中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (9): 2108-2120 DOI: 10.7536/PC211223 Previous Articles   

• Review •

Application of Luminescent Materials Based on Carbon Dots in Development of Latent Fingerprints

Chuanjun Yuan1,2(), Meng Wang1,2, Ming Li1,2, Jinpeng Bao3, Pengrui Sun1, Rongxuan Gao1   

  1. 1 College of Forensic Sciences, Criminal Investigation Police University of China,Shenyang 110035, China
    2 Research Center of Crime Governance in the New Era, Criminal Investigation Police University of China,Shenyang 110035, China
    3 State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: yuancj11@mails.jlu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(21802169); National Natural Science Foundation of China(21205139); Scientific Research Foundation of the Educational Department of Liaoning Province(LJKZ0076); Scientific Research Foundation of the Educational Department of Liaoning Province(LJKZ0068); Fundamental Research Funds for the Central Universities(D2021021); Liaoning BaiQianWan Talents Program in 2020, and the National Students Innovation Training Program(202110175005)
Richhtml ( 29 ) PDF ( 549 ) Cited
Export

EndNote

Ris

BibTeX

Latent fingerprints left at crime scenes are important trace evidence but invisible to the unaided eye. It is essential to use some methods to make latent fingerprints visible before analysis and identification. The introduction of new materials and techniques has promoted the innovation of fingerprint development methods in recent years. Especially many photoluminescent materials such as rare earth luminescent materials, quantum dots and fluorescent metal nano-clusters have shown high potentials in this field. Carbon dots (CDs), as a type of relatively new nanomaterial exhibiting good photoluminescent properties, have lately caught the attention of researchers in fingerprint development. In this paper, recent advances in the application of solution-dispersed CDs and solid-state CDs powders in fingerprint development are reviewed. To be specific, solution-dispersed CDs used in fingerprint development rely on either the classical mechanism of small particle reagents or some special effects including coffee-ring effect and interfacial segregation effect; while solid-state CDs powders used in fingerprint development include CDs powders and CDs-based composite powders which are prepared following different strategies. The challenges in this research area concerning morphologies and surface properties of CDs, photoluminescent properties of CDs, and compatibility with chemical and biological analysis are analyzed. Meanwhile, possible solutions are also proposed to provide guidance to researchers.

Contents

1 Introduction

2 Fingerprint development by solution-dispersed CDs

2.1 Solution-dispersed CDs as small particle reagents

2.2 Solution-dispersed CDs based on special effects

3 Fingerprint development by solid-state CDs powders

3.1 CDs powders

3.2 CDs-based composite powders

4 Conclusion and outlook

Table 1 Summary of fingerprint development using solution-dispersed CDs
Fig. 1 Schematic diagram of the development of sebaceous fingerprints using solution-dispersed O-CDs[20]
Fig. 2 Schematic diagram of the preparation of W-CDs[21]
Fig. 3 (a) Schematic diagram of the development of sebaceous fingerprints using solution-dispersed R-CDs; (b) Fluorescence (FL) image captured under UV light of a developed fingerprint on glass; FL images captured by a confocal fluorescence microscopy: (c) dark field after 30 min drying, (d) dark field and (e) bright field after 60 min drying, (f) merged image of (d) and (e)[23]. Copyright 2017, American Chemical Society
Fig. 4 (a) Schematic diagram of the development of sebaceous fingerprints using solution-dispersed CDs/PVA; (b) schematic diagram of the preparation of solution-dispersed CDs/PVA; images of a fingerprint transferred from glass to CDs/PVA film: captured under (c) day light and (d) UV light; (e) FL emission spectra of fingerprint ridge area and background area of the CDs/PVA film under excitation light of 400 nm; FL microscopy images of a fingerprint transferred from glass to CDs/PVA film, captured under different excitation wavelengths: (f) 360 nm, (g) 430 nm and (h) 530 nm[26]. Copyright 2018, American Chemical Society
Table 2 Summary of fingerprint development using CDs powders
Fig. 5 (a) Schematic diagram of the development of sebaceous fingerprints using N,S-SFCDs powder; (b) FL images captured under different excitation wavelengths of a developed fingerprint on aluminum foil[41]. Copyright 2018, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Table 3 Summary of fingerprint development using CDs-based composite powders
Precursors of CDs Synthesis of CDs Development material Particle size Ex/Em ref
Malic acid, ammonium oxalate Pyrolysis CDs/starch UV/blue 50
Citric acid, glycine Hydrothermal CDs/starch UV/blue 51
p-Phenylenediamine Solvothermal CDs/starch UV/red 52
Citric acid, p-phenylenediamine, phytic acid Solvothermal CDs/starch 5 μm Green/red 53
Gelatin Hydrothermal Fe3O4@SiO2/CDs 120 nm UV/blue 54
Potato peel, melamine Hydrothermal CDs/ZnO UV/blue 55
Banana peel Hydrothermal CDs/Al2O3 White/— 56
Citric acid, cysteine Microwave pyrolysis CDs/PGV UV/blue 57
Citric acid, carbamide Microwave pyrolysis CDs/MMT UV/green 58
Citric acid, ethanolamine Pyrolysis CDs/(SiO2 or laponite) UV/blue, blue/green, green/red 59
Gum ghatti Microwave pyrolysis CDs/SiO2 UV/blue 60
Citric acid, thiourea Pyrolysis CDs/SiO2 UV/blue 61
Dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride Pyrolysis SiO2@CDs 22 nm UV/blue, blue/green, green/red 62
[3-(2-Aminoethyl-amino)propyl]
trimethoxysilane, citric acid
Hydrothermal SiO2@CDs 0.5 μm UV/blue 63
Citric acid, cysteine Microwave pyrolysis CDs/SiO2 34 nm UV/blue 64
N-(β-2-Amino-ethyl)-γ-
aminopropyltrimethoxysilane, citric acid
Pyrolysis CDs/SiO2 141 nm UV/blue, blue/green, green/red 65
Pomegranate peel Hydrothermal CDs/TiO2 6 μm White/— 66
Citric acid, glycine Hydrothermal CDs/ZIF-8 0.4 μm UV/blue, blue/green, green/yellow 67
Safranine T Hydrothermal CDs/B2O3 2 nm Vis/blue 68
Sodium citrate, (3-aminopropyl)
triethoxysilane
Hydrothermal CDs/SiO2 0.1 μm UV/blue 69
Citrate, thiourea, (3-aminopropyl)
triethoxysilane
Solvothermal CDs/SiO2 10.86 nm UV/green 70
Rice husk, ethylenediamine Sol-gel CDs/SiO2 3.75 nm UV/green 71
Fig. 6 (a) Schematic diagram of the preparation of R-CDs/starch composite powder and its application in the development of sebaceous fingerprints; (b) FL images captured under green light of developed fingerprints on glass (left), paper (middle) and plastic (right); eight details are marked with color circles; (c) image processing of a developed fingerprint on paper: color image, grayscale image, normalized image and binary image[53]. Copyright 2020, American Chemical Society
Fig. 7 Schematic diagram of the preparation of G-CDs/MMT composite powder and its application in the development of eccrine fingerprints[58]
Fig. 8 (a) TEM image of SiO2@CDs; (b) FL emission spectra of SiO2@CDs dispersed in solution measured under different excitation wavelengths; (c) FL images of a developed fingerprint captured under different excitation wavelengths[62]. Copyright 2016, The Royal Society of Chemistry
Fig. 9 (a) Schematic diagram of the preparation of CDs/B2O3 composite powder; (b) images of CDs/B2O3 composite powder captured before and after removing visible light; (c) long afterglow images of developed fingerprints on glass (left), weighing paper (middle) and porcelain cup (right) captured after removing visible light[68]. Copyright 2021, American Chemical Society
[1]
Hazarika P, Russell D A. Angew. Chem. Int. Ed., 2012, 51(15): 3524.

doi: 10.1002/anie.201104313 pmid: 22461202
[2]
Yuan C J, Li M, Wang M, Cao H J, Lin T C. Electrochimica Acta, 2021, 390: 138798.

doi: 10.1016/j.electacta.2021.138798
[3]
Chávez D, Garcia C R, Oliva J, Diaz-Torres L A. Ceram. Int., 2021, 47(1): 10.

doi: 10.1016/j.ceramint.2020.08.259
[4]
Wang M, Li M, Yu A Y, Zhu Y, Yang M Y, Mao C B. Adv. Funct. Mater., 2017, 27(14): 1606243.

doi: 10.1002/adfm.201606243
[5]
Xu X Y, Ray R, Gu Y L, Ploehn H J, Gearheart L, Raker K, Scrivens W A. J. Am. Chem. Soc., 2004, 126(40): 12736.

doi: 10.1021/ja040082h
[6]
Georgakilas V, Perman J A, Tucek J, Zboril R. Chem. Rev., 2015, 115(11): 4744.

doi: 10.1021/cr500304f pmid: 26012488
[7]
Wang Y F, Hu A G. J. Mater. Chem. C, 2014, 2(34): 6921.

doi: 10.1039/C4TC00988F
[8]
Ma Y, Liu M, Guo R, Li B X. Sci. Sin. Chimica, 2021, 51(1): 41.
( 马玥, 刘梅, 郭荣, 李保新. 中国科学: 化学, 2021, 51(1): 41.).
[9]
Qu S N, Wang X Y, Lu Q P, Liu X Y, Wang L J. Angew. Chem. Int. Ed., 2012, 51(49): 12215.

doi: 10.1002/anie.201206791
[10]
Lou Q, Qu S N, Jing P T, Ji W Y, Li D, Cao J S, Zhang H, Liu L, Zhao J L, Shen D Z. Adv. Mater., 2015, 27(8): 1389.

doi: 10.1002/adma.201403635
[11]
Shabashini A, Panja S K, Nandi G C. Chem. Asian J., 2021, 16(9): 1057.

doi: 10.1002/asia.202100119
[12]
Liu J, Zhang X R, Xiong H M. Chin. J. Lumin., 2021, 42(8): 1095.
( 刘俊, 张熙荣, 熊焕明. 发光学报, 2021, 42(8): 1095.).
[13]
Verhagen A, Kelarakis A. Nanomaterials, 2020, 10(8): 1535.

doi: 10.3390/nano10081535
[14]
Arshad F, Pal A, Sk M P. ECS J. Solid State Sci. Technol., 2021, 10(2): 021001.

doi: 10.1149/2162-8777/abdfb8
[15]
Xu A L, Wang G, Li Y Q, Dong H, Yang S W, He P, Ding G Q. Small, 2020, 16(48): 2004621.

doi: 10.1002/smll.202004621
[16]
Liu Y S, Li W, Wu P, Liu S X. Prog. Chem., 2018, 30(4): 3490.
( 刘禹杉, 李伟, 吴鹏, 刘守新. 化学进展, 2018, 30(4): 349.).

doi: 10.7536/PC170808
[17]
Thongsai N, Nagae Y, Hirai T, Takahara A, Uchiyama T, Kamitani K, Paoprasert P. Sens. Actuat. B Chem., 2017, 253: 1026.

doi: 10.1016/j.snb.2017.07.051
[18]
Zhao D, Ma W T, Xiao X C. Nanomaterials, 2018, 8(8): 612.

doi: 10.3390/nano8080612
[19]
Li J, Ma S Y, Xiao X C, Zhao D. J. Nanomater., 2019, 2019: 8628354.
[20]
Tang M Y, Ren G J, Zhu B Y, Yu L Y, Liu X D, Chai F, Wu H B, Wang C G. Anal. Methods, 2019, 11(15): 2072.

doi: 10.1039/C9AY00178F
[21]
Jiang B P, Yu Y X, Guo X L, Ding Z Y, Zhou B, Liang H, Shen X C. Carbon, 2018, 128: 12.

doi: 10.1016/j.carbon.2017.11.070
[22]
Dilag J, Kobus H, Yu Y, Gibson C T, Ellis A V. Polym. Int., 2015, 64(7): 884.

doi: 10.1002/pi.4861
[23]
Chen J, Wei J S, Zhang P, Niu X Q, Zhao W, Zhu Z Y, Ding H, Xiong H M. ACS Appl. Mater. Interfaces, 2017, 9(22): 18429.

doi: 10.1021/acsami.7b03917
[24]
Thirumalaivasan N, Wu S P. ACS Appl. Bio Mater., 2020, 3(9): 6439.

doi: 10.1021/acsabm.0c00868 pmid: 35021775
[25]
Li L, Shi L H, Zhang Y, Zhang G M, Zhang C H, Dong C, Yu H Z, Shuang S M. Talanta, 2019, 196: 109.

doi: 10.1016/j.talanta.2018.12.034
[26]
Wang C F, Cheng R, Ji W Q, Ma K Z, Ling L T, Chen S. ACS Appl. Mater. Interfaces, 2018, 10(45): 39205.

doi: 10.1021/acsami.8b13545
[27]
Li Q, Guo Z W, Zhao X Y, Zhang T Y, Chen J, Wei Y. Nanotechnology, 2020, 31(33): 335501.

doi: 10.1088/1361-6528/ab8f4b
[28]
Eskalen H, Çeşme M, Kerli S, Özğan Ş. J. Chem. Res., 2021, 45: 428.

doi: 10.1177/1747519820953823
[29]
Liu Y, Long K Y, Mi H B, Cha R T, Jiang X Y. Nanoscale Horiz., 2019, 4(4): 953.

doi: 10.1039/C8NH00494C
[30]
Wang J, Yang Y, Liu X. Mater. Adv., 2020, 1: 3122.

doi: 10.1039/D0MA00632G
[31]
Huang R, Peng A. Sci. Sin. Chimica, 2019, 49(12): 1454.
( 黄锐, 彭安. 中国科学: 化学, 2019, 49(12): 1454.).
[32]
Meng W. RSC Adv., 2016, 6(43): 36264.

doi: 10.1039/C6RA04573A
[33]
Wang Y F, Yang R Q, Wang Y J, Shi Z X, Liu J J. Forensic Sci. Int., 2009, 185(1/3): 96.

doi: 10.1016/j.forsciint.2008.12.021
[34]
Cai K Y, Yang R Q, Wang Y J, Yu X J, Liu J J. Forensic Sci. Int., 2013, 226(1/3): 240.

doi: 10.1016/j.forsciint.2013.01.035
[35]
Olszowska I, Leśniewski A, Kelm A, Pieta I S, Siejca A, Niedziółka-Jönsson J. Methods Appl. Fluoresc., 2020, 8(2): 025001.

doi: 10.1088/2050-6120/ab6f24
[36]
Mampallil D, Eral H B. Adv. Colloid Interface Sci., 2018, 252: 38.

doi: 10.1016/j.cis.2017.12.008
[37]
Wang J L, Wang Y L, Zheng J X, Yu S P, Yang Y Z, Liu X G. Prog. Chem., 2018, 30(8): 1186.
( 王军丽, 王亚玲, 郑静霞, 于世平, 杨永珍, 刘旭光. 化学进展, 2018, 30(8): 1186.).

doi: 10.7536/PC180103
[38]
Bandi R, Kannikanti H G, dadigala R, Gangapuram B R, Vaidya J R, Guttena V. Opt. Mater., 2020, 109: 110349.

doi: 10.1016/j.optmat.2020.110349
[39]
Wang G P, Zhang P, Wang G Y. Chem. J. Chin. Univ., 2019, 40(12): 2583.
( 王桂萍, 张平, 王桂燕. 高等学校化学学报, 2019, 40(12): 2583.).
[40]
Niu X Q, Song T B, Xiong H M. Chin. Chem. Lett., 2021, 32(6): 1953.

doi: 10.1016/j.cclet.2021.01.006
[41]
Wang C, Zhou J D, Lu L L, Song Q J. Part. Part. Syst. Charact., 2018, 35(3): 1700387.

doi: 10.1002/ppsc.201700387
[42]
Wang H J, Yu T T, Chen H L, Nan W B, Xie L Q, Zhang Q Q. Dyes Pigments, 2018, 159: 245.

doi: 10.1016/j.dyepig.2018.06.039
[43]
Wang H J, Hou W Y, Yu T T, Chen H L, Zhang Q Q. Dyes Pigments, 2019, 170: 107623.

doi: 10.1016/j.dyepig.2019.107623
[44]
Wang H J, Hou W Y, Kang J, Zhai X Y, Chen H L, Hao Y W, Wan G Y. Dalton Trans., 2021, 50(35): 12188.

doi: 10.1039/D1DT01510A
[45]
Bahadur R, Kumawat M K, Thakur M, Srivastava R. J. Lumin., 2019, 208: 428.

doi: 10.1016/j.jlumin.2018.12.049
[46]
Wang Y P, Ju W, Chen J J, Liu Z Y, Wang J S. ChemistrySelect, 2020, 5(29): 8915.

doi: 10.1002/slct.202000712
[47]
Milenkovic I, Algarra M, Alcoholado C, Cifuentes M, Lázaro-Martínez J M, Rodríguez-Castellón E, Mutavdžić D, Radotić K, Bandosz T J. Carbon, 2019, 144: 791.

doi: 10.1016/j.carbon.2018.12.102
[48]
Pacquiao M R, de Luna M D G, Thongsai N, Kladsomboon S, Paoprasert P. Appl. Surf. Sci., 2018, 453: 192.

doi: 10.1016/j.apsusc.2018.04.199
[49]
Ren G J, Meng Y X, Zhang Q, Tang M Y, Zhu B Y, Chai F, Wang C G, Su Z M. New J. Chem., 2018, 42(9): 6824.

doi: 10.1039/C7NJ05170K
[50]
Li H R, Guo X J, Liu J, Li F. Opt. Mater., 2016, 60: 404.

doi: 10.1016/j.optmat.2016.08.010
[51]
Feng R Q, Yuan Z Y, Ren T Z. Methods Appl. Fluoresc., 2019, 7(3): 035001.

doi: 10.1088/2050-6120/ab11a3
[52]
Li F, Wang X, Liu W, Wang L Q, Wang G Y. Opt. Mater., 2018, 86: 79.

doi: 10.1016/j.optmat.2018.09.040
[53]
Dong X Y, Niu X Q, Zhang Z Y, Wei J S, Xiong H M. ACS Appl. Mater. Interfaces, 2020, 12(26): 29549.
[54]
Ding L F, Peng D, Wang R N, Li Q. J. Alloys Compd., 2021, 856: 158160.

doi: 10.1016/j.jallcom.2020.158160
[55]
Prabakaran E, Pillay K. Arab. J. Chem., 2020, 13(2): 3817.

doi: 10.1016/j.arabjc.2019.01.004
[56]
Fouda-Mbanga B G, Prabakaran E, Pillay K. Arab. J. Chem., 2020, 13(8): 6762.

doi: 10.1016/j.arabjc.2020.06.030
[57]
Yu Y L, Yan L. Bull. Chem. Soc. Jpn., 2017, 90(11): 1217.

doi: 10.1246/bcsj.20170182
[58]
Zhai Y C, Shen F Z, Zhang X T, Jing P T, Li D, Yang X D, Zhou D, Xu X W, Qu S N. J. Colloid Interface Sci., 2019, 554: 344.

doi: 10.1016/j.jcis.2019.07.022
[59]
Fernandes D, Krysmann M J, Kelarakis A. Chem. Commun., 2015, 51(23): 4902.

doi: 10.1039/C5CC00468C
[60]
Sekar A, Vadivel R, Munuswamy R G, Yadav R. New J. Chem., 2021, 45(37): 17447.

doi: 10.1039/D1NJ03901F
[61]
Kathiravan A, Gowri A, Srinivasan V, Smith T A, Ashokkumar M, Asha Jhonsi M. Anal., 2020, 145(13): 4532.

doi: 10.1039/D0AN00750A
[62]
Fernandes D, Krysmann M J, Kelarakis A. Chem. Commun., 2016, 52(53): 8294.

doi: 10.1039/C6CC02556K
[63]
Peng D, Liu X, Huang M J, Wang D, Liu R L. Dalton Trans., 2018, 47(16): 5823.

doi: 10.1039/c8dt00579f pmid: 29645041
[64]
Chen H Y, Liu L. Nano, 2019, 14(6): 1950068.

doi: 10.1142/S1793292019500681
[65]
Zhao Y B, Ma Y J, Song D, Liu Y, Luo Y P, Lin S, Liu C Y. Anal. Methods, 2017, 9(33): 4770.

doi: 10.1039/C7AY01316G
[66]
Amith Yadav H J, Eraiah B, Basavaraj R B, Nagabhushana H, Darshan G P, Sharma S C, Prasad B D, Nithya R, Shanthi S. J. Alloys Compd., 2018, 742: 1006.

doi: 10.1016/j.jallcom.2017.12.251
[67]
Li G M, Wang X, Zhang J L. CrystEngComm, 2018, 20(34): 5056.

doi: 10.1039/C8CE00955D
[68]
He W, Sun X Y, Cao X G. ACS Sustainable Chem. Eng., 2021, 9(12): 4477.

doi: 10.1021/acssuschemeng.0c08652
[69]
Li F, Li H R, Cui T F. Opt. Mater., 2017, 73: 459.

doi: 10.1016/j.optmat.2017.09.004
[70]
Qin Z X, Wen M, Bai J J, Cui J C, Miao R Z, Zhang X W, Zhang Q M, Zhang R, Du X J. New J. Chem., 2021, 45(26): 11596.

doi: 10.1039/D1NJ01742J
[71]
Sun Y Q, Liu J K, Pang X L, Zhang X J, Zhuang J L, Zhang H R, Hu C F, Zheng M T, Lei B F, Liu Y L. J. Mater. Chem. C, 2020, 8(17): 5744.

doi: 10.1039/D0TC00507J
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Chenghao Li, Yamin Liu, Bin Lu, Ulla Sana, Xianyan Ren, Yaping Sun. Toward High-Performance and Functionalized Carbon Dots: Strategies, Features, and Prospects [J]. Progress in Chemistry, 2022, 34(3): 499-518.
[3] Chuang He, Shuang E, Honghao Yan, Xiaojie Li. Carbon Dots in Lubrication Applications [J]. Progress in Chemistry, 2022, 34(2): 356-369.
[4] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[5] Xingchen Wu, Wenhui Liang, Chenxin Cai. Photoluminescence Mechanisms of Carbon Quantum Dots [J]. Progress in Chemistry, 2021, 33(7): 1059-1073.
[6] Junli Wang, Yaling Wang, Jingxia Zheng, Shiping Yu, Yongzhen Yang, Xuguang Liu. Mechanism, Tuning and Application of Excitation-Dependent Fluorescence Property in Carbon Dots [J]. Progress in Chemistry, 2018, 30(8): 1186-1201.
[7] Tang Zhijiao, Li Gongke*, Hu Yuling*. Advances in Preparation and Applications in Quantitative Analysis of Nitrogen-Doped Carbon Dots [J]. Progress in Chemistry, 2016, 28(10): 1455-1461.
[8] Huang Qitong, Lin Xiaofeng, Li Feiming, Weng Wen, Lin Liping, Hu Shirong. Synthesis and Applications of Carbon Dots [J]. Progress in Chemistry, 2015, 27(11): 1604-1614.
[9] Yan Fanyong, Zou Yu, Wang Meng, Dai Linfeng, Zhou Xuguang, Chen Li. Synthesis and Application of the Fluorescent Carbon Dots [J]. Progress in Chemistry, 2014, 26(01): 61-74.
[10] Liu Jie, Jiang Man, Mei Yongmei, Wu Zhanchao*, Kuang Shaoping. Single-Phased White Phosphor for White Light Emitting Diodes [J]. Progress in Chemistry, 2013, 25(12): 2068-2079.
[11] Fang Yunxia, Fang Xiaoming, Zhang Zhengguo. Zinc Oxide for White Light Emitting Diode [J]. Progress in Chemistry, 2012, 24(08): 1477-1483.
[12] Zhang Qitu, Zhang Le, Han Pengde, Chen Yan, Yang Hao, Wang Lixi. Light Converting Inorganic Phosphors for White Light-Emitting Diodes [J]. Progress in Chemistry, 2011, 23(6): 1108-1122.
[13] Chen Bingkun, Zhong Haizheng, Zou Bingsuo. Ⅰ-Ⅲ-Ⅵ Semiconductor Nanocrystals [J]. Progress in Chemistry, 2011, 23(11): 2276-2286.
[14] Zhu Chongqiang Yang Chunhui Sun Liang. the Research of Point Defects in CdGeAs2 Nonlinear Optical Crystals [J]. Progress in Chemistry, 2010, 22(0203): 315-321.
[15] Li Haiyan,Li Qiang**. Organic Dye-Layered Silicate Optical Functional Nanocomposites* [J]. Progress in Chemistry, 2003, 15(02): 135-.