中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (6): 763-772 DOI: 10.7536/PC160106 Previous Articles   Next Articles

• Review and comments •

Superhydrophilic Surfaces: From Nature to Biomimetics to Application

Yang Wolong, Ji Xianbing, Xu Jinliang*   

  1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing Key Laboratory of Multiphase Flow and Heat Transfer, North China Electric Power University, Beijing 102206, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Key Project of National Natural Science Foundation of China (No. 51436004), the Central University Special Foundation for Basic Scientific Research(No.JB2015202), and the National Natural Science Foundation of China (No. 51276061).
PDF ( 2921 ) Cited
Export

EndNote

Ris

BibTeX

Extreme wetting surfaces have been the significant subject of surface engineering field. A superhydrophillc surface has an exceptionally strong affinity to water and provides outstanding properties such as self-cleaning, anti-fogging, which offers a broad range of potential applications in many fields. Compared with superhydrophobic surfaces, superhydrophilic surfaces have received relatively few attentions, and some problems still exist in both academic and application. In this review, the controversy about the definition of superhydrophilic surfaces is introduced, then we analyze the mechanism of superhydrophilic phenomenon. The preparation methods and practical application are also discussed. Furthermore, some challenges and the current international new research tendency of superhydrophilic surfaces are highlighted. The review aims to provide an introductory yet comprehensive overview about superhydrophilic surfaces.

Contents
1 Introduction
2 Definition and mechanism
2.1 Definition of superhydrophilic surfaces
2.2 Mechanism of superhydrophilic phenomenon
3 Fabrication and application
3.1 Fabrication of superhydrophilic surfaces
3.2 Application of superhydrophilic surfaces
4 Problem and progress
4.1 Existing problems

CLC Number: 

[1] Drelich J, Chibowski E, Meng D D, Terpilowski K. Soft Matter, 2011, 7(21): 9804.
[2] Roach P, Shirtcliffe N J, Newton M I. Soft Matter, 2008, 4(2): 224.
[3] 田苗苗(Tian M M ), 李雪梅(Li X M ), 殷 勇(Yin Y ), 何 涛(He T ), 刘金盾(Liu J D ). 化学进展(Progress in Chemisity), 2015, 27(8): 1033.
[4] 柯清平(Ke Q P ), 李广录(Li G L ), 郝天歌(Hao T G ), 何涛(He T), 李雪梅(Li X M ). 化学进展(Progress in Chemisity), 2010, 22(2/3): 284.
[5] Feng X J, Jiang L. Adv. Mater., 2006, 18(23): 3063.
[6] Thompson C S, Fleming R A, Zou M. Sol. Energy Mater. Sol. C., 2013, 115(10): 108.
[7] Tonooka K, Kikuchi N. Thin Solid Films, 2013, 532(4): 147.
[8] Xiong Y B, Lai M, Li J, Yong H B, Qian H Z, Xu C Q, Zhong K, Xiao S R. Surf. Coat. Technol., 2015, 265: 78.
[9] F Li, Li Q M, Kim H. Appl. Surf. Sci., 2013, 276: 390.
[10] Patel P, Choi C K, Men D D. J. Am. Assoc. Lab. Anim., 2010, 15(2): 114.
[11] Maharbiz M M, Holtz W J, Howe R T, Keasling J D. Biotechnol. Bioeng., 2004, 85(4): 376.
[12] Yang X G, Zhang F Y, Lubawy A L, Wang C Y. Electrochem. Solid. St., 2004, 7(11): A408.
[13] Huang W X, Chen Y F, Yang C X, Situ Y, Huang H. Ceram. Int., 2015, 41(6): 7573.
[14] Ohdaira T, Nagai H, Kayano S, Kazuhito H. Surgical Surg. Endosc-Ultras., 2007, 21(2): 333.
[15] Waller L, Jonsson O, Norlen L, Sullivan L. J. Urol., 1995, 153(2): 345.
[16] Dursch T J, Liu D E, Oh Y, Radke C J. Acta Biomater., 2015, 15: 48.
[17] Iwasa F, Hori N, Ueno T, Minamikawa H, Yamada M, Ogawa T. Biomaterials, 2010, 31(10): 2717.
[18] Miyauchi T, Yamada M, Yamamoto A, Iwasa F, Suzawa T, Kamijo R, Baba K, Ogawa T. Biomaterials, 2010, 31(14): 3827
[19] Pandiyaraj K N, Selvarajan V, Rhee Y H, Kim H W, Pavese M. Colloids Surf. B, Biointerfaces, 2010, 79(1): 53.
[20] Ohdaira T, Nagai H, Kayano S, Kazuhito H. Surg. Endosc., 2007, 21(2): 333.
[21] Jiang P L, Lin L X, Zhang F, Dong X, Ren L, Lin C J. Electrochim. Acta, 2013,107:16.
[22] 杨皓程(Yang H C), 陈一夫(Chen Y F), 叶辰(Ye C), 万灵书(Wan L S), 徐志康(Xu Z K). 化学进展 (Progress in Chemistry), 2015, 27(8): 1014.
[23] Gondal M A, Sadullah M S, Dastageer M A, Mckinley G H, Panchanathan D, Varanas K K. ACS Appl. Mater. Inter., 2014, 6(16): 13422.
[24] Yang J, Yin L T, Tang H, Song H J, Gao X N, Liang K, Li C S. Chem. Eng. J., 2015, 268: 245.
[25] Yang J, Song H J, Yan X H, Tang H, Li C S. Cellulose, 2014, 21(3): 1851.
[26] Kuang M X, Wang J X, Bao B, Li F Y, Wang L B, Jiang L, Song Y L. Adv. Opt. Mater., 2014, 2: 34.
[27] Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Nature, 1997, 388(6641): 431.
[28] TetteyK E, Dafinone M I, Lee D. Mater. Express., 2011, 1(2): 089.
[29] Liu H, Feng L, Zhai J, Jiang L, Zhu D B. Langmuir, 2004, 20(14): 5659.
[30] Cebeci F C, Wu Z Z, Zhai L, Cohen R E, Rubner M F. Langmuir, 2006, 22(6): 2856.
[31] Rico V, Romero P, Hueso J L, Espinos J P, Gonzalez-Elipe A R. Catal. Today, 2009, 143(3/4): 347.
[32] Ferrara M C, Pilloni L, Mazzarelli S, Tapfer L. J. Phys. D. Appl. Phys., 2010, 43(9): 095301.
[33] Huang W X, Lei M, Huang H, Chen J, Chen H. Surf. Coat. Technol., 2010, 204 (24): 3954.
[34] Drelich J, Chibowski E. Langmuir, 2010, 26(24): 18621.
[35] Gennes P D. Rev. Mod. Phys., 1985, 57(3): 827.
[36] Wenzel R N. J. Ind. Eng. Chem., 1936, 28(8): 988.
[37] Shibuichi S, Onda T, Satoh N, Tsujii K. J. Phys. Chem., 1996, 100(50): 19512.
[38] Onda T, Shibuichi S, Satoh N, Tsujii K. Langmuir, 1996, 12(9): 2125.
[39] Tian Y, Jiang L. Nat. Mater., 2013, 12: 291.
[40] Cassie A B D, Baxte S. Trans. Faraday Soc., 1944, 40: 546.
[41] Quéré D. Annu. Rev. Mater. Res., 2008, 38: 71.
[42] Lim H S, Kwak D, Lee D Y, Lee S G, Cho K. J. Am. Chem. Soc., 2007, 129(14): 4128.
[43] Fujishima A, Zhang X T, Tryk D A. Surf. Sci. Rep., 2008, 63(12): 515.
[44] Takata Y, Hidaka S, Masuda M, Ito T. Int. J. Energy Res., 2003, 27(2): 111.
[45] Koch K, Barthlott W. Philos. T., 2009, 367(1893): 1487.
[46] Eshaghi A, Mojab M. J. Non-Cryst. Solids, 2014, 405:148.
[47] Chen Y F, Zhang C J, Huang W X, Yang C X, Huang T Situ Y, Huang H. Surf. Coat. Technol., 2014, 258: 531.
[48] Liu K S, Jiang L. Nanoscale, 2011, 3(3): 825.
[49] Wang L F, Zhao Y, Wang J M, Wang J M, Hong X, Zhai J, Jiang L, Wang F S. Appl. Surf. Sci., 2009, 255(9): 4944.
[50] Pauporte T, Bataille G, Joulaud L, Vermersch F J. J. Phys. Chem. C, 2009, 114(1): 194.
[51] Kikuchi T, Nishinaga O, Nakajima D, Kwawshima J, Natsui S, Sakaquchi N, Suzuki R. Sci. Rep., 2014, 4: 7411.
[52] Wu J, Xia J, Lei W, Wang B P. Mater. Lett., 2011, 65(3): 477.
[53] Chiou N R, Lui C M, Guan J J, Lee L J, Epstein A J. Nat. Nanotechnol., 2007, 2(6): 354.
[54] Saison T, Peroz C, Chauveau V, Berthier S, Sondergard E, Arribart H. Bioinspir. Biomim., 2008, 3(4): 1102.
[55] Song W, Jia H Y, Cong Q A, Zhao B. J. Colloid Interface Sci., 2007, 311(2): 456.
[56] Li L,Li Y,Gao S Y,Koshizaki N. J. Mater. Chem., 2009, 19: 8366.
[57] Liu H, Feng L, Zhai J, Jiang L, Zhu D. Langmuir, 2004, 20(14): 5659.
[58] Noh H N, Meyong S Y. Sol. Energy Mater. Sol. C., 2014, 121(2): 108.
[59] Hiralal P, Chien C, Lal N N, Abeygunasekara W, Kumar A, Butt H, Zhou H, Unalan H E, Baumberg J J, Amaratunga G A J. Nanoscale, 2014, 6(23):14555.
[60] Ye X, Jiang X, Huang J, Geng F, Sun L, Zu X, Wu W, Zheng W. Sci. Rep., 2015, 5: 13023.
[61] Zhang X, Lan P, Lu Y, Li J, Xu H, Zhang J, Lee Y, Rhee J Y, Choy K L, Song W. ACS App. Mater. Inter., 2014, 6(3): 1415.
[62] Zhou G, He J H, Xu L G. Microporous. Mesoporous. Mater., 2013, 176(4): 41.
[63] Chen R, Lu M C, Srinivasan V, Wanq Z, Cho H H, Majumdar A. Nano Lett., 2009, 9(2): 548.
[64] Ryu S, Lee W, Nam Y. Int. J. Heat Mass Transfer., 2014, 73(3): 438.
[65] Ji X B, Xu J L, Li H C, Huang Y P. Int. J. Heat Mass Transfer., 2016, 93: 918.
[66] Xue Z X, Wang S T, Lin L, Chen L, Liu M J, Feng L, Jiang L. Adv. Mater., 2011, 23: 270.
[67] Yang J, Zhang Z Z, Xu X H, Zhu X T, Men X H, Zhou Y. J. Mater. Chem., 2012, 22: 2834.
[68] Chen D, Tan L F, Liu H Y, Hu J Y, Li Y, Tang F Q. Langmuir, 2010, 26(7): 4675.
[69] Caschera D, Mezzi A, Cerri L, de Caro T, Riccucci C, Ingo G M, Padeletti G, Biasiucci M, Gigli G, Cortese B. Cellulose, 2014, 21(1): 741.
[70] Shirazya M R S, Blais S, Fréchettea L G. Appl. Surf. Sci., 2012, 258 (17): 6416.
[71] Albarakati N, Ye D. Mater. Res. Express, 2014, 1(1): 015029.
[72] Ren N, Li J H, Qiu J C, Sang Y H, Jiang H D, Boughton R I, Huang L, Huang W, Liu H. Small, 2014, 10(15): 3169.
[73] Kim P, Wong T S, Alvarenga J, Kreder M J, Adorno-Martinez W E, Aizenberg J. ACS Nano, 2012, 6(8): 6569.
[74] Kwon Y B, Byung H W, Weon K H, Je J H, Hwu Y, Margaritondo G. Langmuir, 2009, 25(4): 1927.
[75] Guan Y C, Luo F F, Lim G C, Hong M H, Zheng H Y, Qi B J. Mater. Design, 2015, 78(5): 19.
[76] Zhang Q, Xu D, Hung T F, Zhang K L. Nat. Nanotechnol., 2013, 24(6): 065602.
[77] Sun T L, Wang G J, Feng L, Liu B Q, Ma Y M, Jiang L, Zhu D B. Angew. Chem. Int. Ed., 2004, 43(3): 357.
[78] Li H, Zheng M J, Liu S D, Ma L, Zhu C Q, Xiong Z Z. Surf. Coat. Technol., 2013, 224(12): 88.
[79] Gao L K, Lu Y, Cao J, Li J, Sun Q F. J. Wood Chem. Technol., 2015, 35(5): 365.
[80] Nishimoto S, Becchaku M, Kameshima Y, Shirosaki Y, Hayakawa S, Osaka A, Miyake M. Thin Solid Films, 2014, 558(19): 221.
[81] E Ueda, Levkin P A. Adv. Mater., 2013, 25(9):1234.
[82] Huang D J, Leu T S. Appl. Surf. Sci., 2013, 280: 25.
[83] Cantini M, Sousa M, Moratal D, Mano J F, Salmeron-sanchez M. Biomater. Sci., 2013, 1(2): 202.
[84] Daniel S, Chaudhury M K, Chen J C. Science, 2001, 291(5504): 633.
[85] Kim S J, Kim J, Moon M W, Lee K R, Kim H Y. Phys. Fluids, 2013, 25: 092110.
[86] Bahners T, Prager L, Gutmann J S. Langmuir, 2014, 30, 3127.
[87] Sun R, Ba H, Ju J, Jiang L. Soft Matter, 2013, 9: 9285.
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[3] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[6] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[7] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[8] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[9] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[10] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[11] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[12] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[13] Meirong Li, Chenliu Tang, Weixian Zhang, Lan Ling. Performance and Mechanism of Aqueous Arsenic Removal with Nanoscale Zero-Valent Iron [J]. Progress in Chemistry, 2022, 34(4): 846-856.
[14] Fei Wu, Wei Ren, Cheng Cheng, Yan Wang, Heng Lin, Hui Zhang. Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water [J]. Progress in Chemistry, 2022, 34(4): 992-1010.
[15] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.