中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (7): 720-739 DOI: 10.7536/PC170329 Previous Articles   Next Articles

• Review •

Supramolecular Drug Delivery Systems Based on Macrocyclic Hosts

Panpan Chen, Bingbing Shi*   

  1. Department of Chemistry, Zhejiang University, Hangzhou 310027, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Fundamental Research Funds for the Central Universities.
PDF ( 1879 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, functional drug delivery systems for both targeting drugs to cancer cells and responding to the specific microenvironmental changes of cancer cells for the delivery of the drug have drawn great attention from the chemistry and pharmacology fields in cancer treatment for minimizing undesired effects in the normal cells. Supramolecular drug delivery systems constructed by noncovalent interactions have the ability to realize dynamic reversible switching of structure, morphology and function in response to various external stimuli, thus, providing a platform for designing and developing smart supramolecular nano-drug carriers. It is clear that supramolecular self-assemblies have been an active area of research and an important component of supramolecular chemistry and nanoscience, novel macrocyclic hosts-based recognition motifs, play extremely important roles in supramolecular self-assemblies and related applications. Moreover, functional groups can be introduced into supramolecular systems through specific modification of hosts or guests, so as to meet the requirements for applications in various fields. By noncovalent functionalization, supramolecular nanosystems will be excellent drug carriers, improving the problems imposed by water solubility and stability of drugs as well as realizing controlled release. In this critical review, we summarize recent results in the investigation of macrocyclic hosts-based supramolecular nanostructures for controllable anticancer drug delivery, and supramolecular drug delivery systems are classified based on the types of macrocyclic frameworks involved. Finally, the prospects are pointed out based on the current development of this system.
Contents
1 Introduction
2 Supramolecular drug delivery systems based on cyclodextrins
2.1 Drug-loaded micelles
2.2 Drug-loaded nanoparticles
2.3 Supramolecular prodrug hydrogels
2.4 Photo-controllable drug delivery vehicles
2.5 Vehicles capable of targeted co-delivery of gene and drug
3 Supramolecular drug delivery systems based on calixarenes
3.1 Drug-loaded vesicles
3.2 Multifunctional co-assemblies
3.3 Amphoteric calixarene-based drug delivery vehicles
4 Supramolecular drug delivery systems based on cucurbiturils
4.1 Drug-loaded vesicles
4.2 Drug-loaded nanoparticles
4.3 Drug-loaded crosslinked supramolecular network
4.4 Molecular container-based drug delivery vehicles
5 Supramolecular drug delivery systems based on pillararenes
5.1 Drug-loaded vesicles or micelles
5.2 Supramolecular prodrug nanoparticles
5.3 Self-imaging drug delivery vehicles
6 Conclusion

CLC Number: 

[1] a) Mal N K, Fujiwara M, Tanaka Y. Nature, 2003, 421:350.; (b) Agasti S S, Chompoosor A, You C C, Ghosh P, Kim C K, Rotello V M. J. Am. Chem. Soc., 2009, 131:5728.; (c) Luo Z, Cai K Y, Hu Y, Li J H, Ding X W, Zhang B L, Xu D W, Yang W H, Liu P. Adv. Mater., 2012, 24:431.; (d) Li C H, Liu S Y. Chem. Commun., 2012, 48:3262.
[2] Shaik M R, Korsapati M, Panati D. Int. J. Pharm. Sci., 2012, 2:112.
[3] a) Yang Y W. Med. Chem. Commun., 2011, 2:1033.; (b) Chang Y C, Hou C X, Ren J L, Xin X T, Pei Y X, Lu Y C, Cao S P, Pei Z C. Chem. Commun., 2016, 52:9578.
[4] Guo D S, Yang J, Liu Y. Chem. Eur. J., 2013, 19:8755.
[5] Tu C L, Zhu L J, Li P P, Chen Y, Su Y, Yan D Y, Zhu X Y, Zhou G Y. Chem. Commun., 2011, 47:6063.
[6] Zhang J, Guo D S, Wang L H, Wang Z, Liu Y. Soft Matter., 2011, 7:1756.
[7] Duan Q P, Cao Y, Li Y, Hu X Y, Xiao T X, Lin C, Pan Y, Wang L Y. J. Am. Chem. Soc., 2013, 135:10542.
[8] Barenholz Y. J. Control. Release, 2012, 160:117.
[9] Chen Y, Xu P F, Wu M Y, Meng Q S, Chen H R, Shu Z, Wang J, Zhang L X, Li Y P, Shi J L. Adv. Mater., 2014, 26:4294.
[10] a) Connors K A. Chem. Rev., 1997, 97:1325.; (b) Uekama K, Hirayama F, Irie T. Chem. Rev., 1998, 98:2045.; (c) Harada A. Acc. Chem. Res., 2001, 34:456.; (d) Douhal A. Chem. Rev., 2004, 104:1955.; (e) Crini G. Chem. Rev., 2014, 114:10940.
[11] a) Szejtli J. Chem. Rev., 1998, 98:1743.; (b) Haider J M, Pikramenou Z. Chem. Soc. Rev., 2005, 34:120.; (c) Hu Q D, Tang G P, Chu P K. Acc. Chem. Res., 2014, 47:2017.
[12] Quan C Y, Wu D Q, Chang C, Zhang G B, Cheng S X, Zhang X Z, Zhuo R X. J. Phys. Chem. C, 2009, 113:11262.
[13] Quan C Y, Chen J X, Wang H Y, Li C, Chang C, Zhang X Z, Zhuo R X. ACS Nano, 2010, 4:4211.
[14] a) Mori T, Asakura M, Okahata Y. J. Am. Chem. Soc., 2011, 133:5701.; (b) Wu J J, Zhao Q, Liang C Z, Xie T. Soft Matter, 2013, 9:11136.
[15] Yan Q, Zhang H J, Zhao Y. ACS Macro Lett., 2014, 3:472.
[16] Zhang Z, Ding J X, Chen X F, Xiao C S, He C L, Zhuang X L, Chen L, Chen X S. Polym. Chem., 2013, 4:3265.
[17] Osada K, Cabral H, Mochida Y, Lee S, Nagata K, Matsuura T, Yamamoto M, Anraku Y, Kishimura A, Nishiyama N, Kataoka K. J. Am. Chem. Soc., 2012, 134:13172.
[18] Namgung R, Lee Y M, Kim J, Jang Y, Lee B H, Kim I S, Sokkar P, Rhee Y M, Hoffman A S, Kim W J. Nat. Commun., 2014, 5:3702.
[19] Ha W, Yu J, Song X Y, Chen J, Shi Y P. ACS Appl. Mater. Interfaces, 2014, 6:10623.
[20] a) Izatt R M, Lamb J D, Hawkins R T, Brown P R, Izatt S R, Christsen J J. J. Am. Chem. Soc., 1983, 105:1782.; (b) Ringsdorf H, Schlarb B, Venzmer J. Angew. Chem. Int. Ed., 1988, 27:113.
[21] a) Li H Y, Qian Z M. Med. Res. Rev., 2002, 22:225.; (b) Shigeta K, Kawakami S, Higuchi Y, Okuda T, Yagi H, Yamashita F, Hashida M. J. Control. Release, 2007, 118:262.
[22] Xiao W, Chen W H, Xu X D, Li C, Zhang J, Zhuo R X, Zhang X Z. Adv. Mater., 2011, 23:3526.
[23] a) Vrouwe M G, Pines A, Overmeer R M, Hanada K, Mullenders L H F. J. Cell Sci., 2011, 124:435.; (b) Wang Z Z, Johns V K, Liao Y. Chem. Eur. J., 2014, 20:14637.
[24] Kalka K, Merk H, Mukhtar H. J. Am. Acad. Dermatol., 2000, 42:389.
[25] Samanta S, Beharry A A, Sadovski O, McCormick T M, Babalhavaeji A, Tropepe V, Woolley G A. J. Am. Chem. Soc., 2013, 135:9777.
[26] Wang D S, Wagner M, Butt H J, Wu S. Soft Matter, 2015, 11:7656.
[27] Wang D S, Wu S. Langmuir, 2016, 32:632.
[28] Saad M, Garbuzenko O B, Minko T. Nanomedicine, 2008, 3:761.
[29] Li J M, Wang Y Y, Zhao M X, Tan C P, Li Y Q, Le X Y, Ji L N, Mao Z W. Biomaterials, 2012, 33:2780.
[30] Longley D B, Johnston P G. J. Pathol., 2005, 205:275.
[31] Shukla S, Wu C P, Ambudkar S V. Expert Opin. Drug Metab. Toxicol., 2008, 4:205.
[32] Nair R R, Rodgers J R, Schwarz L A. Mol. Ther., 2002, 5:455.
[33] Blagosklonny M V, Fojo T. Int. J. Cancer, 1999, 83:151.
[34] Nielsen L L, Lipari P, Dell J, Gurnani M, Hajian G. Clin Cancer Res., 1998, 4:835.
[35] Zhao F, Yin H, Li J. Biomaterials, 2014, 35:1050.
[36] a) Calama M C, Timmerman P, Reinhoudt D N. Angew. Chem. Int. Ed., 2000, 39:755.; (b) Kumar R, Lee Y O, Bhalla V, Kumar M, Kim J S. Chem. Soc. Rev., 2014, 43:4824.
[37] a) Ibach S, Prautzsch V, V gtle F, Chartroux C, Gloe K. Acc. Chem. Res., 1999, 32:729.; (b) Wang M X. Acc. Chem. Res., 2012, 45:182.
[38] a) Shinkai S, Araki K, Matsuda T, Nishiyama N, Ikeda H, Takasu I, Iwamoto M. J. Am. Chem. Soc., 1990, 112:9053.; (b) Liu Y, Guo D S, Zhang H Y, Ma Y H, Yang E C. J. Phys. Chem. B, 2006, 110:3428.
[39] a) Hennig A, Bakirci H, Nau W M. Nat. Methods, 2007, 4:629.; (b) Nau W M, Ghale G, Hennig A, Bakirci H, Bailey D M. J. Am. Chem. Soc., 2009, 131:11558.
[40] Klaikherd A, Nagamani C, Thayumanavan S. J. Am. Chem. Soc., 2009, 131:4830.
[41] a) Beck J B, Rowan S J. J. Am. Chem. Soc., 2003, 125:13922.; (b) Oishi M, Nakamura T, Jinji Y, Matsuishi K, Nagasaki Y. J. Mater. Chem., 2009, 19:5909.
[42] a) Lee M, Lee S J, Jiang L H. J. Am. Chem. Soc., 2004, 126:12724.; (b) Li Y T, Lokitz B S, McCormick C L. Angew. Chem. Int. Ed., 2006, 45:5792.
[43] Wang K, Guo D S, Wang X, Liu Y. ACS Nano, 2011, 5:2880.
[44] a) Yang Z M, Liang G L, Xu B. Acc. Chem. Res., 2008, 41, 315.; (b) Azagarsamy M A, Sokkalingam P, Thayumanavan S. J. Am. Chem. Soc., 2009, 131:14184.; (c) Chien M P, Rush A M, Thompson M P, Gianneschi N C. Angew. Chem. Int. Ed., 2010, 49:5076.
[45] Guo D S, Wang K, Wang Y X, Liu Y. J. Am. Chem. Soc., 2012, 134:10244.
[46] Mo J, Eggers P K, Yuan Z X, Raston C L, Lim L Y. Sci. Rep., 2016, 6:23489.
[47] a) Elsabahy M, Wooley K L. Chem. Soc. Rev., 2012, 41:2545.; (b) Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P. Chem. Soc. Rev., 2013, 42:1147.
[48] a) Mitragotri S, Lahann J. Adv. Mater., 2012, 24:3717.; (b) Chen L M, Zhao X, Lin Y, Huang Y B, Wang Q. Chem. Commun., 2013, 49:9678.
[49] Zhang X, Wang C. Chem. Soc. Rev., 2011, 40:94.
[50] a) De Mendoza J, Cuevas F, Prados P, Meadows E S, Gokel G W. Angew. Chem. Int. Ed., 1998, 37:1534.; (b) Seganish J L, Santacroce P V, Salimian K J, Fettinger J C, Zavalij P, Davis J T. Angew. Chem. Int. Ed., 2006, 45:3334.
[51] Wang Y X, Zhang Y M, Wang Y L, Liu Y. Chem. Mater., 2015, 27:2848.
[52] Wang Y X, Guo D S, Duan Y C, Wang Y J, Liu Y. Sci. Rep., 2015, 5:9019.
[53] Xue Y, Guan Y, Zheng A N, Xiao H N. Colloids Surf. B, 2013, 101:55.
[54] Yu X Q, Zipp G L, Ray Davidson G W. Pharm. Res., 1994, 11:522.
[55] Lee J W, Samal S, Selvapalam N, Kim H J, Kim K. Acc. Chem. Res., 2003, 36:621.
[56] Ni X L, Xiao X, Cong H, Zhu Q J, Xue S F, Tao Z. Acc. Chem. Res., 2014, 47:1386.
[57] Park K M, Lee D W, Sarkar B, Jung H, Kim J, Ko Y H, Lee K E, Jeon H, Kim K. Small, 2010, 6:1430.
[58] a) Tuncel D, Demir H V. Nanoscale., 2010, 2:484.; (b) Ibrahimova V, Ekiz S, Gezici O, Tuncel D. Polym. Chem., 2011, 2:2818.
[59] Fischer I, Kaeser A, Peters-Gumbs M A M, Schenning A P H J. Chem. Eur. J., 2013, 19:10928.
[60] Pennakalathil J, Jahja E, Özdemir E S, Konu Ö, Tuncel D. Biomacromolecules, 2014, 15:3366.
[61] Meng F H, Hennink W E, Zhong Z Y. Biomaterials, 2009, 30:2180.
[62] Zhao J, Chen C J, Li D D, Liu X S, Wang H B, Jin Q, Ji J. Polym. Chem., 2014, 5:1843.
[63] a) Xiao D, Jia H Z, Zhang J, Liu C W, Zhuo R X, Zhang X Z. Small, 2014, 10:591.; (b) Bai L, Wang X H, Song F, Wang X L, Wang Y Z. Chem. Commun., 2015, 51:93.
[64] Li Q L, Xu S H, Zhou H, Wang X, Dong B, Gao H, Tang J, Yang Y W. ACS Appl. Mater. Interfaces, 2015, 7:28656.
[65] Irie M. J. Am. Chem. Soc., 1983, 105:2078.
[66] Loontiens F G, Regenfuss P, Zeche A, Dumortier L, Clegg R M. Biochemistry, 1990, 29:9029.
[67] Latt S A, Stetten G. J. Histochem. Cytochem., 1976, 24:24.
[68] Barooah N, Mohanty J, Pal H, Bhasikuttan A C. Phys. Chem. Chem. Phys., 2011, 13:13117.
[69] Carvalho C P, Uzunova V D, da Silva J P, Nau W M, Pischel U. Chem. Commun., 2011, 47:8793.
[70] Alcindor T, Beauger N. Current Oncology, 2011, 18:1.
[71] Cao L P, Hettiarachchi G, Briken V, Isaacs L. Angew. Chem., 2013, 125:12255.
[72] a) Ogoshi T, Kanai S, Fujinami S, Yamagishi T A, Nakamoto Y. J. Am. Chem. Soc., 2008, 130:5022.; (b) Yu G C, Zhang Z B, Han C Y, Xue M, Zhou Q Z, Huang F H. Chem. Commun., 2012, 48:2958.; (c) Wei P F, Yan X Z, Li J Y, Ma Y J, Huang F H. Chem. Commun., 2013, 49:1070.; (d) Li C J. Chem. Commun., 2014, 50:12420.; (e) Dong S Y, Yuan J Y, Huang F H. Chem. Sci., 2014, 5:247.; (f) Shi B B, Jie K C, Zhou Y J, Xia D Y, Yao Y. Chem. Commun., 2015, 51:4503.; (g) Chen P P, Mondal J H, Zhou Y J, Zhu H T Z, Shi B B. Polym. Chem., 2016, 7:5221.; (h) Xing H, Shi B B. Polym. Chem., 2016, 7:6159.; (i) Hua B, Shao L, Yu G C, Huang F H. Chem. Commun., 2016, 52:10016.
[73] a) Ji X F, Chen J Z, Chi X D, Huang F H. ACS Macro Lett., 2014, 3:110.; (b) Yao Y, Wang Y, Huang F H. Chem. Sci., 2014, 5:4312.; (c) Yang J, Yu G C, Xia D Y, Huang F H. Chem. Commun., 2014, 50:3993.
[74] Wu X, Li Y, Lin C, Hu X Y, Wang L Y. Chem. Commun., 2015, 51:6832.
[75] a) Yu G C, Yu W, Mao Z W, Gao C Y, Huang F H. Small, 2015, 11:919.; (b) Meng L B, Zhang W Y, Li D Q, Li Y, Hu X Y, Wang L Y, Li G G. Chem. Commun., 2015, 51:14381.; (c) Shi B B, Jie K C, Zhou Y J, Zhou J, Xia D Y, Huang F H. J. Am. Chem. Soc., 2016, 138:80.
[76] Hu X Y, Liu X, Zhang W Y, Qin S, Yao C H, Li Y, Cao D R, Peng L M, Wang L Y. Chem. Mater., 2016, 28:3778.
[77] a) Al-Ahmady Z S, Al-Jamal W T, Bossche J V, Bui T T, Drake A F, Mason A J, Kostarelos K. ACS Nano, 2012, 6:9335.; (b) Moitra P, Kumar K, Kondaiah P, Bhattacharya S. Angew. Chem. Int. Ed., 2014, 53:1113.(Angew. Chem., 2014, 126:1131.)
[78] Chang Y C, Yang K, Wei P, Huang S S, Pei Y X, Zhao W, Pei Z C. Angew. Chem. Int. Ed., 2014, 53:13126.
[79] a) Montenaygarestier T, Helene C. Nature, 1968, 217:844.; (b) Zhang X, Zhang Z J, Xu X H, Li Y K, Li Y C, Jian Y T, Gu Z W. Angew. Chem. Int. Ed., 2015, 54:4289.
[80] Zeman S M, Phillips D R, Crothers D M. Proc. Natl. Acad. Sci. U. S. A., 1998, 95:11561.
[81] Yang K, Chang Y C, Wen J, Lu Y C, Pei Y X, Cao S P, Wang F, Pei Z C. Chem. Mater., 2016, 28:1990.
[82] Cao Y, Li Y, Hu X Y, Zou X C, Xiong S H, Lin C, Wang L Y. Chem. Mater., 2015, 27:1110.
[83] a) Yu G C, Tang G P, Huang F H. J. Mater. Chem. C, 2014, 2:6609.; (b) Bai W, Wang Z Y, Tong J Q, Mei J, Qin A J, Sun J Z, Tang B Z. Chem. Commun., 2015, 51:1089.; (c) Zhou J, Yu G C, Huang F H. J. Mater. Chem. B, 2016, 4:7761.; (d) Yu G C, Cook T R, Li Y, Yan X Z, Wu D, Shao L, Shen J, Tang G P, Huang F H, Chen X Y, Stang P J. Proc. Natl. Acad. Sci. U. S. A., 2016, 113:13720.
[84] Yu G C, Wu D, Li Y, Zhang Z H, Shao L, Zhou J, Hu Q L, Tang G P, Huang F H. Chem. Sci., 2016, 7:3017.
[85] Yu G C, Zhao R, Wu D, Zhang F W, Shao L, Zhou J, Yang J, Tang G P, Chen X Y, Huang F H. Polym. Chem., 2016, 7:6178.
[1] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[2] Li Geng, Li Jie, Jiang Hongyu, Liang Xiaozhong, Guo Kunpeng. Mechano-Responsive Luminescent Polymers [J]. Progress in Chemistry, 2022, 34(10): 2222-2238.
[3] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.
[4] Yifan Xue, Wenhui Meng, Runze Wang, Junjie Ren, Weili Heng, Jianjun Zhang. Supersaturation Theory and Supersaturating Drug Delivery System(SDDS) [J]. Progress in Chemistry, 2020, 32(6): 698-712.
[5] Tianxi He, Wenbin Wang, Jiu Wang, Boshui Chen, Qionglin Liang. Mesoporous Carbon Spheres: Synthesis and Applications in Drug Delivery System [J]. Progress in Chemistry, 2020, 32(2/3): 309-319.
[6] Yao-Hua Liu, Yu Liu. Photo-Controlled Supramolecular Assemblies Based on Azo Group [J]. Progress in Chemistry, 2019, 31(11): 1528-1539.
[7] Jie Tang, Renfa Liu, Zhifei Dai*. Multifunctional Liposomal Drug Delivery Technology [J]. Progress in Chemistry, 2018, 30(11): 1669-1680.
[8] Juan Shen, Yang Zhu, Hongdong Shi, Yangzhong Liu. Multifunctional Nanodrug Delivery Systems for Platinum-Based Anticancer Drugs [J]. Progress in Chemistry, 2018, 30(10): 1557-1572.
[9] Yu Jing, Ha Wei, Shi Yanping. Intelligent Hydrogel-Based Dual Drug Delivery System [J]. Progress in Chemistry, 2015, 27(11): 1640-1648.
[10] Liu Jingjing, Chu Huijuan, Wei Hongliang, Zhu Hongzheng, Zhu Jing, He Juan. Progress in Graphene-Based Hydrogels [J]. Progress in Chemistry, 2015, 27(11): 1591-1603.
[11] Su Dan, Di Feng, Xing Ji, Che Jianfei, Xiao Yinghong. Application of Conducting Polymers in Controlled Drug Delivery System [J]. Progress in Chemistry, 2014, 26(12): 1962-1976.
[12] Zhao Jun, Huang Renliang, Qi Wei, Wang Yuefei, Su Rongxin, He Zhimin. Self-Assembly of Diphenylalanine Based Peptides:Molecular Design, Structural Control and Applications [J]. Progress in Chemistry, 2014, 26(09): 1445-1459.
[13] Li Yan, Huang Wei, Huang Ping, Zhu Xinyuan, Yan Deyue. Anti-Cancer Drug Delivery System [J]. Progress in Chemistry, 2014, 26(08): 1395-1408.
[14] Han Bin, Liao Xiali, Yang Bo. Targeted Drug Delivery Systems Based on Cyclodextrins [J]. Progress in Chemistry, 2014, 26(06): 1039-1049.
[15] Xiong Yuting, Li Minmin, Xiong Peng, Yang Meng, Qing Guangyan, Sun Taolei. Artificial Carbohydrate Receptors in Aqueous Media [J]. Progress in Chemistry, 2014, 26(01): 48-60.