中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (01): 48-60 DOI: 10.7536/PC130631 Previous Articles   Next Articles

• Review •

Artificial Carbohydrate Receptors in Aqueous Media

Xiong Yuting, Li Minmin, Xiong Peng, Yang Meng, Qing Guangyan*, Sun Taolei*   

  1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21104061, 21275114, 51073123) and the Fundamental Research Funds for the Central Universities (2013-YB-026)

PDF ( 1471 ) Cited
Export

EndNote

Ris

BibTeX

In nature, carbohydrates are not only known as energy substances and structural materials of life, but also famous as signaling molecules that play critical roles in cell recognition and regulation processes. Therefore, the investigation and simulation of carbohydrates recognition process will greatly contribute to the research of some pathological process involved with carbohydrate, which has attracted great interests in the development of artificial receptors for carbohydrates. Inspiring from protein-carbohydrate interactions in biological system, most of recognition procedures are based on two binding modes, one is hydrogen bonding interaction between hydroxyl groups of carbohydrates and polar residues of the receptors, the other is σ-π stacking or even sandwich inclusion involving CH moieties of carbohydrates and aromatic segments of receptors. Although significant progresses in carbohydrates sensing in organic solvents have been achieved in the past few decades, the binding of carbohydrates and their derivatives with high sensitivity and specific selectivity in aqueous solution still remains as one of the most interesting but challenging topics in current chemistry. Therefore, the investigation of these artificial receptors not only provides a series of valuable model systems mimicking natural products for carbohydrate recognition, but also promotes many biomimetic applications. In this work, the recent progresses on artificial receptors for carbohydrates in aqueous media are summarized from four aspects: supramolecular chemistry system, multi-branch architecture system, synthetic lectins and polymeric interface system. Among which we specifically highlight the synthetic lections and a novel carbohydrate recognition strategy based on polymeric interface materials. Finally, the research prospects are proposed briefly.

Contents
1 Introduction
2 Supramolecular chemistry systems
2.1 Cyclodextrin
2.2 Curdlan
2.3 Calixarene
2.4 Porphyrin
3 Multi-branch architecture systems
3.1 Dicarboxylate
3.2 Cyclopentane
3.3 Guanidinium and analogues
4 Synthetic lectins
4.1 Macrocyclic synthetic lectins
4.2 Polymer-based synthetic lectins
4.3 Oligo-peptide-based synthetic lectins
5 Polymeric interface systems
6 Conclusion and outlook

CLC Number: 

[1] Bertozzi C R, Kiessling L L. Science, 2001, 291: 2357.
[2] James T D, Sandanayake K R A S, Shinkai S. Nature, 1995, 374: 345.
[3] Pal A, Bérubé M, Hall D G. Angew. Chem. Int. Ed., 2010, 49: 1492.
[4] Striegler S. Curr. Org. Chem., 2003, 7: 81.
[5] Davis A P, Warehem R S. Angew. Chem. Int. Ed., 1999, 38: 2978.
[6] Dai C F, Sagwal A, Cheng Y F, Peng H J, Chen W X, Wang B H. Pure Appl. Chem., 2012, 84: 2479.
[7] Mazik M. Chem. Soc. Rev., 2009, 38: 935.
[8] Mazik M. RSC Adv., 2012, 2: 2630.
[9] Walker D B, Joshi G, Davis A P. Cell. Mol. Life Sci., 2009, 66: 3177.
[10] Zeng X, Andrade C A S, Oliveira M D L, Sun X L. Anal. Bioanal. Chem., 2012, 402: 3161.
[11] Fujimoto Y K, Green D F. J. Am. Chem. Soc., 2012, 134: 19639.
[12] 黄毅(Huang Y), 黄金花(Huang J H), 谢青季(Xie Q J), 姚守拙(Yao S Z). 化学进展(Progress in Chemistry), 2008, 20(6): 942.
[13] Mazik M, Hartmann A, Jones P G. Chem. Eur. J., 2009, 15: 9147.
[14] Edwards N Y, Sager T W, McDevitt J T, Anslyn E V. J. Am. Chem. Soc., 2007, 129: 13575.
[15] Rusin O, Lang K, Král V. Chem. Eur. J., 2002, 8: 655.
[16] Ishi-i T, Mateos-Timoneda M A, Timmerman P, Crego-Calama M, Reinhoudt D N, Shinkai S. Angew. Chem. Int. Ed., 2003, 42: 2300.
[17] Lehn J M. Science, 1993, 260: 1762.
[18] Oshovsky G V, Reinhoudt D N, Verboom W. Angew. Chem. Int. Ed., 2007, 46: 2366.
[19] 孔蕊(Kong R), 施冬健(Shi D J), 刘蓉瑾(Liu R J), 陈明清(Chen M Q). 高分子通报 (Polymer Bulletin), 2012, (12): 36.
[20] Aoyama Y, Nagai Y, Otsuki J, Kobayashi K, Toi H. Angew. Chem. Int. Ed., 1992, 31: 745.
[21] Hirsch W, Muller T, Pizer R, Ricatto P J. Can. J. Chem., 1995, 73: 12.
[22] Hacket F, Coteron J M, Schneider H J, Kazachenko V P. Can. J. Chem., 1997, 75: 52.
[23] Easton C J, Lincoln S F. Chem. Soc. Rev., 1996, 25: 163.
[24] Danil de Namor A F, Blackett P M, Cabaleiro M C, Al Rawi J M A. J. Chem. Soc. Faraday Trans., 1994, 90: 845.
[25] Eliseev A V, Schneider H J. J. Am. Chem. Soc., 1994, 116: 6081.
[26] Sakurai K, Uezu K, Numata M, Hasegawa T, Li C, Kaneko K, Shinkai S. Chem. Commun., 2005, 4383.
[27] Numata M, Shinkai S. Adv. Polym. Sci., 2008, 220: 65.
[28] Fukuhara G, Inoue M. Chem. Commun., 2010, 46: 9128.
[29] Fukuhara J, Inoue Y. J. Am. Chem. Soc., 2011, 133: 768.
[30] 卿光焱(Qing G Y), 刘顺英(Liu S Y), 何永炳(He Y B). 化学进展 (Progress in Chemistry), 2008, 20(12): 1933.
[31] Aoyama Y, Tanaka Y, Toi H, Ogoshi H. J. Am. Chem. Soc., 1988, 110: 634.
[32] Kobayashi K, Asakawa Y, Kato Y, Aoyama Y. J. Am. Chem. Soc., 1992, 114: 10307.
[33] Yanagihara R, Aoyama Y. Tetrahedron Lett., 1994, 35: 9725.
[34] Nishio M, Umezawa Y, Hirota M, Takeuchi Y. Tetrahedron, 1995, 51: 8665.
[35] Poh B L, Tan C M. Tetrahedron, 1993, 49: 9581.
[36] Poh B L, Tan C M. Tetrahedron Lett., 1994, 35: 6387.
[37] 张春(Zhang C), 郑炎松(Zheng Y S), 梅付名(Mei F M), 李光兴(Li G X). 化学进展 (Progress in Chemistry), 2004, 16(6): 935.
[38] Rusin O, Král V. Tetrahedron Lett., 2001, 42: 4235.
[39] Král V, Rusin O, Charvatova J, Anzenbacher P, Fogl J. Tetrahedron Lett., 2000, 41: 10147.
[40] Charvatova J, Rusin O, Král V, Volka K, Matejka P. Sensor Actuat. B Chem., 2001, 76: 366.
[41] Král V, Rusin O, Schmidtchen F P. Org. Lett., 2001, 3: 873.
[42] Rusin O, Lang K, Král V. Chem. Eur. J., 2002, 8: 655.
[43] Mazik M, Cavga J. J. Org. Chem., 2006, 71: 2957.
[44] Hubbard R D, Horner S R, Miller B L. J. Am. Chem. Soc., 2001, 123: 5810.
[45] Blondeau P, Segura M, Pérez-Fernández R, Mendoza J. Chem. Soc. Rev., 2007, 36: 198.
[46] Mazik M, Cavga H. J. Org. Chem., 2007, 72: 831.
[47] Mazik M, Cavga H. Eur. J. Org. Chem., 2007, 3633.
[48] Schmuck C, Schwegmann M. J. Am. Chem. Soc., 2005, 127: 3373.
[49] Schmuck C, Schwegmann M. Org. Lett., 2005, 7: 3517.
[50] Kubik S. Angew. Chem. Int. Ed., 2009, 48: 1722.
[51] Arnaud J, Audfray A, Imberty A. Chem. Soc. Rev., 2013, 42: 4798.
[52] Davis A P, Wareham R S. Angew. Chem. Int. Ed., 1998, 37: 2270.
[53] Ryan T J, Lecollinet G, Velasco T, Davis A P. Proc. Natl. Acad. Sci. U. S. A., 2002, 99: 4863.
[54] Barwell N P, Davis A P. J. Org. Chem., 2011, 76: 6548.
[55] Joshi G, Davis A P. Org. Biomol. Chem., 2012, 10: 5760.
[56] Klein E, Crump M P, Davis A P. Angew. Chem. Int. Ed., 2005, 44: 298.
[57] Ferrand Y, Klein E, Barwell N P, Crump M P, Jimenez-Barbero J, Vicent C, Boons G J, Ingale S, Davis A P. Angew. Chem. Int. Ed., 2009, 48, 1775.
[58] Barwell N P, Crump M P, Davis A P. Angew. Chem. Int. Ed., 2009, 48: 7673.
[59] Ferrand Y, Crump M P, Davis A P. Science, 2007, 318: 619.
[60] Sookcharoenpinyo B, Klein E, Ferrand Y, Walker D B, Brotherhood P R, Ke C F, Crump M P, Davis A P. Angew. Chem. Int. Ed., 2012, 51: 4586.
[61] Ke C, Destecroix H, Crump M P, Davis A P. Nat. Chem., 2012, 4: 718.
[62] Hayley Birch. Sensor a Snug Fit for Glucose. (2012-08-06). http://www. rsc. org/chemistryworld/2012/08/sensor-snug-fit-glucose.
[63] Alexandre K B, Gray E S, Mufhandu H, McMahon J B, Chakauya E, O'Keefe B R, Chikwamba R, Morris L. Virology, 2012, 423: 175.
[64] Balzarini J. Antiviral Res., 2006, 71: 237.
[65] Jay J I, Lai B E, Myszka D G, Mahalingam A, Langheinrich K, Katz D F, Kiser P F. Mol. Pharmaceutics, 2010, 7: 116.
[66] Mahalingam A, Geonnotti A R, Balzarini J, Kiser P F. Mol. Pharm., 2011, 8: 2465.
[67] Bérubé M, Dowlut M, Hall D G. J. Org. Chem., 2008, 73: 6471.
[68] Lasky L A. Science, 1992, 258: 964.
[69] Otsuki J, Kobayashi K, Toi H, Aoyama Y. Tetrahedron Lett., 1993, 34: 1945.
[70] Sugimoto N, Mioshi D, Zou J. Chem. Commun., 2000, 2295.
[71] Reenberg T, Nyberg N, Duus J O, van Dongen J L J, Meldal M. Eur. J. Org. Chem., 2007, 5003.
[72] Lehn J M, Eliseev A V. Science, 2001, 291: 2331.
[73] 陈玉岩(Chen Y Y), 刘刚(Liu G). 化学进展 (Progress in Chemistry), 2007, 19(12): 1903.
[74] Rauschenberg M, Bomke S, Karst U, Ravoo B J. Angew. Chem. Int. Ed., 2010, 49: 7340.
[75] Arndt N X, Tiralongo J, Madge P D, von Itzstein M, Day C J. J. Cell. Biochem., 2011, 112: 2230.
[76] Ariga K, Kunitake T, Acc. Chem. Res., 1998, 31: 371.
[77] Sun T L, Qing G Y, Su B L, Jiang L. Chem. Soc. Rev., 2011, 40: 2909.
[78] Sun T L, Qing G Y. Adv. Mater., 2011, 23: H57.
[79] Zhang M X, Qing G Y, Sun T L. Chem. Soc. Rev., 2012, 41: 1972.
[80] Qing G Y, Wang X, Fuchs H, Sun T L. J. Am. Chem. Soc., 2009, 131: 8370.
[81] Qing G Y, Wang X, Jiang L, Fuchs H, Sun T L. Soft Matter, 2009, 5: 2759.
[82] Qing G Y, Sun T L. NPG Asia Mater., 2012, 4: e4.
[83] Qing G Y, Sun T L. Adv. Mater., 2011, 23: 1615.
[84] Zhang M X, Qing G Y, Xiong C L, Cui R, Pang D W, Sun T L. Adv. Mater., 2013, 25: 749.
[85] Asensio J L, Ardá A, Cañada F J, Jiménez-Barbero J. Acc. Chem. Res., 2013, 46: 946.
[86] Schneider H J, Yatsimirsky A. Chem. Soc. Rev., 2008, 37: 263.
[87] Schneider H J, Angew. Chem. Int. Ed., 2009, 48: 3924.
[88] Ito S, Hayama K, Hirabayashi J. Methods Mol. Biol., 2009, 534: 195.

[1] Li Geng, Li Jie, Jiang Hongyu, Liang Xiaozhong, Guo Kunpeng. Mechano-Responsive Luminescent Polymers [J]. Progress in Chemistry, 2022, 34(10): 2222-2238.
[2] Guilong Wang, Xin Cui, Ying Chen, Zhen-feng Hu, Xiubing Liang, Fuxue Chen. Underwater Biomimetic Adhesive Based on Mussel Inspiration [J]. Progress in Chemistry, 2021, 33(12): 2378-2391.
[3] Jiangjiexing Wu, Hui Wei. Efficient Design Strategies for Nanozymes [J]. Progress in Chemistry, 2021, 33(1): 42-51.
[4] Libo Mao, Huailing Gao, Yufeng Meng, Yulu Yang, Xiangsen Meng, Shuhong Yu. Biomineralization: A Condensed Matter Chemistry [J]. Progress in Chemistry, 2020, 32(8): 1086-1099.
[5] Yanhua Sang, Haihua Pan, Ruikang Tang. Condensed-Matter Chemistry in Biomineralization [J]. Progress in Chemistry, 2020, 32(8): 1100-1114.
[6] Luo Shipeng, Huang Peiqiang. Malic acid——A Versatile Chiral Building Block in the Enantioselective Total Synthesis of Natural Products and in Synthetic Methodologies [J]. Progress in Chemistry, 2020, 32(11): 1846-1868.
[7] Yuanyuan Wu, Haihua Pan, Ruikang Tang. Collagen Mineralization and Tissue Repair [J]. Progress in Chemistry, 2018, 30(10): 1503-1510.
[8] Xiaoxiao Xie, Xiaoming Ma*, Xiangli Ru, Yi Chang, Yuming Guo, Lin Yang*. Biomimetic Mineralization Synthesis of Nanomaterials Under the Mediation of Cells and Potential Applications [J]. Progress in Chemistry, 2018, 30(10): 1511-1523.
[9] Panpan Chen, Bingbing Shi*. Supramolecular Drug Delivery Systems Based on Macrocyclic Hosts [J]. Progress in Chemistry, 2017, 29(7): 720-739.
[10] Yang Wolong, Ji Xianbing, Xu Jinliang. Superhydrophilic Surfaces: From Nature to Biomimetics to Application [J]. Progress in Chemistry, 2016, 28(6): 763-772.
[11] Zhou Hongwei, Ding Xiaobin. Smart Polymer Materials Driven by the Belousov-Zhabotinsky Reaction:Topological Structures and Biomimetic Functions [J]. Progress in Chemistry, 2016, 28(1): 111-120.
[12] Yu Zhiyuan, Ding Wande, Wang Zhining. Preparation and Application of Aquaporin Containing Biomimetic Membranes for Water Treatment and Desalination [J]. Progress in Chemistry, 2015, 27(7): 953-962.
[13] Wang Shengjie, Cai Qingwei, Du Mingxuan, Cao Meiwen, Xu Hai. Biomimetic Mineralization of Silica [J]. Progress in Chemistry, 2015, 27(2/3): 229-241.
[14] An Guangming, Ling Shiquan, Wang Zhiwei, Luan Lin, Wu Tianzhun. Fabrication and Application of Ultra-Slippery Surfaces Based on Liquid Infusion in Micro/Nano Structure [J]. Progress in Chemistry, 2015, 27(12): 1705-1713.
[15] Zhang Minghui, Zhai Jin. Biomimetic Smart Nanochannels for Energy Conversion [J]. Progress in Chemistry, 2012, 24(04): 463-470.