中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (2/3): 229-241 DOI: 10.7536/PC140951 Previous Articles   Next Articles

• Review •

Biomimetic Mineralization of Silica

Wang Shengjie*, Cai Qingwei, Du Mingxuan, Cao Meiwen, Xu Hai   

  1. Center for Bioengineering and Biotechnology, Chinese University of Petroleum (East China), Qingdao 266580, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21103229).

PDF ( 2483 ) Cited
Export

EndNote

Ris

BibTeX

The course of evolution in nature endows some organisms with distinguished ability of constructing complex inorganic structures that have intricate and multi-scale ordered structures, special functionalities and species-specific genetic characteristics. Therefore, learning from nature and biomimetic mineralization become one of important approaches to advanced materials. Research on the biomineralization indicate that certain biomolecules play a key important role during the biosilica formation. For example, silaffins and long chain polyamine extracted from diatom and silicateins from sponges, control the nucleation and growth of silicious species at a molecular level by manipulating the interfacial interactions between organic molecules and inorganic species, and therefore result in the generation of biosilica with organized hierarchical structures. Simulating the biomineralization process, people have prepared silica nanomaterials with various morphologies, structures and properties based on the designed organic molecules during the recent decades. In this review, four sections are involved. Firstly, we introduce the results about the formation mechanism of biosilica including the identification of bioextracts and their functions, catalyzing and stabilizing mechanisms, morphology generation of biosilica. Secondly but importantly, we review the recent progress in biomimetic synthesis of silica. This content can also be divided into four units, bioextracts regulating biosilicification, artificial synthetic molecules mediating mineralization, external forces driving morphogenesis and tools in biomimetic mineralization. Thirdly, we introduc the potential application of biomimeticly synthesized silica in cell culture, drug and gene delivery system, catalysis, separation and detection, protecting biomolecules and functional materials construction. Finally, we point out the problems of the present researches and give some resolution, and then present some likely main research direction in this field.

Contents
1 Introduction
2 Biomineralizing mechanisms
2.1 Extracts from biosilica
2.2 Catalyzing mechanism of organic molecules
2.3 Stabilizing mechanism of organic molecules
2.4 Regulation on structures and morphologies of silica
3 Biomimetic synthesis and structure regulation of silica
3.1 Biomimetic mineralization templated by bioextracts
3.2 Biomimetic mineralization mediated by artificial synthetic molecules
3.3 Environmental effects on biomimetic mineralization
3.4 Tools in biomimetic mineralization
4 Application of the biomimeticly synthesized silica
4.1 Scaffolds for cell culture
4.2 Separation, gene and drug delivery
4.3 Protection for biomolecules and catalytic center
4.4 Preparation of functional materials and catalysis
5 Problems and outlook

CLC Number: 

[1] 崔福斋(Cui F Z). 生物矿化(Biomineralization). 第一版(1st ed). 北京(Beijing):清华大学出版社(Tstinghua University Press), 2007, 324.
[2] Mann S. Biomineralization: Principles and concepts in Bioinorganic Materials Chemistry. 1st ed. New York: Oxford University Press, 2001. 6.
[3] Kröger N. Science, 2009, 325: 1351.
[4] Hildebrand M. Chem. Rev., 2008, 108: 4855.
[5] Aizenberg J, Weaver J C, Thanawala M S, Sundar V C, Morse D E, Fratzl P. Science, 2005, 309: 275.
[6] Kröger N, Deutzmann R, Sumper M. Science, 1999, 286: 1129.
[7] Kröger N, Deutzmann R, Bergsdorf C, Sumper M. Proc. Natl. Acad. Sci. U. S. A., 2000, 97: 14133.
[8] Shimizu K, Cha J, Stucky G D, Morse D E. Proc. Natl. Acad. Sci. U. S. A., 1998, 95: 6234.
[9] Cha J N, Shimizu K, Zhou Y, Christiansen S C, Chmelka B F, Stucky G D, Morse D E. Proc. Natl. Acad. Sci. U. S. A., 1999, 96: 361.
[10] Sumper M, Kröger N. J. Mater. Chem., 2004, 14: 2059.
[11] Jensen M, Keding R, Höche T, Yue Y. J. Am. Chem. Soc., 2009, 131: 2717.
[12] Rai A, Perry C C. Langmuir, 2010, 26: 4152.
[13] Zlotnikov I, Werner P, Blumtritt H, Graff A, Dauphin Y, Zolotoyabko E, Fratzl P. Adv. Mater., 2014, 26: 1682.
[14] Wenzl S, Hett R, Richthammer P, Sumper M. Angew. Chem. Int. Ed., 2008, 47: 1729.
[15] Woesz A, Weaver J C, Kazanci M, Dauphin Y, Aizenberg J, Morse D E, Fratzl P. J. Mater. Res., 2006, 21: 2068.
[16] Miserez A, Weaver J C, Thurner P J, Aizenberg J, Dauphin Y, Fratzl P, Morse D E, Zok F W. Adv. Funct. Mater., 2008, 18: 1241.
[17] Kröger N, Lorenz S, Brunner E, Sumper M. Science, 2002, 298: 584
[18] Poulsen N, Scheffel A, Sheppard V C, Chesley P M, Kröger N. J. Biol. Chem., 2013, 288: 20100.
[19] Scheffel A, Poulsen N, Shian S, Kröger N. Proc. Natl. Acad. Sci. U. S. A., 2011, 108: 3175.
[20] Brunner E, Richthammer P, Ehrlich H, Paasch S, Simon P, Ueberlein S, van Pée K H. Angew. Chem. Int. Ed., 2009, 48: 9724.
[21] Zhou Y, Shimizu K, Cha J N, Stucky G D, Morse D E. Angew.Chem. Int. Ed., 1999, 38: 779.
[22] Roth K M, Zhou Y, Yang W J, Morse D E. J. Am. Chem. Soc., 2005, 127: 325.
[23] Brott L L, Naik R R, Pikas D J, Kirkpatrik S M, Tomlin D W, Whitlock P W, Clarson S J, Stone M O. Nature, 2001, 413: 291.
[24] Iler R K. The Chemistry of Silica: Solubility. New York: John Wiley & Sons, 1979. 103.
[25] Delak K M, Sahai N. J. Phys. Chem. B, 2006, 110: 17819.
[26] Spinde K, Pachis K, Antonakaki I, Paasch S, Brunner E, Demadis K D. Chem. Mater., 2011, 23: 4676.
[27] Sumper M. Science, 2002, 295: 2430.
[28] Sumper M. Angew. Chem. Int. Ed., 2004, 43, 2251.
[29] Sumper M, Brunner E. Adv. Funct. Mater., 2006, 16: 17.
[30] Sumper M, Lorenz S, Brunner E. Angew. Chem. Int. Ed., 2003, 42: 5192.
[31] Brunner E, Lutz K, Sumper M. Phys. Chem. Chem. Phys., 2004, 6: 854.
[32] Lutz K, Groger C, Sumper M, Brunner E. Phys. Chem. Chem. Phys., 2005, 7: 2812.
[33] Bernecker A, Wieneke R, Riedel R, Seibt M, Geyer A, Steinem C. J. Am. Chem. Soc., 2010, 132: 1023.
[34] Sumper M, Lehmann G. ChemBioChem, 2006, 7: 1419.
[35] Knecht M R, Wright D W. Chem. Commun., 2003, 3038.
[36] Marner W D, Shaikh A S, Muller S J, Keasling J D. Biomacromolecules, 2007, 9: 1.
[37] Lechner C C, Becker C F W. J. Pept. Sci., 2014, 20: 152.
[38] Steinmetz N F, Shah S N, Barclay J E, Rallapalli G, Lomonossoff G P, Evans D J. Small, 2009, 5: 813.
[39] Royston E S, Brown A D, Harris M T, Culver J N. J. Colloid Interface Sci., 2009, 332: 402.
[40] Zhang Z, Buitenhuis J. Small, 2007, 3: 424.
[41] Chen Y, Li Y L, Zhou G T, Li H, Lin Y T, Xiao X, Wang F P. Sci. Rep., 2014, 4: 8.
[42] Galarneau A, Sartori F, Cangiotti M, Mineva T, di Renzo F, Ottaviani M F. J. Phys. Chem. B, 2010, 114: 2140.
[43] Shchipunov Y, Shipunova N. Colloids Surf. B, 2008, 63: 7.
[44] Spinde K, Kammer M, Freyer K, Ehrlich H, Vournakis J N, Brunner E. Chem. Mater., 2011, 23: 2973.
[45] Shi J F, Zhang S H, Wang X L, Yang C, Jiang Z Y. J. Mater. Chem. B, 2014, 2: 4289.
[46] Kröger N, Dickerson M B, Ahmad G, Cai Y, Haluska M S, Sandhage K H, Poulsen N, Sheppard V C. Angew. Chem. Int. Ed., 2006, 45: 7239.
[47] Luckarift H R, Dickerson M B, Sandhage K H, Spain J C. Small, 2006, 2: 640.
[48] Shiomi T, Tsunoda T, Kawai A, Mizukami F, Sakaguchi K. Chem. Mater., 2007, 19: 4486.
[49] Shiomi T, Tsunoda T, Kawai A, Chiku H, Mizukami F, Sakaguchi K. Chem. Commun., 2005, 5325.
[50] Dickerson M B, Sandhage K H, Naik R R. Chem. Rev., 2008, 108: 4935.
[51] Adamson D H, Dabbs D M, Pacheco C R, Giotto M V, Morse D E, Aksay I A. Macromolecules, 2007, 40: 5710.
[52] Demadis K D, Neofotistou E. Chem. Mater., 2007, 19: 581.
[53] Belton D, Paine G, Patwardhan S V, Perry C C. J. Mater. Chem., 2004, 14: 2231.
[54] Noll F, Sumper M, Hampp N. Nano Lett., 2002, 2: 91.
[55] Belton D J, Patwardhan S V, Perry C C. J. Mater. Chem., 2005, 15: 4629.
[56] Delak K M, Sahai N. Chem. Mater., 2005, 17: 3221.
[57] Yuan J J, Jin R H. Adv. Mater., 2005, 17: 885.
[58] Knecht M R, Sewell S L, Wright D W. Langmuir, 2005, 21: 2058.
[59] Knecht M R, Wright D W. Langmuir, 2004, 20: 4728.
[60] Mirau P A, Serres J L, Lyons M. Chem. Mater., 2008, 20: 2218.
[61] Pires J, Fernandes A C, Avo R. J. Mater. Sci., 2014, 49: 6087.
[62] Zhou F, Li S, Vo C D, Yuan J J, Chai S, Gao Q, Armes S P, Lu C, Cheng S. Langmuir, 2007, 23: 9737.
[63] Altunbas A, Sharma N, Lamm M S, Yan C, Nagarkar R P, Schneider J P, Pochan D J. ACS Nano, 2010, 4: 181.
[64] Chen A, Komura M, Kamata K, Iyoda T. Adv. Mater., 2008, 20: 763.
[65] Kent M S, Murton J K, Zendejas F J, Tran H, Simmons B A, Satija S, Kuzmenko I. Langmuir, 2009, 25: 305.
[66] Wu J C, Wang Y, Chen C C, Chang Y C. Chem. Mater., 2008, 20: 6148.
[67] Mullner M, Yuan J Y, Weiss S, Walther A, Fortsch M, Drechsler M, Muller A H E. J. Am. Chem. Soc., 2010, 132: 16587.
[68] Deng S X, Shi C X, Xu X Y, Zhao H, Sun P C, Chen T H. Langmuir, 2014, 30: 2329.
[69] Sun Q Y, Kooyman P J, Grossmann J G, Bomans P H H, Frederik P M, Magusin P C M M, Beelen T P M, van Santen R A, Sommerdijk N A J M. Adv. Mater., 2003, 15: 1097.
[70] Botterhuis N E, Sun Q Y, Magusin P C M M, van Santen R A, Sommerdijk N A J M. Chem. Eur. J., 2006, 12: 1448.
[71] Wei J, Yue Q, Sun Z, Deng Y, Zhao D. Angew. Chem. Int. Ed., 2012, 51: 6149.
[72] Chen C L, Rosi N L. Angew. Chem. Int. Ed., 2010, 49: 1924.
[73] Zhao Y, Wang J, Deng L, Zhou P, Wang S, Wang Y, Xu H, Lu J R. Langmuir, 2013, 29: 13457.
[74] Meegan J E, Aggeli A, Boden N, Brydson R, Brown A P, Carrick L, Brough A R, Hussain A, Ansell R J. Adv. Funct. Mater., 2004, 14: 31.
[75] Holmström S C, King P J S, Ryadnov M G, Butler M F, Mann S, Woolfson D N. Langmuir, 2008, 24: 11778.
[76] Pouget E, Dujardin E, Cavalier A, Moreac A, Valery C, Marchi-Artzner V, Weiss T, Renault A, Paternostre M, Artzner F. Nat. Mater., 2007, 6: 434.
[77] Acar H, Garifullin R, Guler M O. Langmuir, 2011, 27: 1079.
[78] Yuwono V M, Hartgerink J D. Langmuir, 2007, 23: 5033.
[79] Xu H, Wang Y, Ge X, Han S, Wang S, Zhou P, Shan H, Zhao X, Lu J R. Chem. Mater., 2010, 22: 5165.
[80] Wang S, Ge X, Xue J, Fan H, Mu L, Li Y, Xu H, Lu J R. Chem. Mater., 2011, 23: 2466.
[81] Wang S, Xue J, Zhao Y, Du M, Deng L, Xu H, Lu J R. Soft Matter, 2014, 10: 7623.
[82] Wang S, Xue J, Ge X, Fan H, Xu H, Lu J R. Chem. Commun., 2012, 48: 9415.
[83] Cha J N, Stucky G D, Morse D E, Deming T J. Nature, 2000, 403: 289.
[84] Kessel S, Thomas A, Börner H G. Angew. Chem. Int. Ed., 2007, 46: 9023.
[85] Lei S, Zhang J, Wang J, Huang J. Langmuir, 2009, 26: 4288.
[86] Hawkins K M, Wang S S S, Ford D M, Shantz D F. J. Am. Chem. Soc., 2004, 126: 9112.
[87] Tomczak M M, Glawe D D, Drummy L F, Lawrence C G, Stone M O, Perry C C, Pochan D J, Deming T J, Naik R R. J. Am. Chem. Soc., 2005, 127: 12577.
[88] Patwardhan S V, Maheshwari R, Mukherjee N, Kiick K L, Clarson S J. Biomacromolecules, 2006, 7: 491.
[89] Xia L, Li Z. Langmuir, 2010, 27: 1116.
[90] Jan J S, Shantz D F. Adv. Mater., 2007, 19: 2951.
[91] Wong M S, Cha J N, Choi K S, Deming T J, Stucky G D. Nano Lett., 2002, 2: 583.
[92] 王静(Wang J), 刘英(Liu Y), 张春(Zhang C), 徐辉碧(Xu H B), 杨祥良(Yang X L). 化学进展(Progress in Chemistry), 2011, 23: 669.
[93] Qiu H, Che S. Chem. Soc. Rev., 2011, 40: 1259.
[94] Liu B, Cao Y, Huang Z, Duan Y, Che S. Adv. Mater., 2014, DOI: 10.1002/adma.201401485.
[95] Che S, Liu Z, Ohsuna T, Sakamoto K, Terasaki O, Tatsumi T. Nature, 2004, 429: 281.
[96] Matsukizono H, Jin R H. Angew. Chem. Int. Ed., 2012, 51: 5862.
[97] Liu B, Yao Y, Che S. Angew. Chem. Int. Ed., 2013, 52: 14186.
[98] Jin R H, Yao D D, Levi R.Chem. Eur. J., 2014, 20: 7196.
[99] Qiu H, Inoue Y, Che S. Angew. Chem. Int. Ed., 2009, 48: 3069.
[100] Xie J, Duan Y, Che S. Adv. Funct. Mater., 2012, 22: 3784.
[101] Liu W, Zhu Z, Deng K, Li Z, Zhou Y, Qiu H, Gao Y, Che S, Tang Z. J. Am. Chem. Soc., 2013,135: 9659.
[102] Huang Z, Yao Y, Che S. Chem.Eur. J., 2014, 20: 3273.
[103] Fukao M, Sugawara A, Shimojima A, Fan W, Arunagirinathan M A, Tsapatsis M, Okubo T. J. Am. Chem. Soc., 2009, 131: 16344.
[104] Zhou S, Sakamoto T, Wang J, Sugawara-Narutaki A, Shimojima A, Okubo T. Langmuir, 2012, 28: 13181.
[105] Wang J, Sugawara A, Shimojima A, Okubo T. Langmuir, 2010, 26: 18491.
[106] Rodríguez F, Glawe D D, Naik R R, Hallinan K P, Stone M O. Biomacromolecules, 2004, 5: 261.
[107] Ramanathan R, Campbell J L, Soni S K, Bhargava S K, Bansal V. PLoS One, 2011, 6: e17707.
[108] Tilburey G E, Patwardhan S V, Huang J, Kaplan D L, Perry C C. J. Phys. Chem. B, 2007, 111: 4630.
[109] Minaberry Y, Jobbagy M. Chem. Mater., 2011, 23: 2327.
[110] Fan J, Boettcher S W, Tsung C K, Shi Q, Schierhorn M, Stucky G D. Chem. Mater., 2008, 20: 909.
[111] Naik R R, Whitlock P W, Rodriguez F, Brott L L, Glawe D D, Clarson S J, Stone M O. Chem. Commun., 2003, 238.
[112] Yu J, Wang Q R, Zhang X. Appl. Surf. Sci., 2014, 311: 799.
[113] Bellomo E G, Deming T J. J. Am. Chem. Soc., 2006, 128: 2276.
[114] Bauer C A, Robinson D B, Simmons B A. Small, 2007, 3: 58.
[115] El Rassy H, Belamie E, Livage J, Coradin T. Langmuir, 2005, 21: 8584.
[116] Gautier C, Lopez P J, Hemadi M, Livage J, Coradin T. Langmuir, 2006, 22: 9092.
[117] Sumper M, Brunner E. ChemBioChem, 2008, 9: 1187.
[118] Roehrich A, Drobny G. Acc. Chem. Res., 2013, 46: 2136.
[119] Nudelman F, Sommerdijk N A. Angew. Chem. Int. Ed., 2012, 51: 6582.
[120] Coradin T, Durupthy O, Livage J. Langmuir, 2002, 18: 2331.
[121] Coradin T, Eglin D, Livage J. Spectroscopy, 2004, 18: 567.
[122] Wallace A F, DeYoreo J J, Dove P M. J. Am. Chem. Soc., 2009, 131: 5244.
[123] Lenoci L, Camp P J. J. Am. Chem. Soc., 2006, 128: 10111.
[124] Rimola A, Sodupe M, Ugliengo P. J. Phys. Chem. C, 2009, 113: 5741.
[125] Milligan A J, Morel F M M. Science, 2002, 297: 1848.
[126] Hale M S, Mitchell J G. Aquat. Microb. Ecol., 2001, 24: 287.
[127] Raven J A, Waite A M. New Phytol., 2004, 162: 45.
[128] De Tommasi E, Rea I, Mocella V, Moretti L, de Stefano M, Rendina I, de Stefano L. Opt. Express, 2010, 18: 12203.
[129] Yamanaka S, Yano R, Usami H, Hayashida N, Ohguchi M, Takeda H, Yoshino K. J. Appl. Phys., 2008, 103.
[130] De Stefano L, Rea I, Rendina I, de Stefano M, Moretti L. Opt. Express, 2007, 15: 18082.
[131] Jeffryes C, Campbell J, Li H Y, Jiao J, Rorrer G. Energy Environ. Sci., 2011, 4: 3930.
[132] Qiu P, Mao C. ACS Nano, 2010, 4: 1573.
[133] Qiu P, Qu X, Brackett D J, Lerner M R, Li D, Mao C. Adv. Mater., 2013, 25: 2492.
[134] Sun Q, Vrieling E G, van Santen R A, Sommerdijk N A J M. Curr. Opin. Solid State Mater. Sci., 2004, 8: 111.
[135] Bauerlein E. Angew. Chem. Int. Ed., 2003, 42: 614.
[136] Davis S A, Burkett S L, Mendelson N H, Mann S. Nature, 1997, 385: 420.
[137] Izqierdo-Barba I, Arcos D, Sakamoto Y, Terasaki O, Lopez-Noriega A, Vallet-Regi M. Chem. Mater., 2008, 20: 3191.
[138] Han L, Che S. Chem. Soc. Rev., 2013: 42: 3740.
[139] Kobler J, Moller K, Bein T. ACS Nano, 2008, 2: 791.
[140] Park J H, Gu L, von Maltzahn G, Ruoslahti E, Bhatia S N, Sailor M J. Nat. Mater., 2009, 8: 331.
[141] Tang L, Fan T M, Borst L B, Cheng J. ACS Nano, 2012, 6: 3954.
[142] Huang X L, Li L L, Liu T L, Hao N J, Liu H Y, Chen D, Tang F Q. ACS Nano, 2011, 5: 5390.
[143] Lin Y S, Abadeer N, Hurley K R, Haynes C L. J. Am. Chem. Soc., 2011, 133: 20444.
[144] Singh N, Karambelkar A, Gu L, Lin K, Miller J S, Chen C S, Sailor M J, Bhatia S N. J. Am. Chem. Soc., 2011, 133: 19582.
[145] Chen H, Xia L, Fu W, Yang Z, Li Z. Chem. Commun., 2013, 49: 1300.
[146] Zhang Y, Wu H, Li J, Li L, Jian Y, Jiang Y, Jiang Z. Chem. Mater., 2007, 20: 1041.
[147] Eby D M, Farrington K E, Johnson G R. Biomacromolecules,2008, 9: 2487.
[148] Haase N R, Shian S, Sandhage K H, Kröger N. Adv. Funct. Mater., 2011, 21: 4243.
[149] Qian J, Gharibi A, He S L. J. Biomed. Opt., 2009, 14: 6.
[150] Im H, Lee S H, Wittenberg N J, Johnson T W, Lindquist N C, Nagpal P, Norris D J, Oh S H. ACS Nano, 2011, 5: 6244.
[151] Das S K, Khan M M R, Guha A K, Naskar N. Green Chem., 2013, 15: 2548.
[152] Xu Y, Wu Z, Zhang L, Lu H, Yang P, Webley P A, Zhao D. Anal. Chem., 2009, 81: 503.
[153] McAlpine M C, Agnew H D, Rohde R D, Blanco M, Ahmad H, Stuparu A D, Goddard W A, Heath J R. J. Am. Chem. Soc., 2008, 130: 9583.
[154] Sowjanya J A, Singh J, Mohita T, Sarvanan S, Moorthi A, Srinivasan N, Selvamurugan N. Colloid Surf. B, 2013, 109: 294.
[155] Kavya K C, Jayakumar R, Nair S, Chennazhi K P. Int. J. Biol. Macromol., 2013, 59: 255.
[156] Chen Z W, Li Z H, Lin Y H, Yin M L, Ren J S, Qu X G. Biomaterials, 2013, 34: 1364.
[157] Mann S. Nature, 1993, 365: 499.
[158] Zhang L X, Li P C, Liu X H, Du L W, Wang E K. Adv. Mater., 2007, 19: 4279.
[159] Khripin C Y, Pristinski D, Dunphy D R, Brinker C J, Kaehr B. ACS Nano, 2011, 5: 1401.
[160] Masse S, Laurent G, Chuburu F, Cadiou C, Déchamps I, Coradin T. Langmuir, 2008, 24: 4026.
[161] Christian P. Langmuir, 2009, 26: 1405.
[162] Wang Q R, Yu J, Zheng J H, Liu D J, Jiang F, Zhang X, Li W Q. RSC Adv., 2013, 3: 15955.
[163] Dehsorkhi A, Hamley I W. Soft Matter, 2014, 10: 1660.
[164] Yang Y, Nakazawa M, Suzuki M, Kimura M, Shirai H, Hanabusa K. Chem. Mater., 2004, 16: 3791.
[165] Qiao Y, Lin Y, Wang Y, Yang Z, Liu J, Zhou J, Yan Y, Huang J. Nano Lett., 2009, 9: 4500.
[166] Lin Y, Qiao Y, Gao C, Tang P, Liu Y, Li Z, Yan Y, Huang J. Chem. Mater., 2010, 22: 6711.
[167] Shi J Y, Yao Q Z, Zhou G T, Fu S Q. Chem. Eur. J., 2013, 19: 8073.
[168] Xu M, Gratson G, Duoss E, Shepherd R, Lewis J. Soft Matter, 2006, 2: 205.
[169] Melanie M T, Morley O S, Rajesh R N. Biomolecular Catal., ACS Symposium Series, 2008, 986: 171.
[170] Tan C F, Sun Z H, Hong Y L, Li Y Y, Chen X S, Zhang X D. J. Mater. Chem. B, 2013, 1: 3694.
[171] Qian J, Gharibi A, He S L. J. Biomed. Opt., 2009, 14: 6.
[172] Qiao Y, Chen H, Lin Y, Yang Z, Cheng X, Huang J. J. Phys. Chem. C, 2011, 115: 7323.
[173] Chen G, Li M, Li F, Sun S, Xia D. Adv. Mater., 2010, 22: 1258.
[174] Liu L, Yang L Q, Liang H W, Cong H P, Jiang J, Yu S H. ACS Nano, 2013, 7: 1368.
[175] Yao H B, Fang H Y, Wang X H, Yu S H. Chem. Soc. Rev., 2011, 40: 3764.
[176] Sumerel J L, Yang W, Kisailus D, Weaver J C, Choi J H, Morse D E. Chem. Mat., 2003, 15: 4804.
[177] Sewell S L, Wright D W. Chem. Mat., 2006, 18: 3108.
[178] Yan Y, Hao B, Chen G. J. Mater. Chem., 2011, 21: 10755.
[179] Nonoyama T, Kinoshita T, Higuchi M, Nagata K, Tanaka M, Sato K, Kato K. J. Am. Chem. Soc., 2012, 134: 8841.
[180] Schoen A P, Schoen D T, Huggins K N L, Arunagirinathan M A, Heilshorn S C. J. Am. Chem. Soc., 2011, 133: 18202.
[181] Bedford N M, Bhandari R, Slocik J M, Seifert S, Naik R R, Knecht M R. Chem. Mater., 2014, 26: 4082.
[182] Imaz I, Rubio-Martínez M, Saletra W J, Amabilino D B, Maspoch D. J. Am. Chem. Soc., 2009, 131: 18222.
[183] Chiu C Y, Ruan L, Huang Y. Chem. Soc. Rev., 2013, 42: 2512.
[184] Yang H, Li M, Fu L, Tang A, Mann S. Sci Rep., 2013, 3: 1336.

[1] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[2] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[3] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[4] Libo Mao, Huailing Gao, Yufeng Meng, Yulu Yang, Xiangsen Meng, Shuhong Yu. Biomineralization: A Condensed Matter Chemistry [J]. Progress in Chemistry, 2020, 32(8): 1086-1099.
[5] Yanhua Sang, Haihua Pan, Ruikang Tang. Condensed-Matter Chemistry in Biomineralization [J]. Progress in Chemistry, 2020, 32(8): 1100-1114.
[6] Heli Wang, Meihua Zhu, Li Liang, Ting Wu, Fei Zhang, Xiangshu Chen. Preparation and Gas Separation Performance of SSZ-13 Zeolite Membranes [J]. Progress in Chemistry, 2020, 32(4): 423-433.
[7] Qianwen Huang, Xiaowen Zhang, Mi Li, Xiaoyan Wu, Liyong Yuan. Preparation of Functional Fibrous Silica Nanoparticles and Their Applications in Adsorption and Separation [J]. Progress in Chemistry, 2020, 32(2/3): 230-238.
[8] Zhichao Yu, Chun Tang, Li Yao, Qing Gao, Zushun Xu, Tingting Yang. Preparation of Hollow Mesoporous Materials by Polymer-Based Templates [J]. Progress in Chemistry, 2018, 30(12): 1899-1907.
[9] Xiaoxiao Xie, Xiaoming Ma*, Xiangli Ru, Yi Chang, Yuming Guo, Lin Yang*. Biomimetic Mineralization Synthesis of Nanomaterials Under the Mediation of Cells and Potential Applications [J]. Progress in Chemistry, 2018, 30(10): 1511-1523.
[10] Du Xin, Zhao Caixia, Huang Hongwei, Wen Yongqiang, Zhang Xueji. Synthesis of Dendrimer-Like Porous Silica Nanoparticles and Their Applications in Advanced Carrier [J]. Progress in Chemistry, 2016, 28(8): 1131-1147.
[11] Zhang Xiaodong, Dong Han, Wang Yin, Cui Lifeng. Host-Guest Assembly and Application of Ordered Mesoporous Silica Materials [J]. Progress in Chemistry, 2015, 27(10): 1374-1383.
[12] Zeng Feng, Pan Zhenzhen, Zhang Meng, Huang Yongzhuo, Cui Yanna, Xu Qin. Preparation and Application of Ordered Mesoporous Silica Nanoparticles in the Therapy and Diagnosis of Tumor [J]. Progress in Chemistry, 2015, 27(10): 1356-1373.
[13] Bian Shujuan, Wu Hongqing, Jiang Xuheng, Long Yafeng, Chen Yong. Syntheses and Applications of Hybrid Mesoporous Silica Membranes [J]. Progress in Chemistry, 2014, 26(08): 1352-1360.
[14] Shao Zaidong, Zhang Ying, Cheng Xuan. Advances in Mechanically Enhanced Silica Aerogel Monoliths as Thermal Insulating Materials [J]. Progress in Chemistry, 2014, 26(08): 1329-1338.
[15] Li Feihu, Nie Dongyang. Iron-Based Inorganic Mesoporous Materials [J]. Progress in Chemistry, 2014, 26(06): 961-975.
Viewed
Full text


Abstract

Biomimetic Mineralization of Silica