nano Res., 2013, 6: 399.
[17] Harris G L. Properties of silicon carbide. (Ed Harris G L). London: INSPEC, 1995.
[18] Ayalew T. Doctoral Dissertation of Vienna University of Technology, 2004.
[19] Ledoux M J, Pham-Huu C. Cattech, 2001, 5: 226.
[20] Keller N, Vieira R, Nhut J M, Pham-Huu C, Ledoux M J. J. Brazil. Chem. Soc., 2005, 16: 202.
[21] Ledoux M J, Crouzet C, Pham-Huu C, Turines V, Kourtakis K, Mills P L, Lerou J J. J. Catal., 2001, 203: 495.
[22] Nhut J M, Pesant L, Keller N, Pham-Huu C, Ledoux M J. Top. Catal., 2004, 30/31: 353.
[23] Delgallo P, Pham-Huu C, Bouchy C, Estournes C, Ledoux M J. Appl. Catal. A, 1997, 156: 131.
[24] Harlin M E, Krause A O I, Heinrich B, Pharm-Huu C, Ledoux M J. Appl. Catal. A, 1999, 185: 311.
[25] 郭向云(Guo X Y), 靳国强(Jin G Q), 王英勇(Wang Y Y). 物理化学学报(Acta Physico-Chimica Sinica), 2010, 26: 1143.
[26] Guo X Y, Jin G Q. J. Mater. Sci., 2005, 40: 1301.
[27] Wang Q, Jin G Q, Wang D H, Guo X Y. Mater. Sci. Eng. A, 2007, 459: 1.
[28] Wang Q, Wang D H, Jin G Q, Guo X Y. J. Inorg. Mater., 2008, 23: 602.
[29] Wang Q, Sun W Z, Jin G Q, Wang Y Y, Guo X Y. Appl. Catal. B, 2008, 79: 307.
[30] Guo X N, Shang R J, Wang D H, Jin G Q, Guo X Y, Tu K N. Nanoscale Res. Lett., 2010, 5: 332.
[31] Gogotsi Y G, Jeon I D, McNallan M J. J. Mater. Chem., 1997, 7: 1841.
[32] Gogotsi Y, Welz S, Ersoy D A, McNallan M J. Nature, 2001, 411: 283.
[33] Welz S, Gogotsi Y, McNallan M J. J. Appl. Phys., 2003, 93: 4207.
[34] Welz S, McNallan M J, Gogotsi Y. J. Mater. Process Technol., 2006, 179: 11.
[35] Cambaz Z G, Yushin G N, Gogotsi Y, Vyshnyakova K L, Pereselentseva L N. J. Am. Ceram. Soc., 2006, 89: 509.
[36] Choi H J, Bae H T, McNallan M J, Sohn Y H, Lim D S. Surf. Coat. Technol., 2009, 204: 1018.
[37] Kockrick E, Borchardt L, Schrage C, Gaudillere C, Ziegler C, Freudenberg T, Farrusseng D, Eychmüller A, Kaskel S. Chem. Mater., 2011, 23: 57.
[38] Simon L, Bischoff J L, Kubler L. Phys. Rev. B: Condens. Matter, 1999, 60: 11653.
[39] Martensson P, Owman F, Johansson L I. Phys. Status Solidi B, 1997, 202: 501.
[40] Riedl C, Coletti C, Iwasaki T, Zakharov A A, Starke U. Phys. Rev. Lett., 2009, 103: 246804.
[41] Chen W, Xu H, Liu L, Gao X, Qi D, Peng G, Tan S C, Feng Y, Loh K P, Wee A T S. Surf. Sci., 2005, 596: 176.
[42] Riedl C, Starke U, Bernhardt J, Franke M, Heinz K. Phys. Rev. B, 2007, 76: 245406.
[43] Chen W, Loh K P, Xu H, Wee A T S. Appl. Phys. Lett., 2004, 84: 281.
[44] Chen W, Loh K P, Xu H, Wee A T S. Langmuir, 2004, 20: 10779.
[45] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306: 666.
[46] Allen M J, Tung V V, Kaner R B. Chem. Rev., 2010, 110: 132.
[47] Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A. Science, 2006, 312: 1191.
[48] Varchon F, Feng R, Hass J, Li X, Nguyen B N, Naud C, Mallet P, Veuillen J Y, Berger C, Conrad E H, Magaud L. Phys. Rev. Lett., 2007, 99: 126805.
[49] Wong S L, Huang H, Wang Y, Cao L, Qi D, Santoso I, Chen W, Wee A T S. ACS Nano, 2011, 5: 7662.
[50] Virojanadara C, Watcharinyanon S, Zakharov A A, Johansson L I. Phys. Rev. B, 2010, 82: 205402.
[51] Gao T, Gao Y, Chang C, Chen Y, Liu M, Xie S, He K, Ma X, Zhang Y, Liu Z. ACS Nano, 2012, 6: 6562.
[52] Liu H, Liu Y, Zhu D. J. Mater. Chem., 2011, 21: 3335.
[53] Wang X, Li X, Zhang L, Yoon Y, Weber P K, Wang H, Guo J, Dai H. Science, 2009, 324: 768.
[54] Cervantes-Sodi F, Csanyi G, Piscanec S, Ferrari A C. Phys. Rev. B, 2008, 77: 165427.
[55] Joucken F, Tison Y, Lagoute J, Dumont J, Cabosart D, Zheng B, Repain V, Chacon C, Girard Y, Botello-Méndez A R, Rousset S, Sporken R, Charlier J C, Henrard L. Phys. Rev. B, 2012, 85: 161408 (R).
[56] Rhim S H, Qi Y, Liu Y, Weinert M, Li L. Appl. Phys. Lett., 2012, 100: 233119.
[57] Velez-Fort E, Mathieu C, Pallecchi E, Pigneur M, Silly M G, Belkhou R, Marangolo M, Shukla A, Sirotti F, Ouerghi A. ACS Nano, 2012, 6: 10893.

[1] Shuai Li, Na Zhu, Yangjian Cheng, Di Chen. Performance of Resistance to Sulfur Oxide and Regeneration over Copper-Based Small-Pore Zeolites Catalysts for the Selective Catalytic Reduction of NOx with NH3 [J]. Progress in Chemistry, 2023, 35(5): 771-779.
[2] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[3] Juan Ye, Ziqian Lin, Weijian Li, Hongping Xiang, Minzhi Rong, Mingqiu Zhang. Fabrication Strategies to Self-Healing Silicone Materials [J]. Progress in Chemistry, 2023, 35(1): 135-156.
[4] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[5] Chuanjun Yuan, Meng Wang, Ming Li, Jinpeng Bao, Pengrui Sun, Rongxuan Gao. Application of Luminescent Materials Based on Carbon Dots in Development of Latent Fingerprints [J]. Progress in Chemistry, 2022, 34(9): 2108-2120.
[6] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[7] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[8] Yanyan Wang, Limin Chen, Siyang Li, Luhua Lai. How Intrinsically Disordered Proteins Modulate Biomolecular Condensates [J]. Progress in Chemistry, 2022, 34(7): 1610-1618.
[9] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[10] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[11] Hui Zhang, Wei Xiong, Jianchen Lu, Jinming Cai. Magnetic Properties and Engineering of Nanographene in Ultra-High Vacuum [J]. Progress in Chemistry, 2022, 34(3): 557-567.
[12] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[13] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[14] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[15] Xiaolu Liu, Yuxiao Geng, Ran Hao, Yuping Liu, Zhongyong Yuan, Wei Li. Electrocatalytic Nitrogen Reduction Reaction under Ambient Condition: Current Status, Challenges, and Perspectives [J]. Progress in Chemistry, 2021, 33(7): 1074-1091.