中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (11): 1846-1868 DOI: 10.7536/PC200683 Previous Articles   

• Review •

Malic acid——A Versatile Chiral Building Block in the Enantioselective Total Synthesis of Natural Products and in Synthetic Methodologies

Luo Shipeng1,3, Huang Peiqiang2,3,**()   

  1. 1. School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
    2. iChEM(Collaborative Innovation Center of Chemistry for Energy Materials), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
    3. Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, Xiamen 361005, China
  • Received: Revised: Online: Published:
  • Contact: Huang Peiqiang
  • Supported by:
    This work was supported by the National Key R&D Program of China(2017YFA0207302); the National Natural Science Foundation of China(21672176, 21931010); the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT) of the Ministry of Education, China.()
Richhtml ( 25 ) PDF ( 795 ) Cited
Export

EndNote

Ris

BibTeX

Building block-approach is one of the basic strategies used by nature in biogenetic synthesis. Naturally occurring L-α-amino acids, L-α-hydroxy acids, D-mono-sugars, and terpenes, being cheap and easily available in enantiopure forms, have found widespread applications enantioselective synthesis as chiral building blocks. L-Malic acid, an L-α-hydroxy diacid, is a readily available and cheap natural chiron, D-malic acid is also commercially available although it is more expensive. With all of the four carbon atoms transformable or functionalizable, malic acid serves as a versatile C4 building block in organic synthesis for enantioselective synthesis. In this review, the progress in the applications of malic acid in organic synthesis is summarized. Firstly, the transformations of malic acid into a variety of advanced chiral C4 building blocks are compiled. Secondly, selected examples on the applications of these versatile intermediates in the total synthesis of complex natural products in recent years are presented. Besides, the developments of malic acid-based new synthetic methodologies including the contribution from one of the authors’ laboratory are highlighted. An outlook for future development of malic acid-based synthetic strategy is provided.

Contents

1 Introduction

2 Classical transformations of L-malic acid

3 Application of L-malic acid in the enantioselective total syntheses of natural products

3.1 Total Syntheses based on 1b-related building blocks

3.2 Total Syntheses based on 1i-related building blocks

3.3 Total Syntheses based on 1m-related building blocks

3.4 Total Syntheses based on 1r-related building blocks

4 New synthetic methodologies based on malic acid

5 Malimide-based asymmetric synthetic methodologies

6 Conclusion and outlook

Fig.1 The structures of three natural organic small molecule used in the total synthesis of natural products.
Scheme 1 Overview of important building blocks from L-malic acid and their conversions. TIPBSI=Triisopropyl benzylsulfonyl imid.=imidazole
Scheme 2 Shair’s retrosynthetic analysis of lomaiviticins A, B
Scheme 3 Shair’s synthesis of C4-epi-lomaiviticins’ core HOTT=S-(1-oxido-2-pyridinyl) 1,1,3,3-tetramethylthiouronium hexafluorophosphate
Scheme 4 Maier’s synthesis of C1~C12 fragment of gulmirecin B
Scheme 5 Denmark’s total synthesis of(+)-brasilenyne
Scheme 6 She’s total sythesis of(-)-bitungolide F
Scheme 7 Yadav’s total synthesis of(-)-achaetolide
Scheme 8 Retrosynthetic analysis of(-)-marinisporolide C
Scheme 9 Dias’s total synthesis of(-)-marinisporolide C
Scheme 10 Unified strategy for the syntheses of alotaketals A~D and(-)-phorbaketal A
Scheme 11 Tong’s total syntheses of (-)-alotaketal A and(-)-phorbaketal A
Scheme 12 Yin’s formal synthesis of fostriencin(CI-920)
Scheme 13 Song’s synthesis of fragment 88 for bryostatin 8
Scheme 14 Song’s total synthesis of bryostatin 8
Scheme 15 Retrosynthetic analysis of mandelalide A
Scheme 16 Carter’s total synthesis of mandelalide A
Scheme 17 Jia’s total synthesis of ht-13-A
Scheme 18 Paterson’s retrosynthetic analysis of spirastrellolide A methyl ester
Scheme 19 Synthesis of C43-C37 segment
Scheme 20 Synthesis of C17-C25 segment
Scheme 21 Synthesis of C1-C11 fragment
Scheme 22 Paterson’s total synthesis of spirastrellolide A methyl ester
Scheme 23 Igglessi-Markopoulou’s and Schobert’s methods for the synthesis of α-acyl tetronic acids
Scheme 24 Kobayashi’s total synthesis of (-)-dysibetaine
Scheme 25 Qin’s total synthesis of(-)-lundurine A
Scheme 26 Tamura’s total synthesis of grandisine D
Scheme 27 Huang’s chemo- and regioselective tandem reaction for the direct conversion of O-tosyl malate malate to chiral 1,3-diols
Scheme 28 Mechanism for Huang’s tandem reaction of O-tosyl malate
Scheme 29 Huang’s retrosynthetic analysis of sex pheromones of pine sawflies
Scheme 30 Chandrasekhar’s total synthesis of 6-epi-prelactong-V
Scheme 31 Huang’s synthesis and regio- and stereoselective reductive alkylations of malimide building blocks
Scheme 32 The first total synthesis of(+)-preussin B by Huang
Scheme 33 The syntheses of C-4 substitute-O-benzyl malimide derivatives
Scheme 34 Yoda’s total synthesis of amphiasterin B4
Scheme 35 Structures of alkaloids oxyprotostemonine and 1-hydroxyprotostemonine
Scheme 36 Attempted synthesis of an intermediate for 1-hydroxyprotostemonine
Scheme 37 Pyne’s synthesis of a model compound for 1-hydroxyprotostemonine
Scheme 38 WuXi AppTec’s synthesis of anti-cancer pyrrolidines based on Huang’s building block
Scheme 39 Merck’s synthesis of LRRK2 kinase inhibitor 229 based on Huang’s building block
[1]
Newman D, J, Cragg G M. J. Nat. Prod., 2020, 83: 770.
[2]
Nicolaou K, C, Vourloumis, D, Winssinge, N, Baran P S. Angew. Chem. Int. Ed., 2000, 39: 44.
[3]
Huang, P Q.“Principles for Synthetic Efficiency and Expansion of the Field” in Efficiency in Natural Product Total Synthesis. Eds: Huang P Q, Yao Z J, Hsung R P.(Forwarded by Wong H N C), 1st ed, John Wiley & Sons: Hoboken N J., 2018, Chapter 1, 27.
[4]
(a) Poupon E, Nay B. Wiley-VCH, Weinheim, 2011, 2: 956.;(b) 黄婷婷(Huang T), 周子画(Zhou Z), 刘琦(Liu Q), 王晓政(Wang X), 郭文丽(Guo W), 林双君(Lin S). 化学进展(Progress in Chemistry), 2018, 30(5): 692.
[5]
Dewick, P M. Medicinal Natural Products: A Biosynthetic Approach. 3rd ed. John Wiley and Sons: Chichester, 2009.
[6]
(a) Hanessian S. Acc. Chem. Res., 1979, 12: 159.;(b) Hanessian S. Total Synthesis of Natural Products: The “Chiron Approach”. Pergamon: Oxford, 1983.
[7]
李武(Li W), 汪俊洁(Wang J), 马大为(Ma D). 化学进展(Progress in Chemistry), 2019, 31(11): 1460.;(b) Brill Z G, Condakes M L, Ting C P, Maimone T J. Chem. Rev., 2017, 117: 11753.;(c) Bhat C, Tilve S G. RSC Adv., 2014, 4: 5405.;(d) Haleema S, Sasi P V, Ibnusaud I, Polavarapu P L, Kagan H B. RSC Adv., 2012, 2: 9257.;(e) 黄培强(Huang P Q). 有机化学(Chinese Journal of Organic Chemistry), 1999, 19: 364.
[8]
本课题组此前的总结见:(a) Huang P Q. “Recent Advances on the Asymmetric Synthesis of Bioactive 2-Pyrrolidinone-Related Compounds Starting From Enantiomeric Malic Acid”, In New Methods for the Asymmetric Synthesis of Nitrogen Heterocycles; Eds: Vicario J L, Badia D, Carrillo L. Research Signpost: Kerala, 2005, 197.;(b) Huang P Q. Synlett, 2006, 1133.;(c) Wang A E, Huang P Q. Pure Appl. Chem., 2014, 86: 1227.
[9]
For other reviews on the use of both enantiomers of malic acid as, chirons, see:(a) Coppola G M, Schuster H F. α-Hydroxy Acids in Enantioselective Synthesis; Wiley-VCH: Weinheim, 1997; Chapter 3, pp. 167-312.;(b) Gawronski J, Gawronska K. Tartaric and Malic Acids in Synthesis: A Source Book of Building Blocks, Ligands, Auxiliaries, and Resolving Agents; Wiley: New York, 1999.
[10]
(a) Seebach D, Wasmuth D. Helv. Chim. Acta, 1980, 63: 197.;(b) 林国强(Lin G Q), 孙兴文(Sun X W), 陈耀全(Chen Y Q), 李月明(Li Y M), 陈新滋(Chen X Z), 陈凯先(Chen K X). 手性合成——不对称反应及其应用(Chiral Synthesis: Asymmetric Reaction and Its Application). 北京:科学出版社(Beijing: Science Press), 2013.
[11]
Hanessian, S, Ugolini, A, Dubé, D, Glamya A. Can. J. Chem., 1984, 2146.
[12]
(a) Guindon Y, Yoakim C, Bernstein M A, Morton H E. Tetrahedron Lett., 1985, 26: 1185.;(b) Yadav J S, Gopala Rao Y, Ravindar K, Subba R B V, Narsaiah A V. Synthesis, 2009, 3157.
[13]
Glebocka, A, Sicinski R, R, Plum L, A, DeLuca H L. J. Steroid Biochem. Mol. Biol., 2013, 136: 39.
[14]
Hara, Y, Honda, T, Arakawa, K, Ota, K, Kamaike, K, Miyaoka H. J. Org. Chem., 2018, 83: 1976.
[15]
(a) Hashimoto M, Yanagiya M, Okuno T, Shirahama H. Bull. Chem. Soc. Jpn., 1989, 62: 2751.;(b) Dutton F E, Lee B H. Tetrahedron Lett., 1998, 39: 5313.;(c) Dutton F E, Lee B H, Johnson S S, Coscarelli E M, Lee P H. J. Med. Chem., 2003, 46: 2057.
[16]
Benson, S, Collin M, P, Arlt, A, Gabor, B, Goddard, R, Furstner A. Angew. Chem. Int. Ed., 2011, 50: 8739.
[17]
(a) Trybulski E J, Kramss R H, Mangano R M, Brabander H J, Francisco G. Bioorg. Med. Chem. Lett., 1992, 2: 827.;(b) White J D, Hrnciar P. J. Org. Chem., 2000, 65: 9129.
[18]
(a) Seiki S, Takashi H, Masami I, Ryosuke N, Toshikazu F, Seiya N, Toshio M. Chem. Lett., 1984, 1389.;(b) Saito S, Ishikawa T, Kuroda A, Koga K, Moriwake T. Tetrahedron, 1992, 48: 4067.
[19]
Ley S, V, Gaunt M, J, Jessiman A, S, Orsini, P, Tanner H, R, Hook D F. Org. Lett., 2003, 5: 4819.
[20]
(a) Yakura T, Ueki A, Kitamura T, Tanaka K, Nameki M, Ikeda M. Tetrahedron, 1999, 55: 7461.;(b) Zhou Q R, Wei X Y, Li Y Q, Huang D, Wei B G. Tetrahedron, 2014, 70: 4799.
[21]
Ghosh, S, Kumar S, U, Shashidhar J. J. Org. Chem., 2008, 73: 1582.
[22]
(a) Curran D, Zhang K. Synlett, 2010, 667.;(b) Sudina P R, Motati D R, Seema A. J. Nat. Prod., 2019, 81: 1399.
[23]
(a) Hayashi Y, Yamaguchi J, Shoji M. Tetrahedron, 2002, 58: 9839.;(b) Ogawa N, Tojo T, Kobayashi Y. Tetrahedron Lett., 2014, 55: 2738.;(c) Hattori H, Mitsunaga T, Clive D L J. Tetrahedron Lett., 2019, 60: 1989.
[24]
Mitsunobu O., Synthesis, 1981, 1.
[25]
Rengarasu, R, Maier M E. Synlett, 2019, 30: 1346.
[26]
Scott, E, Denmark S, E, Yang S M. J. Am. Chem. Soc., 2004, 126: 12432.
[27]
Su, Y, Xu Y, Han J, Zheng J, Qi J, Jiang T, Pan X, She X. J. Org. Chem. 2009, 74: 2743.
[28]
Sabitha, G, Srinivas, R, Yadav J S. Synthesis, 2011, 3343.
[29]
(a) Dias L C, de Lucca E C. Org. Lett., 2015, 17: 6278.;(b) Dias L C, de Lucca E C. J. Org. Chem., 2017, 82: 3019.
[30]
Cheng, H, Zhang, Z, Yao, H, Zhang, W, Yu, J, Tong R. Angew. Chem. Int. Ed., 2017, 56: 9096.
[31]
Zhang H, J, Yin L. J. Am. Chem. Soc., 2018, 140: 12270.
[32]
Zhang Y, B, Guo Q, Y, Sun X, W, Lu, J, Cao Y, J, Pu, Q, Chu Z, W, Gao, L, Song Z L. Angew. Chem. Int. Ed., 2018, 57: 942.
[33]
Veerasamy, N, Ghosh, A, Li, J, Watanabe, K, Serrill J, D, Ishmael J, E, McPhail K, L, Carter R G. J. Am. Chem. Soc., 2016, 138: 770.
[34]
Tao, P, Zhuang C, Z, Jia Y. Chem. Commun., 2016, 52: 11300.
[35]
Shair M, D, Lee A S. Org. Lett., 2013, 15: 2390.
[36]
Ando, K, Oishi, T, Hirama, M, Ohno, H, Ibuka T. J. Org. Chem., 2000, 65: 4745.
[37]
Zhu, J, Klunder A J, H, Zwanenburg B. Tetrahedron, 1995, 51: 5099.
[38]
Surup, F, Viehrig, K, Mohr K, I, Herrmann, J, Jansen, R, Müller R. Angew. Chem. Int. Ed., 2014, 53: 13588.
[39]
(a) Corey E J, Fuchs P L. Tetrahedron Lett., 1972, 36: 3769.;(b) Smith A B III, Chen S S Y, Nelson F C, Reichert J M, Salvatore B A. J. Am. Chem. Soc., 1997, 119: 10935.
[40]
(a) Wipf P, Jahn H. Tetrahedron, 1996, 52: 12853.;(b) Huang Z, Negishi E I. Org. Lett., 2006, 8: 3675.;(c) Zhao Y, Snieckus V. Org. Lett., 2014, 16: 390.
[41]
Kinnel R, B, Dieter R, K, Meinwald, J, Engen D, V, Clardy, J, Eisner, T, Stallard M, O, Fenical W. Proc. Natl. Acad. Sci. U. S. A., 1979, 76: 3576.
[42]
Johnson W, S, Elliott, R, Elliott J D. J. Am. Chem. Soc., 1983, 105: 2904.
[43]
Nicolaou K, C, Marron B, E, Veale C, A, Webber S, E, Serhan C N. J. Org. Chem., 1989, 54: 5527.
[44]
(a) Brown H C, Bhat K S, Randad R S. J. Org. Chem., 1989, 54: 1570.;(b) Racherla U S, Brown H C. J. Org. Chem., 1991, 56: 401.
[45]
(a) Fox H H, Yap K B, Robbins J, Cai S, Schrock R R. Inorg. Chem., 1992, 31: 2287.;(b) Schrock R R, Murdzek J S, Bazan G C, Robbins J, DiMare M, O’Regan M. J. Am. Chem. Soc., 1990, 112: 3875.
[46]
Beck, G, Jendralla, H, Kesseler K. Synthesis, 1995, 1014.
[47]
(a) Myers A G, Yang B, Chen H, Mckinstry L, Kopecky D J, Gleason J L. J. Am. Chem. Soc., 1997, 119: 6496.;(b) Myers A G, Yang B H, Chen H, Kopecky D J. Synlett, 1997, 457.
[48]
(a) Crimmins M T, King B W, Tabet E A. J. Am. Chem. Soc., 1997, 119: 7883.;(b) Crimmins M T, King B W, Tabet E A, Chaudhary K. J. Org. Chem., 2001, 66: 894.
[49]
(a) Evans D A, Bartroli J, Shih T L. J. Am. Chem. Soc., 1981, 103: 2127.;(b) Evans D A, Nelson J V, Vogel E, Taber T R. J. Am. Chem. Soc., 1981, 103: 3099.
[50]
Drä, ger G, Kirschning, A, Thiericke, R, Zerlin M. Nat. Prod. Rep., 1996, 13: 365.
[51]
(a) Alvarez-Ibarra C, Arias S, Gabriel B M, Fernández M J, Rodríguez M, Sinisterra V. J. Chem. Soc. Chem. Commun., 1987, 1509.;(b) Paterson I, Yeung K S, Smail J B. Synlett, 1993, 774.
[52]
Inanaga, J, Hirata, K, Saeki, H, Katsuki, T, Yamaguchi M. Bull. Chem. Soc. Jpn., 1979, 52: 1989.
[53]
Kwon H, C, Kauffman C, A, Jensen P, R, Fenical W. J. Org. Chem., 2009, 74: 675.
[54]
Blakemore P, R, Cole W, J, Kocieski P, J, Morley A. Synlett, 1998, 26.
[55]
Parikh J, Pm, Doering W E. J. Am. Chem. Soc. 1967, 89: 5505.
[56]
Chow K Y, K, Bode J W. J. Am. Chem. Soc., 2004, 126: 8126.
[57]
Zhang, W, Yao, H, Yu, J, Zhang, Z, Tong R. Angew. Chem. Int. Ed., 2017, 56: 4787.
[58]
(a) Li D, Zhao Y, Ye L, Chen C, Zhang J. Synthesis, 2010, 3325.;(b) Chavez D E, Jacobsen E N. Angew. Chem. Int. Ed., 2001, 40, 3667.;(c) Esumi T, Okamoto N, Hatakeyama S. Chem. Commun., 2002, 3042.;(d) Miyashita K, Ikejiri M, Kawasaki H, Maemura S, Imanishi T. J. Am. Chem. Soc., 2003, 125, 8238.;(e) Robles O, McDonald F E. Org. Lett., 2009, 11, 5498.
[59]
Schwartz G, K, Shah M A. J. Clin. Oncol., 2005, 23: 9408.
[60]
Wullschleger C, W, Gertsch, J, Altmann K. Org. Lett., 2010, 12: 1120.
[61]
Tamao, K, Sumitani, K, Kumada M. J. Am. Chem. Soc., 1972, 94: 4374.
[62]
Gao, L, Lu, J, Lin X, L, Xu Y, J, Yin Z, P, Song Z L. Chem. Commun., 2013, 49: 8961.
[63]
Okazoe, T, Takai, K, Utimoto K. J. Am. Chem. Soc., 1987, 109: 951.
[64]
Lu, J, Song Z, L, Zhang Y, B, Gan Z, B, Li H Z. Angew. Chem. Int. Ed., 2012, 51: 5367.
[65]
Sikorska, J, Hau A, M, Anklin, C, Parker-Nance, S, Davies-Coleman M, T, Ishmael J, E, McPhail K L. J. Org. Chem., 2012, 77: 6066.
[66]
Willwacher, J, Fürstner A. Angew. Chem. Int. Ed., 2014, 53: 4217.
[67]
(a) Mahapatra S, Carter R G. Angew. Chem., Int. Ed., 2012, 51: 7948.;(b) Mahapatra S, Carter R G. J. Am. Chem. Soc., 2013, 135: 10792.
[68]
Taguchi, T, Kitagawa, O, Morikawa, T, Nishiwaki, T, Uehara, H, Endo, H, Kobayashi Y. Tetrahedron Lett., 1986, 27: 6103.
[69]
Petasis N, A, Bzowej E I. J. Am. Chem. Soc., 1990, 112: 6392.
[70]
Kamigauchi, T, Yasui M. PCT Int. Appl., WO 2000059909, 2000.
[71]
Tao, P, Jia Y. Chem. Commun., 2014, 50: 7367.
[72]
Williams D, E, Roberge, M, Soest R, V, Andersen R J. J. Am. Chem. Soc., 2003, 125: 5296.
[73]
(a) Paterson I, Maltas P, Dalby S M, Lim J H, Anderson E A. Angew. Chem. Int. Ed., 2012, 51: 2749.;(b) Paterson I, Anderson E A, Dalby S M, Lim J H, Maltas P. Org. Biomol. Chem., 2012, 10: 5861.;(c) Paterson I, Anderson E A, Dalby S M, Lim J H, Maltas P. Org. Biomol. Chem. 2012, 10: 5873.
[74]
Uenishi, J, Kawahama, R, Yonemitsu, O, Tsuji J. J. Org. Chem., 1996, 61: 5716.
[75]
Scott W, J, Stille J K. J. Am. Chem. Soc., 1986, 108: 3033.
[76]
Nakata, T, Tanaka, T, Oishi T. Tetrahedron Lett., 1983, 24: 2653.
[77]
Hosomi, A, Sakurai H. Tetrahedron Lett., 1976, 17: 1295.
[78]
Mitsos C, A, Zografos A, L, Igglessi-Markopoulou O. J. Org. Chem., 2000, 65: 5852.
[79]
Schobert, R, Jagusch C. Synthesis, 2005, 2421.
[80]
Nomura, K, Hori, K, Arai, M, Yoshii E. Chem. Pharm. Bull., 1986, 34: 5188.
[81]
Isaacson, J, Kobayashi Y. Angew. Chem. Int. Ed., 2009, 48: 1845.
[82]
Song Q, Y, Yang B, L, Tian S K. J. Org. Chem., 2007, 72: 5407.
[83]
Zheng, X, Feng C, G, Ye J, L, Huang P Q. Org. Lett., 2005, 7: 553.
[84]
Jin, S, Gong, J, Qin Y. Angew. Chem. Int. Ed., 2015, 54: 2228.
[85]
Simmons H, E, Smith R D. J. Am. Chem. Soc., 1958, 80: 5323.
[86]
Carroll A, R, Arumugan, G, Quinn R, J, Redburn, J, Guymer, G, Grimshaw P. J. Org. Chem., 2005, 70: 1889.
[87]
Kurasaki, H, Okamoto, I, Morita, N, Tamura O. Chem. Eur. J., 2009, 15: 12754.
[88]
Myers E, L, de Vries J, G, Aggarwal V K. Angew. Chem., 2007, 119: 1925.
[89]
Huang P, Q, Lan H, Q, Zheng, X, Ruan Y P. J. Org. Chem., 2004, 69: 3964.
[90]
Zheng J, F, Lan H, Q, Yang R, F, Peng Q, L, Xiao Z, H, Tuo S, C, Hu K, Z, Xiang Y, G, Wei, Z, Zhang, Z, Huang P Q. Helv. Chim. Acta, 2012, 95: 1799.
[91]
Chandrasekhar, S, Rambabu, C, Prakash S J. Tetrahedron Lett., 2006, 47: 1213.
[92]
(a) Huang P Q, Fei X S, Zheng H. Chin. Chem. Lett., 1995, 6: 739.;(b) Huang P Q, Wang S L, Zheng H, Fei X S. Tetrahedron Lett., 1997, 38: 271.;(c) Huang P Q, Wang S L, Ye J L, Ruan Y P, Huang Y Q, Zheng H, Gao J X. Tetrahedron, 1998, 54: 12547.
[93]
Ye J, L, Huang P, Q, Lu X. J. Org. Chem., 2007, 72: 35.
[94]
Wang Y, H, Ou, W, Xie, L, Ye J, L, Huang P Q. Asian J. Org. Chem., 2012, 1: 359.
[95]
Sengoku, T, Suzuki, T, Kakimoto, T, Takahashi, M, Yoda, H, Tetrahedron, 2009, 65: 2415.
[96]
Takahashi, M, Suzuki, T, Wierzejska, J, Sengoku, T, Yoda H. Tetrahedron Lett., 2010, 51: 6767.
[97]
Baird M, C, Pyne S, G, Ung A, T, Lie, W, Sastraruji, T, Jatisatienr, A, Jatisatienr, C, Dheeranupattana, S, Lowlam, J, Boonchalermkit, S, Heterocycles, 2012, 84: 473.
[98]
Huang P, Q, Geng, H, Tian Y, S, Peng Q, R, Xiao K J. Sci. China Chem., 2015, 58: 478.
[99]
(a) Xiao K J, Luo J M, Ye K Y, Wang Y, Huang P Q. Angew. Chem. Int. Ed., 2010, 49: 3037.;(b) Xiao K J, Wang Y, Ye K Y, Huang P Q. Chem. Eur. J., 2010, 16: 12792.
[100]
Xu C, P, Xiao Z, H, Zhuo B, Q, Wang Y, H, Huang P Q. Chem. Commun., 2010, 46: 7834.
[101]
(a) Chen Y. Chem. Eur. J., 2019, 25: 3405.;(b) He Z T, Hartwig J F. Nature Commun., 2019, 10: 4083.
[102]
Meng W, H, Wu T, J, Zhang H, K, Huang P, Q, Tetrahedron: Asymmetry, 2004, 15: 3899.
[103]
黄实验室近期由苹果酸方法学研究激发的代表性N-α-位C—C键形成新方法:(a) Xu Z, Wang X G, Wei Y H, Ji K L, Zheng J F, Ye J L, Huang P Q. Org. Lett. 2019, 21: 7587.;(b) Chen H, Huang Y H, Ye J L, Huang P Q. J. Org. Chem., 2019, 84: 9270.;(c) Liu Y P, Zhu C J, Yu C C, Wang A E, Huang P Q. Eur. J. Org. Chem., 2019, 7169.;(d) 刘玉成(Liu Y C),郑啸(Zheng X), 黄培强(Huang P Q). 化学学报(Acta Chimica Sinica), 2019, 77(9): 850.;(e) Xiao K J, Wang Y, Ye K Y, Huang P Q. Chem. Eur. J., 2010, 16: 12792.;(f) Geng H, Huang P Q. Chin. J. Chem., 2019, 37: 811.;(g) Wu D P, He Q, Chen D H, Ye J L, Huang P Q. Chin. J. Chem., 2019, 37: 315.;(h) Ou W, Han F, Hu X N, Chen H, Huang P Q. Angew. Chem. Int. Ed., 2018, 57: 11354.;(i) Fan T, Wang A, Li J Q, Ye J L, Zheng X, Huang P Q. Angew. Chem. Int. Ed., 2018, 57: 10352.;(j) 叶剑良(Ye J L), 黄培强 (Huang P Q). 有机化学(Chinese Journal of Organic Chemistry), 2018, (9): 2215.;(k) Ye J L, Zhu Y N, Geng H, Huang P Q. Sci. China -Chem., 2018, 61: 687.;(l) 郑啸(Zheng X), 黄培强(Huang P Q), 化学进展(Progress in Chemistry), 2018, 30: 528.
[104]
王静(Wang J), 范建华(Fan J H), 雷灿(Lei C), 万永祥(Wan Y X), 梅子厚(Mei Z H), 吴向阳(Wu X Y), 肖志勇(Xiao Z Y), 肖贻崧(Xiao Y S), 贺海鹰(He H Y), 陈曙辉(Cheng S H). CN 201310014047.9, 2013.
[105]
(a) Miller M, Basu K, Demong D, Scott J, Li W, Harris J, Stamford A, Poirier M, Tempest P. WO 2014134719 A1, 2014.;(b) Miller M, Basu K, Demong D, Scott J, Li W, Harris J, Stamford A, Poirier M, Tempest P. WO 2014134772 A1, 2014.;(c) Miller M, Basu K, Demong D, Scott J, Li W, Harris J, Stamford A, Poirier M, Tempest P. WO 2014134773 A1, 2014.;(d) Miller M, Basu K, Demong D, Scott J, Li W, Harris J, Stamford A, Poirier M, Tempest P. WO 2014134774 A1, 2014.
[1] Zhihua Gong, Sha Hu, Xueping Jin, Lei Yu, Yuanyuan Zhu, Shuangxi Gu. Synthetic Methods and Application of Phosphoester Prodrugs [J]. Progress in Chemistry, 2022, 34(9): 1972-1981.
[2] Xiaoxiao Wu, Kaiqing Ma. Total Synthesis of Stemona Alkaloids [J]. Progress in Chemistry, 2020, 32(6): 752-760.
[3] Wu Li, Junjie Wang, Dawei Ma. The Total Synthesis of ent-Kaurane Diterpenoids [J]. Progress in Chemistry, 2019, 31(11): 1460-1471.
[4] Yuxia Gao, Yun Liang, Jun Hu, Yong Ju. Supramolecular Chiral Self-Assembly Based on Small Molecular Natural Products [J]. Progress in Chemistry, 2018, 30(6): 737-752.
[5] Xiao Zheng, Pei-Qiang Huang*. SmI2 and Titanocene-Mediated Coupling Reactions of α-Aminoalkyl Radicals and Applications to the Synthesis of Aza-Heterocycles [J]. Progress in Chemistry, 2018, 30(5): 528-546.
[6] Xiaoyu Liu, Tao Xiao, Yong Qin. Total Synthesis of the Akuammiline Alkaloid Strictamine [J]. Progress in Chemistry, 2018, 30(5): 578-585.
[7] Shu Xin, Li Zhaoxiang, Xia Jiangbin. Synthetic Methods for Poly(thiophene)s [J]. Progress in Chemistry, 2015, 27(4): 385-394.
[8] Wu Jindan, Ju Yong. Molecular and Ion Recognition Molecules Based on Natural Products [J]. Progress in Chemistry, 2013, 25(11): 1888-1897.
[9] Song Gao, Sumit Basu, Guangyi Yang, Arijita Deb, Ming Hu. Oral Bioavailability Challenges of Natural Products Used in Cancer Chemoprevention [J]. Progress in Chemistry, 2013, 25(09): 1553-1574.
[10] Li Tao, Chen Deliang. Synthesis of Hierarchical Semiconductor/Semiconductor Composite Nanostructures [J]. Progress in Chemistry, 2011, 23(12): 2498-2509.
[11] Tong Xing, Xiao Xiaohua, Deng Jianchao, Wang Jiayue, Li Gongke. Applications of Low Temperature Microwave Technique in Chemistry Research [J]. Progress in Chemistry, 2010, 22(12): 2462-2468.
[12] Lu Yuhua Song Feijie Jia Xueshun Liu Yuanhong. Transition Metal-Catalyzed Synthesis of Furan Derivatives [J]. Progress in Chemistry, 2010, 22(01): 58-70.
[13] Ge Huiming|Tan Renxiang**. Symbionts, an Important Source of New Bioactive Natural Products [J]. Progress in Chemistry, 2009, 21(01): 30-46.
[14] Yang Zhen*. Syntheses of Biological Active Natural Products and Natural Product-Like Molecules [J]. Progress in Chemistry, 2009, 21(01): 47-54.
[15] Zhenming Chen1, Jinhua Liu 2, Tao, Junhua2,3**. Biocatalysis for Green Chemistry and Drug Development [J]. Progress in Chemistry, 2007, 19(012): 1919-1927.