中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (10): 1511-1523 DOI: 10.7536/PC180807 Previous Articles   Next Articles

• Review •

Biomimetic Mineralization Synthesis of Nanomaterials Under the Mediation of Cells and Potential Applications

Xiaoxiao Xie, Xiaoming Ma*, Xiangli Ru, Yi Chang, Yuming Guo, Lin Yang*   

  1. School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21571053, 21877027, 21601052), the 111 Project (No. D17007), and the Henan Center for Outstanding Overseas Scientists(No. GZS2018003).
PDF ( 839 ) Cited
Export

EndNote

Ris

BibTeX

Biomineralization has endowed many organisms with peculiar functions under the modification of the inorganic nanostructure biosynthesized under the mediation of the cells. Recently, with the development of biosynthesis and nanotechnology, using organisms to synthesize nanomaterials has attracted the wide attention of researchers. Compared with traditional physical and chemical synthesis methods, biosynthesis has the advantages of simple operation and environmental friendliness. So far, there have been many studies on the use of bacteria, fungi, some plants and human cells to successfully produce various shapes and sizes of inorganic nanomaterials. The obtained nanomaterials not only have good dispersibility and stability, but also have excellent application performance. Hence, it is widely used in the fields of catalysis, electrology, optics and biomedicine, etc. The biomimetic mineralization synthesis of nanoparticles is likely to provide scientific reference for the discovery of novel nanomaterials. This review presents the related knowledge of biological nanotechnology and the research progresseof nanomaterials synthesized by different organisms. The current main problems of biosynthetic nanomaterials, progress of research contents and innovation points of are elaborated in detail.
Contents
1 Introduction
2 Biomimetic mineralization synthesis of nanomaterials under the mediation of living cells
2.1 Bacterial cells
2.2 Fungus cells
2.3 Human cells
2.4 Plant cells extract
3 Study of biosynthetic mechanism of nanomaterials under the mediation of living cells
3.1 Biosynthetic mechanism of nanomaterials under the mediation of living cells
3.2 Regulating factors of biosynthesis mechanism of nanomaterials
4 Applications of the nanomaterials
5 Conclusion and outlook

CLC Number: 

[1] Dameron C T, Reese R N, Mehra R K, Kortan A R, Carroll P J, Steigerwald M L, Brus L E, Winge D R. Nature, 1989, 338:596.
[2] Thakkar K N, Mhatre S S, Parikh R Y. Nanomedicine Nanotechnology Biology & Medicine, 2010, 6:257.
[3] Syed B, Bisht N, Bhat P S, Nikhil K R, Prasad A, Dhananjaya B L, Satish S, Prasad H, Nagendra P M N. Nano-Structures & Nano-Objects, 2017, 10:112.
[4] Mallick K, Witcomb M J, Scurrell M S. J. Mater. Sci., 2004, 39:4459.
[5] Rasool U, Hemalatha S. Mater. Lett., 2017, 194:176.
[6] Roh Y, Lauf R J, Mcmillan A D, Zhang C, Rawn C J, Bai J, Phelps T J. Solid State Commun., 2001, 118:529.
[7] Órdenesaenishanslins N A, Saona L A, Durántoro V M, Monrás J P, Bravo D M, Pérezdonoso J M. Microb. Cell. Fact., 2014, 13:1.
[8] Nair B, Pradeep T. Cryst. Growth Des., 2002, 2:293.
[9] Srivastava P, Kowshik M. Appl. Environ. Microbiol., 2017, 83(7):e03091.
[10] Husseiny M I, El-Aziz M A, Badr Y, Mahmoud M A. Spectrochim Acta A, 2007, 67(3/4):1003.
[11] Khan S A, Ahmad A. Mater. Res. Bull., 2013, 48:4134.
[12] Ahmad A. Nanotechnology, 2003, 14:824.
[13] Bhainsa K C, D'Souza S F. Colloids Surf., B, 2006, 47:160.
[14] Kalaiselvi A, Roopan S M, Madhumitha G, Ramalingam C, Elango G. Spectrochim. Acta A, 2015, 135:116.
[15] Merzlyak A, Lee S W. Curr. Opin. Chem. Biol., 2006, 10:246.
[16] Wang T, Jin X, Chen Z, Megharaj M, Naidu R. Sci. Total Environ., 2014, 466, 210.
[17] Salvadori M R, Lepre L F, Ando R A, Ca O D N. PLoS One, 2013, 8:80519.
[18] Mohanpuria P, Rana N K, Yadav S K. J. Nanopart. Res., 2008, 10:507.
[19] Phanjom P, Ahmed G. Nanoscience & Nanotechnology, 2015, 5:14.
[20] Hussain I, Singh N B, Singh A, Singh H, Singh S C. Biotechnol. Lett., 2016, 38:545.
[21] Bindhu M R, Umadevi M. Spectrochim. Acta A, 2015, 135:373.
[22] Sunkar S, Nachiyar C V. Asian Pac. J. Trop. Biomed., 2012, 2:953.
[23] Richter A P, Brown J S, Bharti B, Wang A, Gangwal S, Houck K, Hubal E A C, Paunov V N, Stoyanov S D, Velev O D. Nat. Nanotechnol., 2015, 10:817.
[24] Kothari S K, Marschner H, George E. New Phytol., 1990, 116:303.
[25] Jayaseelan C, Rahuman A A, Kirthi A V, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Rao K V. Spectrochim. Acta A, 2012, 90:78.
[26] Wen L, Lin Z H, Gu P Y, Zhou J Z, Yao B Y, Chen G L, Fu J K. J. Nanopart. Res., 2009, 11:279.
[27] Murugan M, Anthony K J P, Jeyaraj M, Rathinam N K, Gurunathan S. J. Ind. Eng. Chem., 2014, 20:1713.
[28] Gholami-Shabani M, Shams-Ghahfarokhi M, Gholami-Shabani Z, Akbarzadeh A, Riazi G, Ajdari S, Amani A, Razzaghi-Abyaneh M. Process Biochem., 2015, 50:1076.
[29] Ghorbani H. Minerva Biotecnologica, 2015, 27:171.
[30] Narayanan K B, Sakthivel N. Adv. Colloid Interface Sci., 2010, 156:1.
[31] Sathishkumar S P A W G. Int. J. Appl. Pharm., 2016, 8:43.
[32] Shankar S S, Ahmad A, Pasricha R, Sastry M. J. Mater. Chem., 2003, 13:1822.
[33] Dhanasekar N N, Rahul G R, Narayanan K B, Raman G, Sakthivel N. J. Microbiol. Biotechnol., 2015, 25:1129.
[34] Kathiresan K, Manivannan S, Nabeel M A, Dhivya B. Colloids Surface B, 2009, 71:133.
[35] El-Batal A I, Elkenawy N M, Yassin A S, Amin M A. Biotechnol. Rep., 2015, 5:31.
[36] Volesky B, Holan Z R. Biotechnol. Prog., 2010, 11:235.
[37] Kowshik M, Vogel W, Urban J, Kulkarni S K, Paknikar K M. Adv. Mater., 2010, 14:815.
[38] Jha A K, Prasad K, Prasad K. Biotechnol. J., 2009, 4:1582.
[39] Ma X M, Chen H F, Lin Y, Wang K, Guo Y M, Yuan L. Angew. Chem. Int. Ed., 2011, 50:7414.
[40] Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar S, Khan M I, Ramani R, Parischa R, Ajayakumar P V, Alam M, Sastry M, Kumar R. Angew. Chem. Int. Ed., 2001, 40:3585.
[41] Ahmad A, Senapati S, Khan M I, Kumar R, Sastry M. J. Biomed. Nanotechnol., 2005, 1:47.
[42] Gericke M, Pinches A. Gold Bulletin, 2006, 39:22.
[43] Das S K, Liang J, Schmidt M, Laffir F, Marsili E. ACS Nano, 2012, 6:6165.
[44] 熊玲红(Xiong L H), 崔然(Cui R),刘茴茴(Liu H H), 李勇(Li Y), 谢志雄(Xie Z X), 张志凌(Zhang Z L), 胡斌(Hu B), 庞代文(Pang D W). 中国科学化学(Sci. Sin. Chem.), 2016, 46:163.
[45] Gericke M, Pinches A. Hydrometallurgy, 2006, 83:132.
[46] Agnihotri M, Joshi S, Kumar A R, Zinjarde S, Kulkarni S. Mater. Lett., 2009, 63:1231.
[47] Pimprikar P S, Joshi S S, Kumar A R, Zinjarde S S, Kulkarni S K. Colloids Surface B, 2009, 74:309.
[48] Dameron C T, Winge D R. J. Inorg. Biochem., 1989, 36:185.
[49] Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni S K, Paknikar K M. Biotechnol. Bioeng., 2002, 78:583.
[50] Kowshik M, Vogel W, Urban J, Kulkarni S K, Paknikar K M. Adv. Mater., 2002, 14:815.
[51] Cui R, Liu H H, Xie H Y, Zhang Z L, Yang Y R, Pang D W, Xie Z X, Chen B B, Hu B, Shen P. Adv. Funct. Mater., 2009, 19:2359.
[52] Singh A K, Talat M, Singh D P, Srivastava O N. J. Nanopart. Res., 2010, 12:1667.
[53] Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan M I. Chembiochem, 2002, 3:461.
[54] Wang B, Liu P, Jiang W G, Pan H H, Xu X R, Tang R K. Angew. Chem. Int. Ed., 2008, 47:3560.
[55] Wang G C, Cao R Y, Chen R, Mo L J, Han J F, Wang X Y, Xu X R, Jiang T, Deng Y Q, Lyu K, Zhu S Y, Qin E D, Tang R K, Qin C. Proc. Natl. Acad. Sci. U.S.A., 2013, 110:7619.
[56] Xiong W, Zhao X H, Zhu G X, Shao C Y, Li Y L, Ma W M, Xu X R, Tang R K. Angew. Chem. Int. Ed., 2015, 127:11961.
[57] Yang S H, Lee K B, Kong B. Angew. Chem. Int. Ed., 2009, 121:9324.
[58] Park J, Kim K, Lee J, Choi Y, Hong D, Yang S,Caruso F, Lee Y, Choi I. Angew. Chem. Int. Ed., 2014, 53:12420.
[59] Li W, Liu Z, Liu C Q, Guan Y J, Ren J S, Qu X G. Angew. Chem. Int. Ed., 2017, 56:13661.
[60] Anshup A, Venkataraman J S, Subramaniam C, Kumar R R, Priya S, Kumar T R, Omkumar R V, John A, Pradeep T. Langmuir, 2005, 21:11562.
[61] Shamsaie A, Jonczyk M, Sturgis J, Robinson J P, Irudayaraj J. J. Biomed. Opt., 2007, 12:020502.
[62] El-Said W A, Cho H Y, Yea C H, Choi J W. Adv. Mater., 2014, 26:910.
[63] Tan L J, Wan A J, Li H L. ACS Appl. Mater. Inter., 2014, 6:18.
[64] Bao P, Chen Z, Tai R Z, Shen H M, Martin F L, Zhu Y G. J. Proteome Res., 2015, 14:1127.
[65] Ishida K, Cipriano T F, Rocha G M, Weissmüller G, Gomes F, Miranda K, Rozental S. Mem. Inst. Oswaldo Cruz, 2014, 109:220.
[66] Benavente-Valdés J R, Méndez-Zavala A, Morales-Oyervides L, Chisti Y, Montañez J. J. Chem. Technol. Biotechnol., 2017, 92(9):2453
[67] Lengke M F, And M E F, Southam G. Langmuir, 2006, 22:2780.
[68] Mohanpuria P, Rana N K, Yadav S K. J. Nanopart. Res., 2008, 10:507.
[69] Mahdavi M, Namvar F, Ahmad M B, Mohamad R. Mol., 2013, 18(5):5954.
[70] Khan A A, Fox E K, Górzny M L, Nikulina E, Brougham D F, Wege C, Bittner A M. Langmuir, 2013, 29:2094.
[71] Gopinath K, Karthika V, Gowri S, Senthilkumar V, Kumaresan S, Arumugam A. Journal of Nanostructure in Chemistry, 2014, 4:83.
[72] Castro L, Blázquez M L, Muñoz J A, González F, García-Balboa C, Ballester A. Process Biochem., 2011, 46:1076.
[73] Shaligram N S, Bule M, Bhambure R, Singhal R S, Singh S K, Szakacs G, Pandey A. Process Biochem., 2009, 44:939.
[74] Rajakumar G, Rahuman A A, Priyamvada B, Khanna V G, Kumar D K, Sujin P J. Mater. Lett., 2012, 68:115.
[75] Naika H R, Lingaraju K, Manjunath K, Kumar D, Nagaraju G, Suresh D, Nagabhushana H. J. Taibah University for Science, 2015, 9:7.
[76] Arumugam A, Karthikeyan C, Haja Hameed A S, Gopinath K, Gowri S, Karthika V. Mater. Sci. Eng. C, 2015, 49:408.
[77] Elango G, Roopan S M. Spectrochim. Acta A, 2015, 139:367.
[78] Tian L J, Li W W, Zhu T T, Chen J J, Wang W K, An P F, Zhang L, Dong J C, Guan Y, Liu D F. J. Am. Chem. Soc., 2017, 139(35):12149.
[79] Bao H F, Hao N, Yang Y X, Zhao D Y. Nano Res., 2010, 3:481.
[80] Vido K, Spector D, Lagniel G, Lopez S, Toledano M B, Labarre J. J. Biol. Chem., 2001, 276:8469.
[81] Massardo D R, Pontieri P, Maddaluno L, Stefano M D, Alifano P, Giudice L D. BioMetals, 2009, 22:1089.
[82] Philip D. Spectrochim. Acta A, 2009, 73:374.
[83] Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K. Spectrochim. Acta A, 2011, 79:594.
[84] Ahmad N, Sharma S. Green & Sustainable Chemistry, 2012, 2:141.
[85] Dubey S P, Lahtinen M, Sillanpää M. Process Biochem., 2010, 45:1065.
[86] Klaus T, Joerger R, Olsson E. Proc. National Acad. Sci., 1999, 96:13611.
[87] Zhao R, Wang B, Yang X, Xiao Y, Wang X, Shao C, Tang R K. Angew. Chem. Int. Ed., 2016, 55:5225.
[1] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[2] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[3] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[4] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[5] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[6] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[7] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[8] Guohua Xu, Kai Cheng, Chen Wang, Conggang Li. Multi-Hierarchical Structural Characterization of Biological Condensed Matters [J]. Progress in Chemistry, 2020, 32(8): 1231-1239.
[9] Libo Mao, Huailing Gao, Yufeng Meng, Yulu Yang, Xiangsen Meng, Shuhong Yu. Biomineralization: A Condensed Matter Chemistry [J]. Progress in Chemistry, 2020, 32(8): 1086-1099.
[10] Yanhua Sang, Haihua Pan, Ruikang Tang. Condensed-Matter Chemistry in Biomineralization [J]. Progress in Chemistry, 2020, 32(8): 1100-1114.
[11] Qiao Jiang, Xuehui Xu, Baoquan Ding. Regulation of Condensed States of Biological Macromolecules by Rationally Designed Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1128-1139.
[12] Yang Liu, Xinbo Zhang, Yingcan Zhao. Two-Dimensional MoS2 Nanomaterials and Applications in Water Treatment [J]. Progress in Chemistry, 2020, 32(5): 642-655.
[13] Haodeng Chen, Jianxing Xu, Shaomin Ji, Wenjin Ji, Lifeng Cui, Yanping Huo. Application of MOFs Derived Metal Oxides and Composites in Anode Materials of Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(2/3): 298-308.
[14] Lei Zhu, Jianan Wang, Jianwei Liu, Ling Wang, Wei Yan. Applications of Electrospun One-Dimensional Nanomaterials in Gas Sensors [J]. Progress in Chemistry, 2020, 32(2/3): 344-360.
[15] Wei Li, Ziyu Yang, Yanglong Hou, Song Gao. Controllable Preparation and Magnetism Control of Two-Dimensional Magnetic Nanomaterials [J]. Progress in Chemistry, 2020, 32(10): 1437-1451.