中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (8): 1100-1114 DOI: 10.7536/PC200431 Previous Articles   Next Articles

• Review •

Condensed-Matter Chemistry in Biomineralization

Yanhua Sang1, Haihua Pan2**(), Ruikang Tang1,2,**()   

  1. 1. Department of Chemistry, Zhejiang University, Hangzhou 310027, China
    2. Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
  • Received: Revised: Online: Published:
  • Contact: Ruikang Tang
  • About author:
    ** e-mail: (Ruikang Tang);
    (Haihua Pan)
  • Supported by:
    the National Natural Science Foundation of China(21771160); the National Natural Science Foundation of China(21625105); Zhejiang Natural Science Foundation(LY17B010001); Fundamental Research Funds for the Central Universities(2016QN81020)
Richhtml ( 22 ) PDF ( 860 ) Cited
Export

EndNote

Ris

BibTeX

Instead of focusing on bulk phase or individual molecule as the classical chemistry, the condensed-matter chemistry pays special attention to the multi-level structured condensed matters. The primary topics of the condensed-matter chemistry include but not limited to fundamental chemical properties and functionalities of condensed matters and their chemical reactions, construction principles of the multi-level structures, and the structure-property relationship, which is also the interests of the fundamental research in biomineralization. Biomineralization is the process by which organic matrices regulate the formation of inorganic minerals, which can build the biological condensed matter with multi-levelled structures and distinct functions(such as protection, sensing, movement, etc.). Inspired by the construction strategy and the structure-property relationship in biominerals, many biomimetic condensed materials with advanced functions have been fabricated via biomimetic mineralization. In this review, from the context of condensed-matter chemistry, we introduce the fundaments and some important findings and understandings of bio- and biomimetic-mineralization, and mainly overview the fabrication and advanced functions of novel biomimetic materials by the cross-linking of inorganic ionic oligomers developed in our lab, which is inspired by biomineralization. We believe that biomineralization provides many good examples for the research and development of the new scientific discipline of condensed-matter chemistry and in the same while, biomineralization will also benefit from the guidance from the perspective of condensed-matter chemistry.

Contents

===1 Introduction

===2 Biomineralization and biomimetic preparation

===2.1 Biomineralization

===2.2 Biomineral

===2.3 Biomimetic mineralization

===3 Crystal nucleation

===3.1 Classical nucleation theory

===3.2 Nonclassical nucleation model

===3.3 Understanding of nucleating precursors

===4 Inorganic ionic oligomers and polymerization

===4.1 Preparation

===4.2 Structure

===4.3 Polymerization and cross-linking

===4.4 Continuous structure

===4.5 Moulded preparation

===5 Biomimetic preparation based on inorganic polymerization

===5.1 Tissue repair

===5.2 Organic-inorganic copolymerization

===5.3 Organic-inorganic composite construction

===6 Conclusion and outlook

Fig.1 Illustration of(A) the structural levels of natural bone at nanoscale and(B) the current strategy combining molecular self-assembly, intermolecular crosslinking, and biomimetic mineralization, to prepare artificial composite resembling bone nanostructure[43]. Copyright 2015, Wiley-VCH
Fig.2 Pathways to crystallization by particle attachment[67]. Copyright 2015, AAAS
Fig.3 (a) scheme of the capping strategy and reaction conditions for producing gel-like(CaCO3)n oligomers;(b) Mass spectra of(CaCO3)n oligomers with different Ca∶TEA molar ratios;(c) Liquid-state 13C NMR spectra of CO2 or the carbonates of(CaCO3)n oligomers with different Ca∶TEA molar ratios in ethanol;(d) Scattering plots of(CaCO3)n measured by SAXS;(e) Pair-distance distribution function(P(r)) of the(CaCO3)n oligomers[95]. Copyright 2019, Springer Nature
Fig.4 Controllable crosslinking of(CaCO3)n oligomers.(a) Molecular dynamics simulation of the evolution of the Ca—O(from carbonate) coordination number;(b) The average cluster size;(c) A typical simulated CaCO3 cluster capped with TEA;(d) In situ FT-IR spectra during the drying of(CaCO3)n oligomers;(e)The change in the coordination number of Ca—O during crosslinking;(f) High-resolution TEM images of(CaCO3)n oligomers grown at different Ca∶TEA ratios from 1∶100 to 1∶2;(g) TEM images depicting the transformation of(CaCO3)n oligomers to larger structures during condensation[95]. Copyright 2019, Springer Nature
Fig.5 Construction of amorphous and single-crystalline-like CaCO3 bulk materials by the crosslinking of(CaCO3)n oligomers.(a) Photograph of monolithic ACC prepared from(CaCO3)n oligomers;(b~e)SEM(b, c) and TEM(d, e) images indicating the continuous solid phase of the prepared monolithic ACC;(f) Snapshot of monolithic calcite prepared from monolithic ACC;(g) Polarized-light optical microscopy(POM) image of the prepared monolithic calcite;(h) SEM image of a surface on crystallized monolithic CaCO3;(i, j) TEM images of the inner bulk of crystallized monolithic CaCO3[95]. Copyright 2019, Springer Nature
Fig.6 Constructible engineering of CaCO3 single-crystalline materials by using(CaCO3)n oligomers.(a) Molded CaCO3 with different dimensions and morphologies;(b, c) Molded CaCO3 with different patterns;(d) Schemes for pattern construction on single-crystalline calcite(top path), and the repair of rough single-crystalline calcite to smooth calcite(bottom path);(e) POM images of the patterned calcite rotated at different angles;(f, g) SEM images of the repaired calcite[95]. Copyright 2019, Springer Nature
Fig.7 Replication of the complicated structure of enamel.(A) SEM image showing both acid-etched enamel and repaired enamel;(B) A three-dimensional AFM image of repaired enamel;(C) High-magnification SEM image of the red circle in(A)[103]. Copyright 2019, AAAS
Fig.8 (a) Illustration of the copolymerization process and the molecular chain structure of the homogeneous PCC;(b) The actual reaction process[110]. Copyright 2020, Wiley-VCH
Fig.9 (a) Schematic illustration of the preparation process and network microstructure of the PVA/Alg/HAP hybrid microfiber;(b) Optical photograph of the PVA/Alg/CaP hybrid film;(c) TEM image of the ultrathin section of the PVA/Alg/CaP hybrid film[112]. Copyright 2020, Wiley-VCH
[1]
Xu R. Natl. Sci. Rev., 2018,5:1.
[2]
Xu R, Wang K, Chen G, Yan W. Natl. Sci. Rev., 2019,6(2):191.
[3]
Koutsoukos P, Amjad Z, Tomson M B, Nancollas G H. Am. Chem. Soc., 1980,102(5):1553. https://pubs.acs.org/doi/abs/10.1021/ja00525a015

doi: 10.1021/ja00525a015
[4]
Wang L, Nancollas G H. Chem. Rev., 2008,108(11):4628.
[5]
Hu Q, Ji H, Liu Y, Zhang M, Xu X, Tang R. Biomed. Mater., 2010,5(4):041001.
[6]
Wu C, Zhou Y, Xu M, Han P, Chen L, Chang J, Xiao Y. Biomaterials, 2013,34(2):422.
[7]
Chen Y, Dang B, Jin C, Sun Q. ACS. Nano, 2019,13(1):371.
[8]
Kuo D, Nishimura T, Kajiyama S, Kato T. ACS Omega, 2018,3(10):12722.
[9]
Lei Z, Wu P. Nat. Commun., 2018,9(1):1.
[10]
Wang B, Liu P, Jiang W, Pan H, Xu X, Tang R. Angew. Chem. Int. Ed., 2008,47(19):3560.
[11]
Addadi L, Weiner S. Phys. Scr., 2014,89(9):098003.
[12]
Sun S, Mao L, Lei Z, Yu S, Cölfen H. Angew. Chem. Int. Ed., 2016,55:1176.
[13]
Zhai H, Quan Y, Li L, Liu X, Xu X, Tang R. Nanoscale, 2013,5(7):3006.
[14]
Quan Y, Zhai H, Zhang Z, Xu X, Tang R. CrystEngComm., 2012,14(21):7184.
[15]
Hajir M, Graf R, Tremel W. Chem. Commun., 2014,50(49):6534.
[16]
Wang L, Nancollas G H. Met. Ions. Life. Sci., 2010,4:413.
[17]
Shedbalkar U, Singh R, Wadhwani S, Gaidhani S, Chopade B A. Adv. Colloid. Interface. Sci., 2014,209:40.
[18]
Sun M, Sundaresan G, Jose P, Yang L, Hoffman D, Lamichhane N, Zweit J. J. Mater. Chem. B, 2014,2(28):4456.
[19]
Paques J P, van der Linden E, van Rijn C J, Sagis L M. Adv. Colloid. Interface. Sci., 2014,209:163.
[20]
Meunier C F, Rooke J C, Léonard A, Xie H, Su B L. Chem. Commun., 2010,46(22):3843.
[21]
Nudelman F, Sommerdijk N A. Angew. Chem. Int. Ed., 2012,51(27):6582.
[22]
Ogi S, Sugiyasu K, Manna S, Samitsu S, Takeuchi M. Nat. Chem., 2014,6(3):188.
[23]
Lin C R, Tseng Y T, Ovchinnikov S G, Ivantsov R D, Edelman I S, Fedorov A S, Kuzubov A A, Fedorov D A, Starchikov S S, Lyubutin I S. Mater. Res. Express, 2014,1(2):025033.
[24]
Mapp J J I, Fisher M H, Atwood R C, Bell G D, Greco M K, Songer S, Hunter E. Fish. Biol., 2016,88(5):2075. http://doi.wiley.com/10.1111/jfb.2016.88.issue-5

doi: 10.1111/jfb.2016.88.issue-5
[25]
Xiong W, Yang Z, Zhai H, Wang G, Xu X, Ma W, Tang R. Chem. Commun., 2013,49(68):7525.
[26]
Liu Z, Xu X, Tang R. Adv. Funct. Mater., 2016,26(12):1862.
[27]
Beniash E, Aizenberg J, Addadi L, Weiner S. Philos Trans. R. Soc. Lond. B. Biol. Sci., 1997,264(1380):461.
[28]
Politi Y, Arad T, Klein E, Weiner S, Addadi L. Science, 2004,306(5699):1161.
[29]
Weiss I M, Tuross N, Addadi L I A, Weiner S. J. Exp. Zool., 2002,293(5):478. https://www.ncbi.nlm.nih.gov/pubmed/12486808

doi: 10.1002/jez.90004 pmid: 12486808
[30]
Mahamid J, Sharir A, Addadi L, Weiner S. Proc. Natl. Acad. Sci., 2008,105(35):12748.
[31]
Weiner S, Wagner H D. Annu. Rev. Mater. Res., 1998,28(1):271.
[32]
Limeback H. Curr. Opin. Dent., 1991,1(6):826.
[33]
Cui F Z, Ge J. Tissue. Eng. Regen. Med., 2007,1(3):185.
[34]
Hildebrand M. Chem. Rev., 2008,108(11):4855.
[35]
Shimizu K, Cha J, Stucky G D, Morse D E. Proc. Natl. Acad. Sci. U. S. A., 1998,95(11):6234.
[36]
Devouard B, Posfai M, Hua X, Bazylinski D A, Frankel R B, Buseck P R. Am. Mineral., 1998,83(11):1387.
[37]
Towe K M, Lowenstam H A. Ultrastruct. Res., 1967,17(1/2):1.
[38]
Barber A H, Lu D, Pugno N M. Soc. Interface, 2015,12(105):20141326.
[39]
Mao L, Gao H, Yao H, Liu L, Cölfen H, Liu G, Chen S, Li S, Yan Y, Liu Y, Yu S. Science, 2016,354(6308):107.
[40]
Yoo S C, Park Y K, Park C, Ryu H, Hong S H. Adv. Funct. Mater., 2018,28(51):1805948.
[41]
Gao H, Chen S, Mao L, Song Z, Yao H, Cölfen H, Luo X, Zhang F, Pan Z, Meng Y, Ni Y, Yu S. Nat. Commun., 2017,8(1):1.
[42]
Chen S, Gao H, Sun X, Ma Z, Ma T, Xia J, Zhu Y, Zhao R, Yao H, Wu H, Yu S. Matter., 2019,1(2):412.
[43]
He W X, Rajasekharan A K, Tehrani-Bagha A R, Andersson M. Adv. Mater., 2015,27(13):2260.
[44]
Kirillova A, Kelly C, Von Windheim N, Gall K. Adv. Healthc. Mater., 2018,7(17):1800467.
[45]
Zhang K, Gao H, Pan X, Zhou P, Xing X, Xu R, Pan Z, Wang S, Zhu Y, Hu B, Zou D, Yu S. Matter., 2019,1(3):770.
[46]
Kashchiev D J. Chem. Phys., 2003,118(4):1837.
[47]
Wolf S E, Lieberwirth I, Natali F, Bardeau J F, Delorme N, Emmerling F, Barrea R, Kappl M, Marin F. Faraday. Discuss., 2012,159(1):433.
[48]
Wang F, Richards V N, Shields S P, Buhro W E. Chem. Mater., 2014,26(1):5.
[49]
De Yoreo J J, Vekilov P G. Rev. Mineral. Geochem., 2003,54(1):57.
[50]
Dirksen J A, Ring T A. Chem. Eng. Sci., 1991,46(10):2389.
[51]
Olafson K N, Li R, Alamani B G, Rimer J D. Chem. Mater., 2016,28(23):8453.
[52]
Zhang R, Khalizov A, Wang L, Hu M, Xu W. Chem. Rev., 2012,112(3):1957.
[53]
Hohenberg P C, Halperin B I. Rev. Mod. Phys., 1977,49(3):435.
[54]
Bazylinski D A, Frankel R B. Rev. Mineral. Geochem., 2003,54(1):217.
[55]
Frankel R B, Bazylinski D A. Rev. Mineral. Geochem., 2003,54:95.
[56]
Brecevic L, Nielsen A. Cryst. Growth., 1989,98:504. https://linkinghub.elsevier.com/retrieve/pii/0022024889901681

doi: 10.1016/0022-0248(89)90168-1
[57]
Tobler D J, Rodriguez-Blanco J D, Dideriksen K, Bovet N, Sand K K, Stipp S L. Adv. Funct. Mater., 2015,25(20):3081.
[58]
Lowenstam H A, Weiner S. Science., 1985,227(4682):51.
[59]
Wang L, Li S, Ruiz Agudo E, Putnis C V, Putnis A. CrystEngComm., 2012,14(19):6252.
[60]
Habraken W J, Tao J, Brylka L J, Friedrich H, Bertinetti L, Schenk A S, Verch A, Dmitrovic V, Bomas P H, Frederik P M, Laven J, Schoot P V, Aichmayer B, With G D, De Yoreo J J, Sommerdijk Sommerdijk. Nat. Commun., 2013,4(1):1.
[61]
Jiang S, Chen Y, Pan H, Zhang Y, Tang R. Phys. Chem. Chem. Phys., 2013,15(30):12530.
[62]
Wang T, Porter D, Shao Z. Adv. Funct. Mater., 2012,22(2):435.
[63]
Hang Z, Zhang G. Cryst. Growth. Des., 2012,12(4):1816.
[64]
Gebauer D, Völkel A, Cölfen H. Science, 2008,322(5909):1819.
[65]
Gower L B, Odom D J. Cryst. Growth., 2000,210(4):719. https://linkinghub.elsevier.com/retrieve/pii/S0022024899007496

doi: 10.1016/S0022-0248(99)00749-6
[66]
Li D, Nielsen M H, Lee J R, Frandsen C, Banfield J F, De Yoreo J J. J. Science, 2012,336(6084):1014.
[67]
De Yoreo J J, Gilbert P U, Sommerdijk N A, Penn R L, Whitelam S, Joester D, Zhang H, Rimer J D, Navrotsky A, Banfield J F, Wallace A F, Michel M, Meldrum F C, Cölfen H, Dove P M. Science, 2015,349(6247):aaa6760.
[68]
Mahamid J, Aichmayer B, Shimoni E, Ziblat R, Li C, Siegel S, Paris O, Fratzl P, Weiner S, Addadi L. Proc. Natl. Acad. Sci.U. S. A., 2010,107(14):6316.
[69]
Fratzl P, Gupta H S, Paschalis E P, Roschger P. Mater. Chem., 2004,14(14):2115. http://xlink.rsc.org/?DOI=B402005G

doi: 10.1039/B402005G
[70]
Liu Z, Xiao Y, Chen W, Wang Y, Wang B, Wang G, Xu X, Tang R. J. Mater. Chem. B, 2014,2(22):3480.
[71]
Stephens C J, Kim Y Y, Evans S D, Meldrum F C, Christenson H. K. J. Am. Chem. Soc., 2011,133(14):5210. cf835df0-79d9-47bc-bc1f-b3e968e5e512http://dx.doi.org/10.1021/ja200309m

doi: 10.1021/ja200309m
[72]
Stephens C J, Ladden S F, Meldrum F C, Christenson H K. Adv. Funct. Mater., 2010,20(13):2108.
[73]
Tester C C, Brock R E, Wu C H, Krejci M R, Weigand S, Joester D. CrystEngComm., 2011,13(12):3975.
[74]
Politi Y, Batchelor D, Zaslansky P, Chmelka B F, Weaver J C, Sagi I, Weiner S, Addadi L. Chem. Mater., 2010,22(1):161.
[75]
Hermassi M, Valderrama C, Dosta J, Cortina J L, Batis N H. Chem. Eng. J., 2016,283:572.
[76]
Wolf S E, Leiterer J, Pipich V, Barrea R, Emmerling F, Tremel W. Am. Chem. Soc., 2011,133(32):12642. https://pubs.acs.org/doi/10.1021/ja202622g

doi: 10.1021/ja202622g
[77]
Pan H, Liu X, Tang R, Xu H. Chem. Commun., 2010,46(39):7415.
[78]
Nielsen M H, Aloni S, De Yoreo J. J. Science, 2014,345(6201):1158.
[79]
Zou Z, Habraken W J, Bertinetti L, Politi Y, Gal A, Weiner S, Addadi L, Fratzl P. Adv. Mater. Interfaces, 2017,4(1):1600076.
[80]
Pouget E M, Bomans P H H, Goos J A C M, Frederik P M. Science, 2009,323(5920):1455.
[81]
Dey A, Bomans P H, Müller F A, Will J, Frederik P M. Nat. Mater., 2010,9:1010.
[82]
Addadi L, Raz S, Weiner S T. Adv. Mater., 2003,15(12):959.
[83]
Cölfen H. Top. Curr. Chem., 2007,271:1.
[84]
Jiang S, Pan H, Chen Y, Xu X, Tang R. Faraday. Discuss., 2015,179:451.
[85]
Wallace A F, Hedges L O, Fernandez Martinez A, Raiteri P, Gale J D, Waychunas G, Whirelam S, Banfield J F, De Yoreo J. J. Science, 2013,341(6148):885.
[86]
Gower L B. Chem. Rev., 2008,108(11):4551.
[87]
Yao S, Lin X, Xu Y, Chen Y, Qiu P, Shao C, Jin B, Mu Z, Sommerdijk N A, Tang R. Adv. Sci., 2019,6(19):1900683.
[88]
Yao S, Xu Y, Zhou Y, Shao C, Liu Z, Jin B, Zhao R, Cao H, Pan H, Tang R. ACS. Appl. Bio. Mater., 2019,2(10):4408.
[89]
Dey A, Bomans P H, Müller F A, Will J, Frederik P M. Nat. Mater., 2010,9(12):1010.
[90]
Demichelis R, Raiteri P, Gale J D, Quigley D, Gebauer D. Nat. Commun., 2011,2(1):1.
[91]
Lewis J A. Am. Chem. Soc., 2000,83(10):2341.
[92]
Eckel Z C, Zhou C, Martin J H, Jacobsen A J, Carter W B, Schaedler T A. Science, 2016,351(6268):58.
[93]
Liu H, Gong Q, Yue Y, Guo L, Wang X. Am. Chem. Soc., 2017,139(25):8579.
[94]
Koltzenburg S, Maskos M, Nuyken O. Polymer Chemistry. Berlin: Springer-Verlag, 2017. 14.
[95]
Liu Z, Shao C, Jin B, Zhang Z, Zhao Y, Xu X, Tang R. Nature, 2019,574(7778):394.
[96]
O’Brien W J. Inc., Chicago, 2002,113.
[97]
Ferracane J L, Hilton T J. Dent. Mater., 2016,32(1):1.
[98]
Li L, Pan H, Tao J, Xu X, Mao C, Gu X, Tang R. Mater. Chem., 2008,18(34):4079. http://xlink.rsc.org/?DOI=b806090h

doi: 10.1039/b806090h
[99]
Posner A S, Betts F. Acc. Chem. Res., 1975,8(8):273.
[100]
Onuma K, Ito A. Chem. Mater., 1998,10(11):3346.
[101]
Gebauer D, Völkel A, Cölfen H. Science, 2008,322(5909):1819.
[102]
Sun S, Gebauer D, Cölfen H. Chem. Sci., 2017,8(2):1400.
[103]
Shao C, Jin B, Mu Z, Lu H, Zhao Y, Wu Z, Yan L, Zhang Z, Zhou Y, Pan H, Liu Z, Tang R. Sci. Adv., 2019,5(8):eaaw9569.
[104]
Stupp S I, Braun P V. Science, 1997,277(5330):1242.
[105]
Tang Z, Kotov N A, Magonov S, Ozturk B. Nat. Mater., 2003,2(6):413.
[106]
Taloni A, Vodret M, Costantini G, Zapperi S, Nat. Rev. Mater., 2018,3:211.
[107]
Zou H, Wu S, Shen J. Chem. Rev., 2008,108(9):3893.
[108]
Choi M, Kleitz F, Liu D, Lee H Y, Ahn W S, Ryoo R. Am. Chem. Soc., 2005,127(6):1924. https://pubs.acs.org/doi/10.1021/ja044907z

doi: 10.1021/ja044907z
[109]
Zhang L, Cui T, Cao X, Zhao C, Chen Q, Wu L, Li H. Angew. Chem. Int. Ed., 2017,129(31):9141.
[110]
Yu Y, Mu Z, Jin B, Liu Z, Tang R. Angew. Chem. Int. Ed., 2020,132(5):2087.
[111]
Gosline J M, Denny M W, Demont M. Nature, 1984,309:55.
[112]
Yu Y, He Y, Mu Z, Zhao Y, Kong K, Liu Z, Tang R. Adv. Funct. Mater., 2020,30(6):1908556.
[113]
Wang G, Cao R, Chen R, Mo L, Han J, Wang X, Xu X, Jiang T, Deng Y, Lyu K, Zhu S, Qin E, Tang R, Qin C. Proc. Natl. Acad. Sci. U. S. A., 2013,110(19):7619.
[114]
Wang X, Yang D, Li S, Xu X, Qin C, Tang R. Biomaterials, 2016,106:286.
[115]
Xiong W, Zhao X, Zhu G, Shao C, Li Y, Ma W, Xu X, Tang R. Angew. Chem. Int. Ed., 2015,54:11961.
[116]
Zhao R, Liu X, Yang X, Jin B, Shao C, Kang W, Tang R. Adv. Mater., 2018,30(27):1801304.
[117]
Wang B, Wang G, Zhao B, Chen J, Zhang X, Tang R. Chem. Sci., 2014,5(9):3463.
[118]
Zhao R, Wang B, Yang X, Xiao Y, Wang X, Shao C, Tang R. Angew. Chem. Int. Ed., 2016,55(17):5225.
[1] Libo Mao, Huailing Gao, Yufeng Meng, Yulu Yang, Xiangsen Meng, Shuhong Yu. Biomineralization: A Condensed Matter Chemistry [J]. Progress in Chemistry, 2020, 32(8): 1086-1099.
[2] Xiaoxiao Xie, Xiaoming Ma*, Xiangli Ru, Yi Chang, Yuming Guo, Lin Yang*. Biomimetic Mineralization Synthesis of Nanomaterials Under the Mediation of Cells and Potential Applications [J]. Progress in Chemistry, 2018, 30(10): 1511-1523.
[3] Yang Haocheng, Chen Yifu, Ye Chen, Wan Lingshu, Xu Zhikang. Advances in Porous Organic-Inorganic Composite Membranes [J]. Progress in Chemistry, 2015, 27(8): 1014-1024.
[4] Wang Shengjie, Cai Qingwei, Du Mingxuan, Cao Meiwen, Xu Hai. Biomimetic Mineralization of Silica [J]. Progress in Chemistry, 2015, 27(2/3): 229-241.
[5] Pan Yu, Li Na, Zhou Runhong, Zhao Min. Nano-Magnetosomes in Magnetotactic Bacteria [J]. Progress in Chemistry, 2013, 25(10): 1781-1794.
[6] Wang Ben, Tang Ruikang*. Biomineralization: One Promising Bridge between Inorganic Chemistry and Biomedicine [J]. Progress in Chemistry, 2013, 25(04): 633-641.
[7] Ouyang Jianming*, Zhang Guangna, Wang Fengxin, Li Junjun. Nucleation, Growth, and Aggregation of Nanocrystallites in Urine of Calcium Oxalate Stone Patients as well as Kidney Stone Formation [J]. Progress in Chemistry, 2013, 25(04): 642-649.
[8] Huang Ping, Chai Shigan, Yuan Jianjun, Lu Guohong, Yang Tingting, Cheng Shiyuan. Preparation of Silica/Polymer Core-Shell Hybrid Particles and Their Hollow Structures [J]. Progress in Chemistry, 2012, 24(01): 31-38.
[9] Liu Chuang, Wang Yuangui, Geng Jiaqing, Jiang Zhongyi, Yang Dong. Biosynthesis of Inorganic Nanoparticles [J]. Progress in Chemistry, 2011, 23(12): 2510-2521.
[10] Wu Congmeng, Wang Xiaoqiang, Zhao Kang, Cao Meiwen, Xu Hai, Lü Jianren. AFM Study of Calcite Growth and Dissolution on the (104) Face [J]. Progress in Chemistry, 2011, 23(01): 107-124.
[11] Ouyang Jianming, Yang Rue, Tan Jin. Effect of Renal Epithelial Cell After Injury on Biomineralization of Calcium Oxalate [J]. Progress in Chemistry, 2010, 22(08): 1665-1671.
[12] Cai Guobin|Guo Xiaohui|Yu Shuhong**. Polymer Controlled Biomimetic Mineralization [J]. Progress in Chemistry, 2008, 20(0708): 1001-1014.
[13] Xu Xurong|Cai Anhua|Liu Rui|Pan Haihua|Tang Ruikang**. Amorphous Calcium Carbonate in Biomineralization [J]. Progress in Chemistry, 2008, 20(01): 54-59.
[14] Ou Yangjianming**. Research Progress in Lattice Matching and Electrostatic Compatibility in Growth of Biominerals Induced by Monolayers [J]. Progress in Chemistry, 2005, 17(05): 931-937.
[15] Ouyang Jianming**. Biominerals and Their Mineralization Process [J]. Progress in Chemistry, 2005, 17(04): 749-756.