中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (12): 1705-1713 DOI: 10.7536/PC150630 Previous Articles   Next Articles

• Review and comments •

Fabrication and Application of Ultra-Slippery Surfaces Based on Liquid Infusion in Micro/Nano Structure

An Guangming1,2, Ling Shiquan1, Wang Zhiwei1*, Luan Lin3, Wu Tianzhun1*   

  1. 1. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518005, China;
    2. School of Mechanical Engineering, Harbin University of Science and Technology, Harbin 150080, China;
    3. Kuang-Chi Institute of Advanced Technology, Shenzhen 518057, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51475451, 51406221), the Guangdong Innovative and Entrepreneurial Research Team Program (No. 2013S046), the Shenzhen Peacock Plan and Shenzhen Science and Technology Research and Development Projects (No. JC201105201157A).
PDF ( 1983 ) Cited
Export

EndNote

Ris

BibTeX

The ultra-slippery surface is fabricated by infiltrating functionalized micro/nano surface structures with low-surface energy, chemically inert lubricating oil. The lubricating oil is locked by micro/nano structures due to the capillary effect, and a dynamic oil film is formed on the surface. Therefore, the liquid-solid interface is replaced by liquid-liquid interface, leading to the significant reduction of flow resistance. Compared with traditional superhydrophobic surfaces and superoleophobic surfaces with similar low sliding angles, air trapped in the pores is replaced by the lubricating oil, which can provide better pressure stability. Furthermore, ultra-slippery surfaces possess appealing self-healing ability due to the capillary flow of lubricating oil. Because of these significant advantages, recently they have drawn much attention and become a research focus all over the world. So far ultra-slippery surfaces have been investigated for various applications such as anti-icing, heat transfer enhancement, drag reduction, anti-biofouling, microfluidics, etc. However, there are still some important challenges which limit their applications, for example, how to avoid or alleviate the performance deterioration caused by the evaporation of lubricating oil, and how to choose proper process to fabricate various micro/nano structures on different kinds of material. This paper reviews the recent progress of the fabrication and applications of ultra-slippery surfaces, discusses the existing problems, and provides outlook of development tendency.

Contents
1 Introduction
2 Design principles of SLIPS
3 Fabrication technologies of SLIPS
3.1 Overview of fabrication methods
3.2 Chemical reaction
3.3 Spray coating
3.4 Self-assembly fabrication
4 Applications of SLIPS
4.1 Anti-icing application
4.2 Heat transfer enhancement
4.3 Pipeline transportation
4.4 Droplet manipulation
4.5 Marine anti-biofouling
4.6 Bioengineering application
4.7 Sediment removal
5 Conclusion

CLC Number: 

[1] Wong T S, Kang S H, Tang S K Y, Smythe E J, Hatton B D, Grinthal A, Aizenberg J. Nature, 2011, 477: 443.
[2] Yan Y Y, Gao N, Barthlott W. Adv. Colloid Interface Sci., 2011, 169: 80.
[3] Wolfs M, Darmanin T, Guittard F. Polym. Rev., 2013, 53: 460.
[4] Darmanin T, Guittard F. J. Mater. Chem. A, 2014, 2: 16319.
[5] Celia E, Darmanin T, de Givenchy E T, Amigoni S, Guittard F. J. Colloid Interface Sci., 2013, 402: 1.
[6] Bhushan B, Jung Y C.Prog. Mater. Sci., 2011, 56: 1.
[7] Lv P, Xue Y, Shi Y, Lin H, Duan H. Phys. Rev. Lett., 2014, 112: 196101.
[8] Boreyko J B, Collier C P.J. Phys. Chem. C, 2013, 117: 18084.
[9] Bormashenko E, Musin A, Whyman G, Zinigrad M. Langmuir, 2012, 28: 3460.
[10] Tuteja A, Choi W, Ma M, Mabry J M, Mazzella S A, Rutledge G C, Mckinley G H, Cohen R E. Science, 2007, 318: 1618.
[11] Tuteja A, Choi W, Mabry J M, Mckinley G H, Cohen R E. Proc. Natl. Acad. Sci. U. S. A., 2008, 105: 18200.
[12] Liu T L, Kim C J. Science, 2014, 346: 1096.
[13] Wu T, Suzuki Y.Sensor. Actuat. B-Chem., 2011, 156: 401.
[14] Wu T, Suzuki Y. Lab Chip, 2011, 11: 3121.
[15] Yuan L, Wu T, Zhang W, Ling S, Xiang R, Gui X, Zhu Y, Tang Z. J. Mater. Chem. A, 2014, 2: 6952.
[16] Amadei C A, Lai C Y, Heskes D, Chiesa M. J. Chem. Phys., 2014, 141: 7.
[17] Dou R, Chen J, Zhang Y, Wang X, Cui D, Song Y, Jiang L, Wang J. ACS Appl. Mater. Interfaces, 2014, 6: 6998.
[18] Howell C, Vu T L, Lin J J, Kolle S, Juthani N, Watson E, Weaver J C, Alvarenga J, Aizenberg J. ACS. Appl. Mater. Interfaces, 2014, 6: 13299.
[19] Khalil K S, Mahmoudi S R, Abu-Dheir N, Varanasi K K.Appl. Phys. Lett., 2014, 105: 041604.
[20] Bixler G D, Theiss A, Bhushan B, Lee S C. J. Colloid Interface Sci., 2014, 419: 114.
[21] Leslie D C, Waterhouse A, Berthet J B, Valentin T M, Watters A L, Jain A, Kim P, Hatton B D, Nedder A, Donovan K, Super E H, Howell C, Johnson C P, Vu T L, Bolgen D E, Rifai S, Hansen A R, Aizenberg M, Super M, Aizenberg J, Ingber D E.Nat. Biotechnol., 2014, 32: 1134.
[22] Liao R, Zuo Z, Guo C, Yuan Y, Zhuang A. Appl. Surf. Sci., 2014, 317: 701.
[23] Liu K, Cao M, Fujishima A, Jiang L. Chem. Rev., 2014, 114: 10044.
[24] Tao Y, Tao Y, Wang B, Tai Y. Mater. Chem. Phys., 2014, 147: 28.
[25] Wang Y, Shi Y, Pan L, Yang M, Peng L, Zong S, Shi Y, Yu G. Nano Lett., 2014, 14: 4803.
[26] Wei Q, Schlaich C, Prevost S, Schulz A, Boettcher C, Gradzielski M, Qi Z, Haag R, Schalley C A. Adv. Mater., 2014, 26: 7358.
[27] Wu G, An J, Tang X Z, Xiang Y, Yang J. Adv. Funct. Mater., 2014, 24: 6751.
[28] Yang J, Song H, Ji H, Chen B. J. Adhes. Sci. Technol., 2014, 28: 1949.
[29] Yuan Q, Huang X, Zhao Y P. Phys. Fluids, 2014, 26: 092104.
[30] Cui W W, Zhang M L, Zhang D H, Pang W, Zhang H. Appl. Phys. Lett., 2014, 105: 013509.
[31] Yao X, Hu Y H, Grinthal A, Wong T S, Mahadevan L, Aizenberg J. Nat. Mater., 2013, 12: 529.
[32] Epstein A K, Wong T S, Belisle R A, Boggs E M, Aizenberg J. Proc. Natl. Acad. Sci. U. S. A., 2012, 109: 13182.
[33] Smith J D, Dhiman R, Anand S, Reza-Garduno E, Cohen R E, Mckinley G H, Varanasi K K. Soft Matter, 2013, 9: 1772.
[34] Hare E F, Shafrin E G, Zisman W A. J. Phys. Chem., 1954, 58: 236.
[35] Yang J, Song H J, Ji H Y, Chen B B. J. Adhes. Sci. Technol., 2014, 28: 1949.
[36] Kim P, Kreder M J, Alvarenga J, Aizenberg J. Nano Lett., 2013, 13: 1793.
[37] Wang Y Q, Shi Y, Pan L J, Yang M, Peng L L, Zong S, Shi Y, Yu G H. Nano Lett., 2014, 14: 4803.
[38] Liu H L, Zhang P C, Liu M J, Wang S T, Jiang L. Adv. Mater., 2013, 25: 4477.
[39] Ogihara H, Xie J, Okagaki J, Saji T. Langmuir, 2012, 28: 4605.
[40] Lu Y, Sathasivam S, Song J L, Crick C R, Carmalt C J, Parkin I P. Science, 2015, 347: 1132.
[41] Ge D T, Yang L L, Zhang Y F, Rahmawan Y, Yang S. Part. Part. Syst. Char., 2014, 31: 763.
[42] Vogel N, Belisle R A, Hatton B, Wong T S, Aizenberg J. Nat. Commun., 2013, 4: 2176.
[43] Passoni L, Bonvini G, Luzio A, Facibeni A, Bottani C E, di Fonzo F. Langmuir, 2014, 30: 13581.
[44] Zhao N, Xu J, Xie Q D, Weng L H, Guo X L, Zhang X L, Shi L H. Macromol. Rapid Commun., 2005, 26: 1075.
[45] Zhu M, Rong M Z, Zhang M Q. Polym. Int., 2014, 63: 1741.
[46] Erbil H Y, Demirel A L, Avci Y, Mert O. Science, 2003, 299: 1377.
[47] Lu X Y, Zhang C C, Han Y C. Macromol. Rapid.Commun., 2004, 25: 1606.
[48] Shiu J Y, Kuo C W, Chen P L, Mou C Y. Chem. Mater., 2004, 16: 561.
[49] Lau K K S, Bico J, Teo K B K, Chhowalla M, Amaratunga G J, Milne W I, Mckinley G H, Gleason K K. Nano Lett., 2003, 3: 1701.
[50] Chen J, Luo Z, Fan Q, Lv J, Wang J. Small, 2014, 10: 4693.
[51] Subramanyam S B, Rykaczewski K, Varanasi K K. Langmuir, 2013, 29: 13414.
[52] Zhu L, Xue J, Wang Y, Chen Q, Ding J, Wang Q.ACS. Appl. Mater. Interfaces, 2013, 5: 4053.
[53] Kim P, Wong T S, Alvarenga J, Kreder M J, Adorno-Martinez W E, Aizenberg J. ACS Nano, 2012, 6: 6569.
[54] Miljkovic N, Enright R, Wang E N. ACS Nano, 2012, 6: 1776.
[55] Xiao R, Miljkovic N, Enright R, Wang E N. Sci. Rep., 2013, 3: 1998.
[56] Solomon B R, Khalil K S, Varanasi K K. Langmuir, 2014, 30: 10970.
[57] Hao C L, Liu Y H, Chen X M, He Y C, Li Q S, Li K Y, Wang Z K. Sci. Rep., 2014, 4: 7.
[58] Xiao L, Li J, Mieszkin S, Di Fino A, Clare A S, Callow M E, Callow J A, Grunze M, Rosenhahn A, Levkin P A. ACS. Appl. Mater. Interfaces, 2013, 5: 10074.
[59] Epstein A K, Wong T S, Belisle R A, Boggs E M, Aizenberg J. Proc. Natl. Acad. Sci. U. S. A., 2012, 109: 13182.
[60] Charpentier T V J, Neville A, Baudin S, Smith M J, Euvrard M, Bell A, Wang C, Barker R. J. Colloid Interface Sci., 2015, 444: 81.
[1] Juan Ye, Ziqian Lin, Weijian Li, Hongping Xiang, Minzhi Rong, Mingqiu Zhang. Fabrication Strategies to Self-Healing Silicone Materials [J]. Progress in Chemistry, 2023, 35(1): 135-156.
[2] Jinkai Xu, Qianqian Cai, Zhanjiang Yu, Zhongxu Lian, Jiwen Tian, Huadong Yu. Fabrication and Application of Metal-Based Slippery Liquid-Infused Porous Surface [J]. Progress in Chemistry, 2021, 33(6): 958-974.
[3] Rui Hou, Guiqun Li, Yan Zhang, Mingjun Li, Guiming Zhou, Xiaoming Chai. Self-Healing Polymers Materials Based on Dynamic Supramolecular Motifs [J]. Progress in Chemistry, 2019, 31(5): 690-698.
[4] Long Cheng, Dajiang Yu, Jiajian You, Teng Long, Susu Chen, Chuanjian Zhou. Silicone Self-Healing Materials [J]. Progress in Chemistry, 2018, 30(12): 1852-1862.
[5] Na Niu, Zhiying Li, Tingting Gao, Yudong Liu, Xiaoli Liu, Fengqi Liu*. Hydrophobic Association Hydrogel [J]. Progress in Chemistry, 2017, 29(7): 757-765.
[6] Haikun Zheng, Shinan Chang, Yuanyuan Zhao. Anti-Icing & Icephobic Mechanism and Applications of Superhydrophobic/Ultra Slippery Surface [J]. Progress in Chemistry, 2017, 29(1): 102-118.
[7] Xie Xiang, Lv Wenzhen, Chen Runfeng, Huang Wei. Micro/Nano Structure Regulation of Donor/Acceptor Interface for High-Performance Organic Solar Cells [J]. Progress in Chemistry, 2016, 28(11): 1591-1600.
[8] Wei Cunqian, Yan Jie, Tang Hao, Zhang Qinghua, Zhan Xiaoli, Chen Fengqiu. Fabrication and Application of Slippery Liquid-Infused Porous Surface [J]. Progress in Chemistry, 2016, 28(1): 9-17.
[9] Guo Kun, Zhang Dali, Zhang Sheng, Li Bangjing. Research Progress and Applications of Self-Healing Conductive Materials [J]. Progress in Chemistry, 2015, 27(6): 633-640.
[10] Li Sichao, Han Peng, Xu Huaping. Self-Healing Polymeric Materials [J]. Progress in Chemistry, 2012, 24(07): 1346-1352.
[11] Qi Hengzhi, Zhao Yunhui, Zhu Kongying, Yuan Xiaoyan. Research Progresses in Self-Healing Polymer Materials [J]. Progress in Chemistry, 2011, 23(12): 2560-2567.
[12] Wang Haiping, Rong Minzhi, Zhang Mingqiu. Self-Healing Polymers and Polymer-Based Composites Containing Microcapsules [J]. Progress in Chemistry, 2010, 22(12): 2397-2407.
[13] Zhao Ning,Lu Xiaoying,Zhang Xiaoyan,Liu Haiyun,Tan Shuaixia,Xu Jian**. Progress in Superhydrophobic Surfaces [J]. Progress in Chemistry, 2007, 19(06): 860-871.