中文
Announcement
More
Progress in Chemistry 2012, Vol. Issue (9): 1776-1784 Previous Articles   Next Articles

• Review •

Double Metal Cyanide Complex Catalyst and Its Catalysis for Epoxides-Involved Polymerization

Sun Xueke1, Chen Shang2, Zhang Xinghong1, Qi Guorong1   

  1. 1. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China;
    2. College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China) Abstract This review focuses on the recent advances in double metal cyanide complex (DMCC) catalyst and its catalysis for epoxides-involved polymerizations. DMCC is an inorganic coordinated polymer with three- dimensional network, in which the inner metal M is linked with the external metal M by several cyano-bridges ( M-C N-M, generally, M=divalent metal ions such as Zn2+, Fe2+, Co2+, Ni2+, et al., M=transition metal ions such as Fe2+, Fe3+, Co2+, Co3+, Ni2+, et al). The external metal M on the surface of the catalyst is generally considered to be the active site for the polymerizations due to its unsaturated coordinated structure. DMCC catalyst was initially applied to the catalysis of the ring-opening polymerization (ROP) of epoxides, and then modified and used as a highly active catalyst for making polyether-polyols with both moderate or high molecular weights and low unsaturation degrees. Later, this catalyst was utilized to catalyze the alternating copolymerization of epoxides and CO2 for producing aliphatic polycarbonates. The productivity of DMCC-catalyzed epoxides/CO2 copolymerization is clearly higher than those of other heterogeneous catalysts, while the polycarbonate selectivity of this catalyst is unsatisfied, e.g.: for propylene oxide (PO)/CO2 copolymerization, the maximum alternating degree of the resultant copolymer was up to ~74%. That is, the copolymer is a poly (ether-carbonate) with random chain structure. However, Zn-Co DMCC exhibits high activity (TOF: 3 815h-1) for cyclohexene oxide (CHO)/CO2 copolymerization with high alternating degree of >90%. Furthermore, this catalyst can also be applied to catalyze epoxide/cyclic anhydrides for producing polyesters, epoxide/CS2 copolymerization for producing polythiocarbonates, as well as epoxide/cyclic anhydride/CO2 terpolymerization for producing poly (carbonate-ester
  • Received: Revised: Online: Published:
PDF ( 1212 ) Cited
Export

EndNote

Ris

BibTeX

This review focuses on the recent advances in double metal cyanide complex (DMCC) catalyst and its catalysis for epoxides-involved polymerizations. DMCC is an inorganic coordinated polymer with three- dimensional network, in which the inner metal M is linked with the external metal M by several cyano-bridges (M—C≡N—M[JG)], generally, M=divalent metal ions such as Zn2+, Fe2+, Co2+, Ni2+, et al., M=transition metal ions such as Fe2+, Fe3+, Co2+, Co3+, Ni2+, et al). The external metal M on the surface of the catalyst is generally considered to be the active site for the polymerizations due to its unsaturated coordinated structure. DMCC catalyst was initially applied to the catalysis of the ring-opening polymerization (ROP) of epoxides, and then modified and used as a highly active catalyst for making polyether-polyols with both moderate or high molecular weights and low unsaturation degrees. Later, this catalyst was utilized to catalyze the alternating copolymerization of epoxides and CO2 for producing aliphatic polycarbonates. The productivity of DMCC-catalyzed epoxides/CO2 copolymerization is clearly higher than those of other heterogeneous catalysts, while the polycarbonate selectivity of this catalyst is unsatisfied, e.g.: for propylene oxide (PO)/CO2 copolymerization, the maximum alternating degree of the resultant copolymer was up to ~74%. That is, the copolymer is a poly (ether-carbonate) with random chain structure. However, Zn-Co DMCC exhibits high activity (TOF: 3 815h-1) for cyclohexene oxide (CHO)/CO2 copolymerization with high alternating degree of >90%. Furthermore, this catalyst can also be applied to catalyze epoxide/cyclic anhydrides for producing polyesters, epoxide/CS2 copolymerization for producing polythiocarbonates, as well as epoxide/cyclic anhydride/CO2 terpolymerization for producing poly (carbonate-ester)s with high productivity. Based on the research work of our group in recent ten years, this review will discuss the possible structure of the active sites of DMCC and related catalytic mechanism, as well as some common problems for DMCC and DMCC catalyzed polymerizations and possible solutions. Content 1 Introduction
2 Preparation and structure of DMCC
3 Ring-opening polymerization of epoxides catalyzed by DMCC
4 Copolymerization of CO2/epoxides catalyzed by DMCC
5 Copolymerization of epoxides/cyclic anhydride and terpolymerization of CO2/epoxide/cyclic anhydride catalyzed by DMCC
6 Copolymerization of CS2/epoxides catalyzed by DMCC
7 Conclusions and outlook

CLC Number: 

[1] Herold R J. Macromol. Synth., 1974, 5: 9
[2] 华正江(Hua Z J), 陈上(Chen S), 方佐(Fang Z), 戚国荣(Qi G R). 高分子学报(Acta Polymerica Sinica), 2004, 4: 551-555
[3] Hua Z, Qi G, Chen S. J. Appl. Polym. Sci., 2004, 93: 1788-1792
[4] Wang D, Zhang G, Zhang Y, Gao Y, Zhao Y, Zhou C, Zhang Q, Wang X. J. Appl. Polym. Sci., 2007, 103: 417-424
[5] Suh H S, Ha J Y, Yoon J H, Ha C S, Suh H, Kim I. React. Funct. Polym., 2010, 70: 288-293
[6] Darensbourg D J, Adams M J, Yarbrough J C. Inorg. Chem., 2001, 40: 6543-6544
[7] Darensbourg D J, Adams M J, Yarbrough J C, Phelps A L. Inorg. Chem., 2003, 42: 7809-7818
[8] Chen S, Hua Z J, Fang Z, Qi G R. Polymer, 2004, 45: 6519-6524
[9] Shang C, Qi G R, Hua Z J, Yan H Q. J. Polym. Sci. Pol. Chem., 2004, 42: 5284-5291
[10] Yi M J, Byun S H, Ha C S, Park D W, Kim I. Solid State Ionics, 2004, 172: 139-144
[11] Kim I, Yi M J, Byun S H, Park D W, Kim B U, Ha C S. Macromol. Symp., 2005, 224: 181-192
[12] Kim I, Yi M J, Lee K J, Park D W, Kim B U, Ha C S. Catal. Today, 2006, 111: 292-296
[13] Chen S, Zhang X, Lin F, Qi G. React. Kinet. Catal. Lett., 2007, 91: 69-75
[14] Zhang X H, Chen S, Wu X M, Sun X K, Liu F, Qi G R. Chin. Chem. Lett., 2007, 18: 887-890
[15] Sun X K, Zhang X H, Liu F, Chen S, Du B Y, Wang Q, Fan Z Q, Qi G R. J. Polym. Sci. Pol. Chem., 2008, 46: 3128-3139
[16] Lee I K, Ha J Y, Cao C, Park D W, Ha C S, Kim I. Catal. Today, 2009, 148: 389-397
[17] Liu Y, Huang K, Peng D, Wu H. Polymer, 2006, 47: 8453-8461
[18] Jeske R C, Rowley J M, Coates G W. Angew. Chem. Int. Edi., 2008, 47: 6041-6044
[19] Song P F, Xiao M, Du F G, Wang S J, Gan L Q, Liu G Q, Meng Y Z. J. Appl. Polym. Sci., 2008, 109: 4121-4129
[20] Yu J G, Huang K L, Liu S Q, Tang J C. Chin. J. Chem., 2008, 26: 560-563
[21] Yu J G, Huang K L, Yang Q, Liu Y F. Physica E, 2009, 41: 771-774
[22] Sun X K, Zhang X H, Chen S, Du B Y, Wang Q, Fan Z Q, Qi G R. Polymer, 2010, 51: 5719-5725
[23] Dharman M M, Yu J I, Ahn J Y, Park D W. Green Chem., 2009, 11: 1754-1757
[24] Srivastava R, Srinivas D, Ratnasamy P. J. Catal., 2006, 241: 34-44
[25] Satyarthi J K, Srinivas D, Ratnasamy P. Appl. Catal. A-Gen., 2011, 391: 427-435
[26] Yan F, Yuan Z, Lu P, Luo W, Yang L, Deng L. Renew. Energy, 2011, 36: 2026-2031
[27] Peeters A, Valvekens P, Vermoortele F, Ameloot R, Kirschhock C, De Vos D. Chem. Commun., 2011, 47: 4114-4116
[28] Sebastian J, Srinivas D. Chem. Commun., 2011, 47: 10449-10451
[29] Kuyper J, Boxhoorn G. J. Catal., 1987, 105: 163-174
[30] Kaye S S, Long J R. J. Am. Chem. Soc., 2005, 127: 6506-6507
[31] Qin Y S, Wang X H, Wang F S. Progress in Chemistry, 2011, 23(4): 613-622
[32] 于剑昆(Yu J). 广州化学(Guangzhou Chemistry), 2004, 29(3): 47-54
[33] Zhang X H, Wei R J, Sun X K, Zhang J F, Du B Y, Fan Z Q, Qi G R. Polymer, 2011, 52: 5494-5502
[34] Chen S, Xiao Z, Ma M. J. Appl. Polym. Sci., 2008, 107: 3871-3877
[35] Wu L C, Yu A F, Zhang M, Liu B H, Chen L B. J. Appl. Polym. Sci., 2004, 92: 1302-1309
[36] Huang Y J, Qi G R, Wang Y H. J. Polym. Sci. Pol. Chem., 2002, 40: 1142-1150
[37] Huang Y J, Qi G R, Chen L S. Appl. Catal. A-Gen., 2003, 240: 263-271
[38] Huang Y J, Zhang X H, Hua Z J, Chen S L, Qi G R. Macromol. Chem. Physics, 2010, 211: 1229-1237
[39] Huang Y J, Zhang X H, Hua Z J, Qi G R. Chin. Chem. Lett., 2010, 21: 897-901
[40] Zhang X H, Hua Z J, Chen S, Liu F, Sun X K, Qi G R. Appl. Catal. A-Gen., 2007, 325: 91-98
[41] Garcia J L, Jang E J, Alper H. J. Appl. Polym. Sci., 2002, 86: 1553-1557
[42] Kim I, Ahn J T, Ha C S, Yang C S, Park I. Polymer, 2003, 44: 3417-3428
[43] Lee S, Baek S T, Anas K, Ha C S, Park D W, Lee J W, Kim I. Polymer, 2007, 48: 4361-4367
[44] 田杰生(Tian J S), 王金泉(Wang J Q), 杜亚(Du Y), 何良年(He L N). 化学进展(Prog. Chem.), 2006, 18(1): 74-79
[45] Robertson N J, Qin Z Q, Dallinger G C, Lobkovsky E B, Lee S, Coates G W. Dalton Trans., 2006, 5390-5395
[46] Liu Y, Peng D, Huang K, Liu S, Liu Z. J. Appl. Polym. Sci., 2011, 122: 3248-3254
[47] Huijser S, HosseiniNejad E, Sablong R l, Jong C d, Koning C E, Duchateau R. Macromolecules, 2011, 44: 1132-1139
[48] Zhang X H, Liu F, Sun X K, Chen S, Du B Y, Qi G R, Wan K M. Macromolecules, 2008, 41: 1587-1590
[49] 张兴宏(Zhang X H), 黄亦军(Huang Y J), 刘斐(Liu F), 孙学科(Sun X K), 范志强(Fan Z Q), 戚国荣(Qi G R). 高分子学报(Acta Polymerica Sinica), 2009, 6: 546-552
[50] Darensbourg D J, Andreatta J R, Jungman M J, Reibenspies J H. Dalton Trans., 2009, 8891-8899
[51] 肖红戟(Xiao H J), 杨淑英(Yang S Y), 陈立班(Chen L B). 高分子材料科学与工程(Polymer Materials Science and Engineering), 1995, 11(4): 32-36
[52] Peng D M, Huang K L, Liu Y F, Liu S Q, Wu H, Xiao H. Polym. Bull., 2007, 59: 117-125
[1] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[6] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[7] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[8] Zheng Chen, Zhenhua Jiang. Discussion on Some Chemical Problems of Polymer Condensed Statein Solvent-Free Polymer Production Technology [J]. Progress in Chemistry, 2022, 34(7): 1576-1589.
[9] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[10] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[11] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[12] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[13] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[14] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.
[15] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.