中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (1): 111-120 DOI: 10.7536/PC150703 Previous Articles   Next Articles

• Review and comments •

Smart Polymer Materials Driven by the Belousov-Zhabotinsky Reaction:Topological Structures and Biomimetic Functions

Zhou Hongwei1*, Ding Xiaobin2   

  1. 1. School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China;
    2. Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51373175, 21506167), the Start-up Funding for Scientific Research in Xi'an Technological University (No. 0853-302020350), the Natural Science Foundation of Shaanxi province (No. 2014JM6239), and Principal's Foundation of Xi'an Technological University (No. XAGDXJJ1409).
PDF ( 540 ) Cited
Export

EndNote

Ris

BibTeX

Smart polymer materials driven by chemical oscillating reactions are often called self-oscillating polymer materials (SOPMs). Among these, SOPMs driven by the Belousov-Zhabotinsky (BZ) reaction are paid particular attention and have become one of the hot topics in the field of polymer materials. Different from the traditional smart polymers, SOPMs show highly self-regulated properties, namely autonomous, reversible and periodical state transition without any “ON-OFF” switching of external stimuli. In this review, we will introduce the new ideas and new methods regarding SOPMs. Two aspects of SOPMs, including topological structures and biomimetic functions, are particularly introduced. Topological structure design involves comb-like self-oscillating polymer gels, “polyrotaxane-interlocked” self-oscillating polymer gels, hierarchical self-oscillating polymer gels, hyper cross-linked self-oscillating polymer gels, branched self-oscillating polymers, self-oscillating polymer brushes and self-oscillating block copolymers. Biomimetic function investigation includes self-oscillating polymer vesicles, artificial cells, autonomous intestine-like motion, photophobic and phototropic motion. Finally, the future development of SOPMs is prospected.

Contents
1 Introduction
2 Topological structures of self-oscillating polymer materials
2.1 Comb-like self-oscillating polymer gels
2.2 “Polyrotaxane-interlocked” self-oscillating polymer gels
2.3 Hierarchical self-oscillating polymer gels
2.4 Hyper cross-linked self-oscillating polymer gels
2.5 Branched self-oscillating polymers
2.6 Self-oscillating polymer brushes
2.7 Self-oscillating block copolymers
3 Biomimetic functions of self-oscillating polymer materials
3.1 Self-oscillating polymer vesicles
3.2 Artificial cells
3.3 Autonomous intestine-like motion
3.4 Photophobic and phototropic motion
4 Outlook

CLC Number: 

[1] Yoshida R, Ichijo H, Hakuta T, Yamaguchi T. Macromol. Rapid Commun., 1995, 16: 305.
[2] Theato P, Sumerlin B S, O'Reilly R K, Epps T H. Chem. Soc. Rev., 2013, 42: 7055.
[3] Yoshida R. Adv. Mater., 2010, 22: 3463.
[4] Yoshida R, Takahashi T, Yamaguchi T, Ichijo H. J. Am. Chem. Soc., 1996, 118: 5134.
[5] Yoshida R, Ueki T. NPG Asia Mater., 2014, 6: DOI 10.1038/am.2014.32.
[6] Field R J, Noyes R M, Koros E. J. Am. Chem. Soc., 1972, 94: 8649.
[7] Noyes R M, Field R J, Koros E. J. Am. Chem. Soc., 1972, 94: 1394.
[8] Field R J, Noyes R M. J. Am. Chem. Soc., 1974, 96: 2001.
[9] Noyes R M, Jwo J J. J. Am. Chem. Soc., 1975, 97: 5431.
[10] Petrov V, Gaspar V, Masere J, Showalter K. Nature, 1993, 361: 240.
[11] Sharma K R, Noyes R M. J. Am. Chem. Soc., 1975, 97: 202.
[12] Sharma K R, Noyes R M. J. Am. Chem. Soc., 1976, 98: 4345.
[13] Furrow S D, Noyes R M. J. Am. Chem. Soc., 1982, 104: 45.
[14] Furrow S D, Noyes R M. J. Am. Chem. Soc., 1982, 104: 42.
[15] Furrow S D, Noyes R M. J. Am. Chem. Soc., 1982, 104: 38.
[16] Pesek O, Schreiberova L, Schreiber I. Phys. Chem. Chem. Phys., 2011, 13: 9849.
[17] Poros E, Horvath V, Kurin-Csorgei K, Epstein I R, Orban M. J. Am. Chem. Soc., 2011, 133: 7174.
[18] Jolley C C, Ode K L, Ueda H R. Cell Reports, 2012, 2: 938.
[19] Zhou H, Ding X, Zheng Z, Peng Y. Soft Matter, 2013, 9: 4956.
[20] Zhou H, Zheng Z, Wang Q, Xu G, Li J, Ding X. RSC Adv., 2015, 5: 13555.
[21] Yoshida R, Uesusuki Y. Biomacromolecules, 2005, 6: 2923.
[22] Arimura T, Mukai M. Chem. Commun., 2014, 50: 5861.
[23] 周宏伟(Zhou H W), 梁恩湘(Liang E X), 郑朝晖(Zheng Z H), 丁小斌(Ding X B), 彭宇行(Peng Y X).化学进展(Prog. Chem.), 2011, 23: 2368.
[24] Zhang Y, Zhou N, Akella S, Kuang Y, Kim D, Schwartz A, Bezpalko M, Foxman B M, Fraden S, Epstein I R, Xu D B. Angew. Chem. Int. Edit., 2013, 52: 11494.
[25] Dayal P, Kuksenok O, Balazs A C. Macromolecules, 2014, 47: 3231.
[26] Dayal P, Kuksenok O, Balazs A C. Proc. Nat. Acad. Sci. U.S.A., 2013, 110: 431.
[27] Yashin V V, Kuksenok O, Balazs A C. Prog. Polym. Sci., 2010, 35: 155.
[28] Wang P F, Zhou J X, Li M E, Xu F, Lu T J. Sci. China Technol. Sci., 2010, 53: 1862.
[29] Yashin V V, Balazs A C, Science, 2006, 314: 798.
[30] Kuksenok O, Balazs A C. Sci. Rep., 2015, 5: 9569.
[31] Kuksenok O, Deb D, Yong X, Balazs A C. Materials Today, 2014, 17: 486.
[32] Deb D, Kuksenok O, Dayal P, Balazs A C. Materials Horizons, 2014, 1: 125.
[33] Yashin V V, Levitan S P, Balazs A C. Sci. Rep., 2015, 5: 11577.
[34] Zhao F, Ding Y W, Lu Y J, Liu X X, Zhang G Z. J. Phys. Chem. B, 2009, 113: 6661.
[35] Pullela S R, Shen J Y, Marquez M, Cheng Z D. J. Polym. Sci. Polym. Phys., 2009, 47: 847.
[36] Suzuki D, Yoshida R. J. Phys. Chem. B, 2008, 112: 12618.
[37] Hara Y, Mayama H, Fujimoto K. J. Phys. Chem. B, 2014, 118: 6931.
[38] Hara Y, Mayama H, Yamaguchi Y, Fujimoto K. Chem. Lett., 2014, 43: 673.
[39] Zhang Y, Li N, Delgado J, Zhou N, Yoshida R, Fraden S, Epstein I R, Xu B. Soft Matter, 2012, 8: 3056.
[40] Masuda T, Terasaki A, Akimoto A M, Nagase K, Okano T, Yoshida R. RSC Adv., 2015, 5: 5781.
[41] Hara Y, Yoshida R. Langmuir, 2005, 21: 9773.
[42] Hara Y, Yoshida R. J. Phys. Chem. B, 2008, 112: 8427.
[43] Hara Y, Yoshida R. J. Chem. Phys., 2008, 128: 224904.
[44] Zhang Y, Zhou N, Li N, Sun M G, Kim D, Fraden S, Epstein I R, Xu B. J. Am. Chem. Soc., 2014, 136: 7341.
[45] Ueki T, Yoshida R. Phys. Chem. Chem. Phys., 2014, 16: 10388.
[46] Srichan S, Kayunkid N, Oswald L, Lotz B, Lutz J F. Macromolecules, 2014, 47: 1570.
[47] Mitsunaga R, Okeyoshi K, Yoshida R. Chem. Commun., 2013, 49: 4935.
[48] Wenz G, Han B H, Müller A. Chem. Rev., 2006, 106: 782.
[49] Okumura Y, Ito K. Adv. Mater., 2001, 13: 485.
[50] Zhou H W, Wang Y R, Zheng Z H, Ding X B, Peng Y X. Chem. Commun., 2014, 50: 6372.
[51] Suzuki D, Kobayashi T, Yoshida R, Hirai T. Soft Matter, 2012, 8: 11447.
[52] Suzuki D, Taniguchi H, Yoshida R. J. Am. Chem. Soc., 2009, 131: 12058.
[53] Caminade A M, Yan D, Smith D K. Chem. Soc. Rev., 2015, 44: 3870.
[54] Chen H, Kong J. The Journal of Physical Chemistry B, 2014, 118: 3441.
[55] Kong J, Schmalz T, Motz G, Müller A H E. Macromolecules, 2011, 44: 1280.
[56] Ueno T, Bundo K, Akagi Y, Sakai T, Yoshida R. Soft Matter, 2010, 6: 6072.
[57] Whittell G R, Hager M D, Schubert U S, Manners I. Nat. Mater., 2011, 10: 176.
[58] Schubert U S, Eschbaumer C. Angew. Chem. Int. Ed., 2002, 41: 2893.
[59] Lohmeijer B G G, Schubert U S. Angew. Chem. Int. Ed., 2002, 41: 3825.
[60] Gohy J F, Lohmeijer B G G, Varshney S K, Decamps B, Leroy E, Boileau S, Schubert U S. Macromolecules, 2002, 35: 9748.
[61] Ueki T, Takasaki Y, Bundo K, Ueno T, Sakai T, Akagi Y, Yoshida R. Soft Matter, 2014, 10: 1349.
[62] Banquy X, Burdyńska J, Lee D W, Matyjaszewski K, Israelachvili J. J. Am. Chem. Soc., 2014, 136: 6199.
[63] Yang W J, Neoh K G, Kang E T, Teo S L M, Rittschof D. Prog. Polym. Sci., 2014, 39: 1017.
[64] Chin H Y, Wang D, Schwartz D K. Macromolecules, 2015, 48: 4562.
[65] Pranantyo D, Xu L Q, Neoh K G, Kang E T, Ng Y X, Teo S L M. Biomacromolecules, 2015, 16: 723.
[66] Masuda T, Hidaka M, Murase Y, Akimoto A M, Nagase K, Okano T, Yoshida R. Angew. Chem. Int. Edit., 2013, 52: 7468.
[67] Gonzato C, Semsarilar M, Jones E R, Li F, Krooshof G J P, Wyman P, Mykhaylyk O O, Tuinier R, Armes S P. J. Am. Chem. Soc., 2014, 136: 11100.
[68] Warren N J, Armes S P. J. Am. Chem. Soc., 2014, 136: 10174.
[69] Ueki T, Shibayama M, Yoshida R. Chem. Commun., 2013, 49: 6947.
[70] Ueki T, Onoda M, Tamate R, Shibayama M, Yoshida R. Chaos, 2015, 25: 064605.
[71] Yoshida R. Current Organic Chemistry, 2005, 9: 1617.
[72] Yoshida R, Takei K, Yamaguchi T. Macromolecules, 2003, 36: 1759.
[73] Yoshida R. Biophysics, 2012, 8: 163.
[74] Maeda S, Hara Y, Sakai T, Yoshida R, Hashimoto S. Adv. Mater., 2007, 19: 3480.
[75] Takeoka Y R. Angew. Chem. Int. Edit., 2008, 47: 9039.
[76] Maeda S, Hara Y, Yoshida R, Hashimoto S. Angew. Chem. Int. Edit., 2008, 47: 6690.
[77] Shinohara S, Seki T, Sakai T, Yoshida R, Takeoka Y. Chem. Commun., 2008, 4735.
[78] Takeoka Y, Watanabe M, Yoshida R. J. Am. Chem. Soc., 2003, 125: 13320.
[79] Hara Y, Saiki M, Suzuki T, Kikuchi K. Chem. Lett., 2014, 43: 938.
[80] Murase Y, Maeda S, Hashimoto S, Yoshida R. Langmuir, 2009, 25: 483.
[81] Nakata S, Yoshii M, Suzuki S, Yoshida R, Langmuir, 2014, 30: 517.
[82] Guo X, Szoka F C. Acc. Chem. Res., 2003, 36: 335.
[83] Jiang W, Zhou Y, Yan D. Chem. Soc. Rev., 2015, 44: 3874.
[84] Tamate R, Ueki T, Shibayama M, Yoshida R. Angew. Chem. Int. Edit., 2014, 53: 11248.
[85] Tamate R, Ueki T, Yoshida R. Adv. Mater., 2015, 27: 837.
[86] Shiraki Y, Yoshida R. Angew. Chem. Int. Edit., 2012, 51: 6112.
[87] Shiraki Y, Akimoto A M, Miyata T, Yoshida R. Chem. Mat., 2014, 26: 5441.
[88] Lu X J, Ren L, Gao Q Y, Zhao Y M, Wang S R, Yang J P, Epstein I R. Chem. Commun., 2013, 49: 7690.
[89] Yashin V V, Kuksenok O, Dayal P, Balazs A C. Rep. Prog. Phys., 2012, 75: 066601.
[90] Yashin V V, Balazs A C. Macromolecules, 2006, 39: 2024.
[91] Zhou H, Liang E, Ding X, Zheng Z, Peng Y. Chem. Commun., 2012, 48: 10553.
[92] Zhou H W, Liang E X, Pan Y, Ding X B, Zheng Z H, Peng Y X. RSC Adv., 2013, 3: 2182.
[93] Zhou H, Yang Y, Xu G, Chen W, Zhang W, Wang Q, Zheng Z, Ding X. J. Polym. Sci. Pol. Chem., 2015, 53: 2214.
[94] Hara Y, Yamaguchi Y, Mayama H. J. Phys. Chem. B, 2014, 118: 634.
[95] Kuksenok O, Dayal P, Bhattacharya A, Yashin V V, Deb D, Chen I C, van Vliet K J, Balazs A C. Chem. Soc. Rev., 2013, 42: 7257.
[96] Shiota T, Ikura Y S, Nakata S. J. Phys. Chem. B, 2013, 117: 2215.
[97] Smith M L, Slone C, Heitfeld K, Vaia R A. Adv. Funct. Mater., 2013, 23: 2835.
[98] Smith M L, Heitfeld K, Slone C, Vaia R A. Chem. Mater., 2012, 24: 3074.
[99] Buskohl P R, Kramb R C, Vaia R A. J. Phys. Chem. B, 2015, 119: 3595.
[1] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[2] Yanan Zheng, Dan Wang. Structures, Properties, and Applications of Metalloregulatory Proteins [J]. Progress in Chemistry, 2019, 31(10): 1372-1383.
[3] Wenzhong Zhai, Yufeng He, Bin Wang, Yubing Xiong, Pengfei Song, Rongmin Wang. Fabrication and Applications of Polymeric Janus Particles [J]. Progress in Chemistry, 2017, 29(1): 127-136.
[4] Li Xingjian, Wang Yaru, Zheng Zhaohui, Ding Xiaobin, Peng Yuxing. Structural Design and Property Study of Shape Memory Polymer Network [J]. Progress in Chemistry, 2013, 25(10): 1726-1738.
[5] Qin Wangping, Liang Guodong, Zhu Fangming, Wu Qing. Synthesis of Organometallic Coordination Polymers [J]. Progress in Chemistry, 2011, 23(12): 2534-2540.
[6] Zhou Hongwei, Liang Enxiang, Zheng Zhaohui, Ding Xiaobin, Peng Yuxing. Smart Polymers Based on Belousov-Zhabotinsky Reaction [J]. Progress in Chemistry, 2011, 23(11): 2368-2376.
[7] Qu Feng Lv Fenghua Zhang Huijuan. Smart Polymers Based Aqueous Two-Phase Systems Applied in Bio-molecules Separation and Purification [J]. Progress in Chemistry, 2010, 22(01): 125-132.