中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (10): 1503-1510 DOI: 10.7536/PC180541 Previous Articles   Next Articles

• Review •

Collagen Mineralization and Tissue Repair

Yuanyuan Wu1, Haihua Pan2*, Ruikang Tang1,2*   

  1. 1. Department of Chemistry, Zhejiang University, Hangzhou 310027, China;
    2. Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21771160, 21625105), the National Natural Science Foundation of Zhejiang Province(No. LY17B010001), and the Fundamental Research Funds for the Central Universities(No. 2016QN81020).
PDF ( 977 ) Cited
Export

EndNote

Ris

BibTeX

The hard tissue(tooth and bone) in vertebrates is formed by the biomineralization processes, which are regulated and controlled by bio-systems. Among them, the mineralized collagen fibril is an essential building block for the construction of biominerals. The mineralized collagen is a hybrid material of nano inorganic mineral(calcium phosphate) and assembled organic molecules(collagen). The advanced nano hierarchical and ordered structure of the mineralized collagen fibrils will endow biological hard tissue with excellent mechanical properties(such as hardness and toughness). The structure feature and mineralization process may inspire new materials fabrications aimed at hard tissue repair. It is important but challenging to reconstruct the ordered organic/inorganic hybrid structures via intrafibrillar mineralization of collagen, and that is the key to the tissue repair. In this review, the same basic questions are discussed including hierarchical structures of bones, the assembled structure of collagen fibrils and the nano-hybrid structure of mineralized collagen fibrils, the interactions between the organic(collagen and non-collagenous proteins) and inorganic counterparts and their interface, the modification of mineralizing interface by the functional molecules, and the control of collagen mineralization and their applications in tissue repair. Some unresolved but urgent issues for collagen mineralization are also discussed, such as the regulation of amorphous precursors for the infiltration into the nano-compartment of collagen fibrils, the control of the mineralization rate and degree, as well as the large scale fabrication of ordered collagen fibrils and their mineralization.
Contents
1 Introduction
2 Hierarchical organic-inorganic structure of mineralized collagen
3 Interactions between the organic and inorganic components
4 Interfaces of collagen mineralization and their regulation
5 Biomimetic mineralization of collagen fibrils and their applications in hard tissue repair
6 Conclusion

CLC Number: 

[1] Mann S. J. Mater. Chem., 1995, 5:935.
[2] Weiner S, Traub W. FEBS Lett., 1986, 206:262.
[3] Reznikov N, Bilton M, Lari L, Stevens M, Kröger R. Science, 2018, 360:eaao2189.
[4] De Yoreo J J, Vekilov P G. Rev. Mineral. Geochem., 2003, 54:57.
[5] Liu X Y, de Yoreo J. Nanoscale Structure and Assembly at Solid-fluid Interfaces:Assembly in Hybrid and Biological Systems. Springer London, 2004.
[6] Lu X, Leng Y. Biomaterials, 2005, 26:1097.
[7] Tomoaia G, Pasca R D. Clujul. Med., 2015, 88:15.
[8] Rhee S H, Lee J D, Tanaka J. J. Am. Ceram. Soc., 2000, 83:2890.
[9] Lickorish D, Ramshaw J A M, Werkmeister J A, Glattauer V, Howlett C R. J. Biomed. Mater. Res. A., 2004, 68:19.
[10] Zhai Y, Cui F Z, Wang Y. Curr. Appl. Phys., 2005, 5:429.
[11] Nair A K, Gautieri A, Chang S W, Buehler M J. Nat. Commun., 2013, 4:1724.
[12] Weiner S, Wagner H. Annu. Rev. Mater. Sci., 1998, 28:271.
[13] 于世凤(Yu S F). 口腔组织病理学(Oral Histopathology). 北京:人民卫生出版社(Beijing:People's Medical Publishing House), 2012. 7.
[14] Shoulders M D, Raines R T. Annu. Rev. Biochem., 2009, 78:929.
[15] Orgel J P R O, Irving T C, Miller A, Wess T J. Proc. Natl. Acad. Sci. U. S. A., 2006, 103:9001.
[16] Hu C M, Zhang L C, Wei M. ACS Biomater. Sci. Eng., 2015, 1:669.
[17] Liu Y, Luo D, Kou X X, Wang X D, Tay F R, Sha Y L, Gan Y H, Zhou Y H. Adv. Funct. Mater., 2013, 23:1404.
[18] Gao H, Ji B, Jager I L, Arzt E, Fratzl P. Proc. Natl. Acad. Sci. U. S. A., 2003, 100:5597.
[19] Boskey A L. Bone, 1989, 6:111.
[20] Orsini G, Ruggeri A, Mazzoni A, Nato F, Mazzotti G, Putignano A, Tjäderhane L, Breschi L. Endodontic Topics, 2012, 21:1.
[21] Deshpande A S, Fang P A, Zhang X, Jayaraman T, Sfeir C, Beniash E. Biomacromolecules, 2011, 12:2933.
[22] Nudelman F, Pieterse K, George A, Bomans P, Friedrich H, Brylka L, Hilbers P, de With G, Sommerdijk N. Nat. Mater., 2010, 9:1004.
[23] Olszta M J, Cheng X, Jee S S, Kumar R, Kim Y Y, Kaufman M J, Douglas E P, Gower L B. Am. J. Mater. Sci. Eng., 2007, 58:77.
[24] Bhowmik R, Katti K S, Katti D. Polymer, 2007, 48:664.
[25] Wang Y, Azaïs T, Robin M, Vallée A, Catania C, Legriel P, Pehau-Arnaudet G, Babonneau F, Giraud-Guille MM, Nassif N. Nat. Mater., 2012, 11:724.
[26] Landis W J, Silver F H. Cells Tissues Organs, 2009, 189:20.
[27] Silver F H, Landis W J. Connect. Tissue Res., 2011, 52:242.
[28] Cui F Z, Wang Y, Cai Q, Zhang W. J. Mater. Chem., 2008, 18:3835.
[29] Kawska A, Hochrein O, Brickmann J, Kniep R, Zahn D. Angew. Chem., 2008, 47:4982.
[30] Zahn D, Hochrein O, Kawska A, Brickmann J, Kniep R. J. Mater. Sci., 2007, 42:8966.
[31] Tao J, Battle K C, Pan H, Salter E A, Chien Y C, Wierzbicki A, Yoreo J J D. Proc. Natl. Acad. Sci. U. S. A., 2015, 112:326.
[32] Almora-Barrios N, Leeuw N H D. CrystEngComm, 2009, 12:960.
[33] Almora-Barrios N, Leeuw N H D. Cryst. Growth Des., 2016, 12:756.
[34] Toroian D, Lim J E, Price P A. J. Biol. Chem., 2007, 282:22437.
[35] Price P A, Toroian D, Lim J E. J. Biol. Chem., 2009, 284:17092.
[36] Tay F R, Pashley D H. Biomaterials, 2008, 29:1127.
[37] Li J H, Yang J J, Li J Y, Chen L, Liang K N, Wu W, Chen X Y, Li J S. Biomaterials, 2013, 34:6738.
[38] Gu L S, Kim J, Kim Y K, Liu Y, Dickens S H, Pashley D H, Ling J Q, Tay F R. Dent. Mater., 2010, 26:1077.
[39] Chen C Q, Mao C Y, Sun J, Chen Y, Wang W, Pan H H, Tang R K, Gu X H. Am. J. Mater. Sci. Eng., 2016, 67:657.
[40] Shao C Y, Zhao R B, Jiang S Q, Yao S S, Wu Z F, Jin B, Yang Y L, Pan H H, Tang R K. Adv. Mater., 2018, 30:1704876.
[41] Wang J M, Chen Y, Li L, Sun J, Gu X H, Xu X R, Pan H H, Tang R K. CrystEngComm, 2013, 15:6151.
[42] Sun J, Chen C Q, Pan H H, Chen Y, Mao C Y, Wang W, Tang R K, Gu X H. J. Mater. Chem. B, 2014, 2:4544.
[43] Niu L N, Jee S E, Jiao K, Tonggu L, Li M, Wang L, Yang Y D, Bian J H, Breschi L, Jang S S, Chen J H, Pashley D H, Tay F R. Nat. Mater., 2017, 16:370.
[44] Jones F H. Surf. Sci. Rep., 2001, 42:75.
[45] Burwell A K, Thula-Mata T, Gower L B, Habelitz S, Kurylo M, Ho S P, Chien Y C, Cheng J, Cheng N F, Gansky S A. PLoS One, 2012, 7:1.
[46] Kim Y K, Gu L, Bryan T E, Kim J R, Chen L, Liu Y, Yoon J C, Breschi L, Pashley D H, Tay F R. Biomaterials, 2010, 31:6618.
[47] Liu Y, Kim Y K, Dai L, Li N, Khan S O, Pashley D H, Tay F R. Biomaterials, 2011, 32:1291.
[48] Dai L, Qi Y P, Niu L N, Liu Y, Pucci C R, Looney S W, Ling J Q, Pashle D H, Tay F R. Cryst. Growth Des., 2011, 11:3504.
[49] Zhang W, Luo X, Niu L, Yang H, Yiu C K, Zhou L, Mao J, Huang C, Pashley D H, Tay F R. Sci. Rep., 2015, 5:11199.
[50] Wu Z F, Wang X K, Wang Z, Shao C Y, Jin X T, Zhang L Q, Pan H H, Tang R K, Fu B P. ACS Appl. Mater. Interfaces, 2017, 9:17710.
[51] Cao Y, Mei M L, Xu J, Lo E C M, Li Q, Chu C H. J. Dent., 2013, 41:818.
[52] Li J, Xie X, Wang Y, Yin W, Antoun J S, Farella M, Mei L. J. Dent., 2014, 42:769.
[53] Noyama Y, Miura T, Ishimoto T, Itaya T, Niinomi M, Nakano T. Mater. Trans., 2012, 53:565.
[54] Ambard A J, Mueninghoff L. J. Prosthodontics., 2006, 15:321.
[55] Hu Y Y, Rawal A, Schmidt-Rohr K. Proc. Natl. Acad. Sci. U. S. A., 2010, 107:22425.
[56] Davies E H, Müller K, Wong W C, Pickard C J, Reid D G, Skepper J N, Duer M. J. Proc. Natl. Acad. Sci. U. S. A., 2014, 111:1354.
[57] Liu C, Zhai H L, Zhang Z, Li Y, Xu X, Tang R K. ACS Appl. Mater. Interfaces, 2016, 8:29997.
[58] Liu X, Zhao K, Gong T, Song J, Bao C Y, Luo E, Weng J, Zhou S B. Biomacromolecules, 2014, 15:1019.
[59] Tan R W, She Z D, Wang M B, Yu X, He J, Feng Q L. J. Tissue Eng. Regener. Med., 2012, 6:614.
[60] Zhai H L, Jiang W G, Tao J H, Lin S Y, Chu X B, Xu X R, Tang R K. Adv. Mater., 2010, 22:3729.
[61] John A,Hong L, Ikada Y, Tabata Y. J. Biomater. Sci. Polymer Ed., 2001, 12:689.
[62] Liao S S, Cui F Z. J. Biomed. Mater. Res., 2004, 69:158.
[1] Wang Rongmin, Sun Kangqi, Wang Jianfeng, He Yufeng, Song Pengfei, Xiong Yubing. Preparation and Application of Natural Polymer/Hydroxyapatite Composite [J]. Progress in Chemistry, 2016, 28(6): 885-895.
[2] Chen Feng, Zhu Yingjie. Microwave-Assisted Synthesis of Calcium Phosphate Nanostructured Materials in Liquid Phase [J]. Progress in Chemistry, 2015, 27(5): 459-471.
[3] Liao Jianguo, Li Yanqun, Duan Xingze, Zhu Lingli. Nano-Hydroxyapatite/Polymer Composite as Bone Repair Materials [J]. Progress in Chemistry, 2015, 27(2/3): 220-228.
[4] Zhang Dinglin, Zhao Huawen, Zhao Xianying, Liu Yimin, Chen Hua, Li Xianjun. Application of Hydroxyapatite as Catalyst and Catalyst Carrier [J]. Progress in Chemistry, 2011, 23(4): 687-694.
[5] Ni Songbo, Li Yanbao, Wang Xiumei. Preparation,Application and Functionalization of Hydroxyapatite Microspheres [J]. Progress in Chemistry, 2011, 23(01): 231-245.
[6] Zeng Shaoxian. Medical Bioceramics and Its Clinical Applications [J]. Progress in Chemistry, 1997, 9(01): 90-.
Viewed
Full text


Abstract

Collagen Mineralization and Tissue Repair