English
新闻公告
More
化学进展 2022, Vol. 34 Issue (2): 342-355 DOI: 10.7536/PC210101 前一篇   后一篇

• 综述 •

基于骨组织工程的静电纺纳米纤维

牛小连1, 刘柯君1, 廖子明1, 徐慧伦1, 陈维毅1,2, 黄棣1,2,*()   

  1. 1 太原理工大学生物医学工程学院 生物医学工程系 纳米生物材料与再生医学研究中心 太原 030024
    2 太原理工大学生物医学工程研究所 材料强度与结构冲击山西省重点实验室 太原 030024
  • 收稿日期:2021-01-05 修回日期:2021-04-28 出版日期:2022-02-20 发布日期:2021-07-29
  • 通讯作者: 黄棣
  • 基金资助:
    国家自然科学基金项目(11632013); 国家自然科学基金项目(11502158)

Electrospinning Nanofibers Based on Bone Tissue Engineering

Xiaolian Niu1, Kejun Liu1, Ziming Liao1, Huilun Xu1, Weiyi Chen1,2, Di Huang1,2()   

  1. 1 Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology,Taiyuan 030024, China
    2 Institute of Applied Mechanics & Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology,Taiyuan 030024, China
  • Received:2021-01-05 Revised:2021-04-28 Online:2022-02-20 Published:2021-07-29
  • Contact: Di Huang
  • Supported by:
    National Natural Science Foundation of China(11632013); National Natural Science Foundation of China(11502158)

通过模仿天然骨的成分、结构特性对材料进行设计与调控,获得新型仿生人工骨修复材料,这已成为骨修复材料发展的主要趋势之一。静电纺纳米纤维具有可调控的纳米结构、高孔隙率和大比表面积,可以模拟天然细胞外基质的结构和生物功能,被广泛应用于骨组织工程。本文提供一个基于骨组织工程的静电纺纳米纤维的全面概述。首先简要介绍了骨组织工程,并讨论了静电纺原理、参数和典型设备。随后,讨论了静电纺纳米纤维的表面改性方法,并通过关注最具代表性的实例重点介绍了与静电纺纳米纤维和静电纺纳米纤维增强复合材料的应用最相关的最新进展。此外,本综述展望了静电纺纳米纤维未来发展的挑战、机遇以及新方向。

It has become one of the main trends in the development of bone repair materials to design and control materials by imitating the composition and structural characteristics of natural bone to obtain new bionic artificial bone repair materials. Electrospun nanofibers are widely used in bone tissue engineering because of their adjustable nanostructure, high porosity, large specific surface area, and the ability to mimic the structure and biological functions of natural extracellular matrix. This review provides a comprehensive overview of electrospun nanofibers based on bone tissue engineering. We begin with a brief introduction of bone tissue engineering, followed by discussion of electrospinning principle, parameters and typical apparatus. We then discuss surface modification methods of electrospun nanofiber and highlight the most relevant and recent advances related to the applications of electrospun nanofibers and electrospun nanofiber reinforced composites by focusing on the most representative examples. Furthermore, we also offer perspectives of electrospun nanofibers on the challenges, opportunities, and new directions for future development.

Contents

1 Introduction

2 Bone tissue engineering

3 Electrospinning

3.1 Mechanism of electrospinning

3.2 Electrospinning equipment and methods

3.3 Influence of processing parameters

4 Surface modification of electrospun fibers

4.1 Plasma modification

4.2 Surface grafting

4.3 Surface chemical modification

5 Application of electrospun fibers in bone tissue engineering

5.1 Bone Defect Regeneration

5.2 Cartilage Defect Repair

5.3 Osteochondral Tissue Engineering

6 Conclusion and outlook

()
图1 (a)以支架为基础的组织工程策略实现骨组织再生的概念;(b)支架结构影响细胞的结合和铺张[10]
Fig. 1 (a) The concept of skeletal tissue regeneration via scaffold-based tissue engineering strategies; (b) Scaffold architecture affects cell binding and spreading[10]
图2 用于组织工程与再生医学的生物混合制备发展时间线及代表论文:不同制造技术的融合以制造更复杂的3D组织结构[23]
Fig. 2 Timeline and milestone papers toward hybrid fabrication for tissue engineering and regenerative medicine and bio-fabrication: the convergence of different fabrication technologies to manufacture more complex 3D tissue constructs[23]
图3 (a)以聚合物纤维为支架修复骨、软骨、骨软骨缺损[18];(b)自愈合的SF基水凝胶制用于骨再生[19];(c)3D打印机械稳定、表面电荷可调的无钙海藻酸基(Alg/ε-PL)支架,以提高细胞黏附和生物功能化[20];(d)制备3D打印中空结构硅酸盐生物陶瓷支架,通过管道结构和生物活性离子的协同作用进行血管化骨再生[21];(e)CaCO3/MgO/CMC/BMP2支架的制备及其在体内的应用[22]
Fig. 3 (a) Treatments of bone, cartilage, and osteochondral defects with polymer fibers as scaffolds[18]; (b) Fabrication of self-healing SF-based hydrogel for bone regeneration[19]; (c) 3D printing of mechanically stable calcium-free alginate-based (Alg/ε-PL) scaffolds with tunable surface charge to enable cell adhesion and facile biofunctionalization[20]; (d) The fabrication of the 3D-printed silicate bioceramic scaffolds with hollow struts for vascularized bone regeneration by means of the synergistic effect of the pipeline structure and bioactive ions[21]; (e) Preparation of CaCO3/MgO/CMC/BMP2 scaffolds and their applications in vivo[22]
图4 (a)典型的垂直设置静电纺丝设备[24];(b)照片显示PEO悬垂液滴从球形演变为圆锥形,然后喷射出射流的过程[26];(c)静电纺丝射流的路径[26];(d)作用在带电射流上的力的示意图。受扰动区域上方的电荷推动,受扰动段受FDO向下和向外的力。同时,受到扰动区域下方的电荷的推动,被扰动的段受FUO向上和向外的力。净力FR(横向静电力)相对于笔直射流沿径向方向,并且随着段的径向位移增加,其随时间呈指数增长。FR造成射流的弯曲[26];(e)一个喷头处液滴喷出四股射流,每一股都有完善的带电弯曲线圈[26];(f)静电纺聚间苯二甲酰胺纳米纤维纱线的广角X射线衍射图[26];(g)聚乙二唑啉和荧光标记白蛋白纳米纤维的荧光显微镜图像[26]
Fig. 4 (a) Typical vertical setup of electrospinning apparatus[24]; (b) Photographs showing the evolution of a pendant drop of PEO in water from a spherical to a conical shape, followed by the ejection of a jet[26]; (c) The path of an electrospun jet[26]; (d) Schematic illustration of the forces acting on a charged jet. The perturbed segment is forced by FDO downward and outward by the charges above the perturbed region. At the same time, the perturbed segment is forced by FUO upward and outward by the charges below the perturbation. The net force, FR (the lateral electrostatic force), is along a radial direction with respect to the straight jet, and it grows exponentially with time as the radial displacement of the segment increases. FR is responsible for the bending of the jet[26]; (e) Four jets from one drop, each with a well developed electrical bending coil[26]; (f) A wide angle X-ray diffraction pattern from a yarn of twisted as-spun poly (meta-phenylene isophthalamide) nanofibers[26]; (g) A fluorescence microscope image of nanofibers of poly (ethylene oxazoline) and fluorescent labeled albumin[26]
图5 (a)改变纤维组成、取向和网格结构的静电纺丝方法示意图[31];(b)用同轴静电纺丝制备核(肝素)-壳(PC/SAB-MSN)结构纤维的过程[29];(c)提出了基于多喷嘴的多层和混合静电纺丝技术[30]
Fig. 5 (a) Schematics of electrospinning methods to alter fiber composition, orientation and mesh architecture[31]; (b) Process of fabricating the core (heparin)-shell (PC/SAB-MSN) fiber by coaxial electrospinning[29]; (c) Proposed material mixing strategies for multiple nozzle electrospinning[30]
表1 静电纺工艺、溶液和环境参数对纤维形态的影响[33,34]
Table 1 Electrospinning process, solution, and ambient parameters that affect fiber morphology[33,34]
Parameters categories Parameters Effect on fiber morphology ref
Solution Parameters Polymer molecular
weight
Irregular shape and larger pores with higher molecular weight 35
Reduction in the number of beads and droplets with increasing molecular weight 36,37
Solution conductivity
High voltage results in bead formation 38
Higher conductivity creates uniform charge density bead-free fibers with decreased fiber diameter 39
Solution concentration
(viscosity)
High solution concentration reduces bead formation and increases fiber diameter 40~43
Low concentrations or solution viscosities yielded defects in the form of beads and junctions
Solvent volatility
High solvent volatility resulted in the blocking of the needles 44
Low solvent volatility yielded defects in the form of beads and junction 44,45
Processing Parameters Applied voltage High voltage results in bead formation 46~48
Smaller fiber diameter with increased voltage
Working distance A minimum distance is required to obtain dried and uniform fibers 49
Observable beading if distance is too close or too far. 50,51
Solution flow rate Smaller fiber diameter achieved with slower flow rates 51,52
Generation of beads with too high flow rate 53,54
Grounded target Metal collectors yield smoother fibers 55,56
Porous collectors result in porous fiber and geometry structure 38
Needle tip design Rotating drum collects aligned fibers 40
Hollow fibers produced with coaxial, 2-capillary spinneret 28
Multiple needle tips increase throughput 57
Environmental Parameters Temperature Smaller fiber diameter results from higher temperature and decreased solution viscosity 44
Humidity Increasing humidity resulted in the appearance of circular pores on the fibers. 58
Air velocity Increasing air velocity results in larger fiber diameter 44,45
图6 不同静电纺参数下纳米纤维的形貌结构:(a)随机取向纳米纤维[80];(b)平行纳米纤维[74];(c)带状纤维[81];(d)树突结构纤维[82];(e)中空纳米纤维[28];(f)项链结构纳米纤维[83];(g)多孔纳米纤维[84];(h)纳米纤维空心微球[85];(i)蜂窝状纳米纤维结构[86];(j)核壳纳米纤维[87];(k)有图案的纳米纤维网[88];(l)螺旋纤维[89]
Fig. 6 The morphologic structure of nanofibers under different electrospinning parameters: (a) Random orientation nanofiber[80]; (b) Parallel nanofiber[74]; (c) Ribbon-like fiber[81]; (d) Dendritic structure fiber[82]; (e) Hollow nanofiber[28]; (f) Necklace-like structure fiber[83]; (g) Porous nanofiber[84]; (h) Nanofibrous hollow microspheres[85]; (i) Honeycomb-patterned nanofibrous structures[86]; (j) Core-shell nanofiber[87]; (k) Patterned nanofiber meshes; (l) Helical fibers[89]
图7 (a)从制备到动物实验的研究思路;(b)3D纳米纤维支架制备示意图;(c)PLA/Gel(A1,A2),n-HA/PLA/Gel(B1,B2), n-HA/PLA/Gel-PEP(C1,C2)三维支架修复大鼠颅骨缺损(直径=6 mm)术后4周和8周的Micro-CT图像;(d)不同样本组(术后8周)的H&E染色图像。蓝色箭头表示新的骨骼,绿色箭头表示宿主骨骼;(e)不同样本组(术后8周)的Masson三色染色图像。红色箭头表示新骨,绿色箭头表示宿主骨,黑色箭头表示剩余支架
Fig. 7 (a) Research ideas from preparation to animal experiment; (b) Schematic of 3D nanofibrous scaffold preparation; (c) Micro-CT images of rat cranial bones defects (diameter = 6 mm) repaired by PLA/Gel (A1, A2), n-HA/PLA/Gel (B1, B2), and n-HA/PLA/Gel-PEP (C1, C2) 3D scaffolds 4 and 8 weeks after surgery; d) H&E stained images of different sample groups (8 weeks after surgery). Blue arrows indicate new bone, and green arrows indicate host bone; (e) Masson’s trichrome stained images of different sample groups (8 weeks after surgery). Red arrows indicate new bone, green arrows indicate host bone, and black arrows indicate residual scaffolds
图8 (a)静电纺丝纤维增强CDM基3D打印支架用于软骨再生的示意图;(b)兔关节软骨修复的实验研究,术后12周,不同组软骨关节的宏观图像
Fig. 8 (a) Schematic illustration of electrospinning fiber-reinforced CDM-based 3D-printed scaffold for cartilage regeneration; (b) Articular cartilage repair in rabbits. Macroscopic images of the cartilage joints from different groups at 12 weeks after surgery
图9 (a)双层COL支架(左上)和COL-纳米纤维支架(右上)的制备过程;(b)术后6周和12周,观察三组软骨关节的大体图像及ICRS评分:(A,D)未处理组、(B,E)COL组和(C,F)COL-纳米纤维组;(c)术后12周取材进行组织学检查,苏木精-伊红(A-F)和藏红O(G-L)染色。每幅图像中都用黑色箭头表示缺陷;(d)术后12周对修复组织的结构进行评价:未治疗组(B组)、COL组(C组)、COL-纳米纤维组(D组)和正常关节组(E)的μ-CT图像
Fig. 9 (a) Fabrication process of bi-layer COL scaffolds (top left) and COL-nanofiber scaffolds (top right); (b) Macroscopic images of the cartilage joints from three groups and their ICRS scores at 6 and 12 weeks after surgery. (A, D) non-treated group, (B, E) COL group and (C, F) COL-nanofiber group; (c) Histological examination of samples from three groups at 12 weeks after surgery, stained with hematoxylin and eosin (A-F) and Safranin O (G-L). The defect is indicated with black arrows in each image; (d) Architecture evaluation of the repaired tissues at 12 weeks after surgery: μ-CT images of tissues from non-treated group (B), COL group (C), COL-nanofiber group (D) and normal joints (E)
[1]
Mithal A, Bansal B, Kyer C, Ebeling P. Indian J. Endocrinol. Metab., 2014, 18(4): 449.

doi: 10.4103/2230-8210.137485     URL    
[2]
Wu S L, Liu X M, Yeung K W K, Liu C S, Yang X J. Mater. Sci. Eng. R: Rep., 2014, 80: 1.

doi: 10.1016/j.mser.2014.04.001     URL    
[3]
Wang Y J, Du C, Zhao N R, Ye J D, Chen X F. Journal of South China University of Technology(Natural Science Edition), 2012, 40: 51.
( 王迎军, 杜昶, 赵娜如, 叶建东, 陈晓峰. 华南理工大学学报(自然科学版), 2012, 40: 51.)
[4]
Nishida J, Shimamura T. Med. Sci. Monit., 2008, 14(8): RA107.
[5]
Langer R, Vacanti J. Science, 1993, 260(5110): 920.

doi: 10.1126/science.8493529     pmid: 8493529
[6]
Jiang T, Carbone E J, Lo K W H, Laurencin C T. Prog. Polym. Sci., 2015, 46: 1.

doi: 10.1016/j.progpolymsci.2014.12.001     URL    
[7]
Venugopal J, Low S, Choon A T, Sampath Kumar T S, Ramakrishna S. J. Mater. Sci. Mater. Med., 2008, 19(5): 2039.

doi: 10.1007/s10856-007-3289-x     URL    
[8]
Zhang Y Z, Ouyang H W, Lim C T, Ramakrishna S, Huang Z M. J. Biomed. Mater. Res., 2005, 72B(1): 156.

doi: 10.1002/(ISSN)1097-4636     URL    
[9]
Li J J, Kaplan D L, Zreiqat H. Journal of Materials Chemistry B, 2014, 2(42): 7272.

doi: 10.1039/C4TB01073F     URL    
[10]
Stevens M M, George J H. Science, 2005, 310: 1135.

pmid: 16293749
[11]
Amini A R, Laurencin C T, Nukavarapu S P. Crit. Rev. Biomed. Eng., 2012, 40(5): 363.

doi: 10.1615/critrevbiomedeng.v40.i5.10     pmid: 23339648
[12]
Yao Q Q, Cosme J G L, Xu T, Miszuk J M, Picciani P H S, Fong H, Sun H L. Biomaterials, 2017, 115: 115.

doi: 10.1016/j.biomaterials.2016.11.018     URL    
[13]
Li Q Q, Lu Q W, Li L H, Zhou C R. J. Biomed. Eng., 2007, 24(2): 332.
( 李茜茜, 卢绮雯, 李立华, 周长忍. 生物医学工程学杂志, 2007, 24(2): 332.)
[14]
Wegst U G K, Bai H, Saiz E, Tomsia A P, Ritchie R O. Nat. Mater., 2015, 14(1): 23.

doi: 10.1038/nmat4089     URL    
[15]
Buckwalter J A, Glimcher M J, Cooper R R, Recker R. Instr. Course Lect., 1996, 45: 371.

pmid: 8727757
[16]
Chahal S, Kumar A, Hussain F S J. Journal of Biomaterials Science Polymer Edition, 2019, 30(14): 1308.

doi: 10.1080/09205063.2019.1630699     URL    
[17]
Wang L L, Chen D, Jiang K, Shen G Z. Chem. Soc. Rev., 2017, 46(22): 6764.

doi: 10.1039/C7CS00278E     URL    
[18]
Zhang Y B, Liu X C, Zeng L D, Zhang J, Zuo J L, Zou J, Ding J X, Chen X S. Adv. Funct. Mater., 2019, 29(36): 1903279.

doi: 10.1002/adfm.v29.36     URL    
[19]
Shi L Y, Wang F L, Zhu W, Xu Z P, Fuchs S, Hilborn J, Zhu L J, Ma Q, Wang Y J, Weng X S, Ossipov D A. Adv. Funct. Mater., 2017, 27(37): 1700591.

doi: 10.1002/adfm.v27.37     URL    
[20]
Lin Z F, Wu M M, He H M, Liang Q F, Hu C S, Zeng Z W, Cheng D L, Wang G C, Chen D F, Pan H B, Ruan C S. Adv. Funct. Mater., 2019, 29(9): 1970053.

doi: 10.1002/adfm.v29.9     URL    
[21]
Zhang W J, Feng C, Yang G Z, Li G L, Ding X, Wang S Y, Dou Y D, Zhang Z Y, Chang J, Wu C T, Jiang X Q. Biomaterials, 2017, 135: 85.

doi: 10.1016/j.biomaterials.2017.05.005     URL    
[22]
Huang Y Z, Ji Y R, Kang Z W, Li F, Ge S F, Yang D P, Ruan J, Fan X Q. Chem. Eng. J., 2020, 395: 125098.

doi: 10.1016/j.cej.2020.125098     URL    
[23]
Dalton P D, Woodfield T B F, Mironov V, Groll J. Adv. Sci., 2020, 7(11): 1902953.

doi: 10.1002/advs.v7.11     URL    
[24]
Xue J J, Xie J W, Liu W Y, Xia Y N. Acc. Chem. Res., 2017, 50(8): 1976.

doi: 10.1021/acs.accounts.7b00218     URL    
[25]
Liu W Y, Thomopoulos S, Xia Y N. Adv. Healthc. Mater., 2012, 1(1): 10.

doi: 10.1002/adhm.201100021     URL    
[26]
Reneker D H, Yarin A L. Polymer, 2008, 49(10): 2387.

doi: 10.1016/j.polymer.2008.02.002     URL    
[27]
Loscertales I G, Barrero A, Guerrero I, Cortijo R, Marquez M, Gañán-Calvo A M. Science, 2002, 295(5560):1695.

pmid: 11872835
[28]
Li D, Xia Y N. Nano Lett., 2004, 4(5): 933.

doi: 10.1021/nl049590f     URL    
[29]
Kuang H Z, Wang Y, Hu J F, Wang C S, Lu S Y, Mo X M. ACS Appl. Mater. Interfaces, 2018, 10(23): 19365.

doi: 10.1021/acsami.8b02602     URL    
[30]
Kidoaki S, Kwon I K, Matsuda T. Biomaterials, 2005, 26(1): 37.

doi: 10.1016/j.biomaterials.2004.01.063     pmid: 15193879
[31]
Kishan A P, Cosgriff-Hernandez E M. J. Biomed. Mater. Res., 2017, 105(10): 2892.

doi: 10.1002/jbm.a.v105.10     URL    
[32]
Casper C L, Stephens J S, Tassi N G, Chase D B, Rabolt J F. Macromolecules, 2004, 37(2): 573.

doi: 10.1021/ma0351975     URL    
[33]
Ingavle G C, Leach J K. Tissue Eng. B: Rev., 2014, 20(4): 277.

doi: 10.1089/ten.teb.2013.0276     URL    
[34]
Casanova M R, Reis R L, Martins A, Neves N M. Adv. Exp. Med. Biol., 2018, 1058: 247.

doi: 10.1007/978-3-319-76711-6_11     pmid: 29691825
[35]
Casper C L, Stephens J S, Tassi N G, Chase D B, Rabolt J F. Macromolecules, 2004, 37(2): 573.

doi: 10.1021/ma0351975     URL    
[36]
Chen Z J, Wang L Q, Jiang H L. Biofabrication, 2012, 4(3): 035007.

doi: 10.1088/1758-5082/4/3/035007     URL    
[37]
Kasoju N, Bora U. Biomed. Mater., 2012, 7(4): 045004.

doi: 10.1088/1748-6041/7/4/045004     URL    
[38]
Zander N E, Orlicki J A, Rawlett A M, Beebe T P. J. Mater. Sci.: Mater. Med., 2013, 24(1): 179.

doi: 10.1007/s10856-012-4771-7     URL    
[39]
Sonseca A, Peponi L, Sahuquillo O, Kenny J M, GimÉnez E. Polym. Degrad. Stab., 2012, 97(10): 2052.

doi: 10.1016/j.polymdegradstab.2012.05.009     URL    
[40]
Srinath D, Lin S G, Knight D K, Rizkalla A S, Mequanint K. J. Tissue Eng. Regen. Med., 2012: 578.
[41]
Yang F, Murugan R, Wang S, Ramakrishna S. Biomaterials, 2005, 26(15): 2603.

pmid: 15585263
[42]
Piras A M, Nikkola L, Chiellini F, Ashammakhi N, Chiellini E. J. Nanosci. Nanotechnol., 2006, 6(9): 3310.

doi: 10.1166/jnn.2006.486     URL    
[43]
Bölgen N, Menceloğlu Y Z, Acatay K, Vargel Pişkin E. J. Biomater. Sci. Polym. Ed., 2005, 16(12): 1537.

doi: 10.1163/156856205774576655     URL    
[44]
Mit-Uppatham C, Nithitanakul M, Supaphol P. Macromol. Chem. Phys., 2004, 205(17): 2327.

doi: 10.1002/(ISSN)1521-3935     URL    
[45]
Reneker D H, Chun I. Nanotechnology, 1996, 7(3): 216.

doi: 10.1088/0957-4484/7/3/009     URL    
[46]
Kim B, Park H, Lee S H, Sigmund W M. Mater. Lett., 2005, 59(7): 829.

doi: 10.1016/j.matlet.2004.11.032     URL    
[47]
Haghi A K, Akbari M. Phys. Stat. Sol. (a), 2007, 204(6): 1830.
[48]
Mo X M, Xu C Y, Kotaki M, Ramakrishna S. Biomaterials, 2004, 25(10): 1883.

pmid: 14738852
[49]
Zhao Z Z, Li J Q, Yuan X Y, Li X, Zhang Y Y, Sheng J. J. Appl. Polym. Sci., 2005, 97(2): 466.

doi: 10.1002/(ISSN)1097-4628     URL    
[50]
Zhang C X, Yuan X Y, Wu L L, Han Y, Sheng J. Eur. Polym. J., 2005, 41(3): 423.

doi: 10.1016/j.eurpolymj.2004.10.027     URL    
[51]
Lee B L P, Jeon H, Wang A J, Yan Z Q, Yu J, Grigoropoulos C, Li S. Acta Biomater., 2012, 8(7): 2648.

doi: 10.1016/j.actbio.2012.04.023     URL    
[52]
Thoppey N M, Gorga R E, Bochinski J R, Clarke L I. Macromolecules, 2012, 45(16): 6527.

doi: 10.1021/ma301207t     URL    
[53]
Zuo W W, Zhu M F, Yang W, Yu H, Chen Y M, Zhang Y. Polym. Eng. Sci., 2005, 45(5): 704.

doi: 10.1002/(ISSN)1548-2634     URL    
[54]
Sill T J, von Recum H A. . Biomaterials, 2008, 29(13): 1989.

doi: 10.1016/j.biomaterials.2008.01.011     URL    
[55]
Wang X F, Um I C, Fang D F, Okamoto A, Hsiao B S, Chu B. Polymer, 2005, 46(13): 4853.

doi: 10.1016/j.polymer.2005.03.058     URL    
[56]
Liu H Q, Hsieh Y L. J. Polym. Sci. B Polym. Phys., 2002, 40(18): 2119.

doi: 10.1002/(ISSN)1099-0488     URL    
[57]
Li D, Babel A, Jenekhe S A, Xia Y. Adv. Mater., 2004, 16(22): 2062.

doi: 10.1002/(ISSN)1521-4095     URL    
[58]
Hardick O, Stevens B, Bracewell D. Nat. Preced., 2010: 1.
[59]
Kasoju N, Bora U. Biomedical Materials (Bristol, England), 2012, 7: 045004.
[60]
Niu X L, Qin M, Xu M J, Zhao L Q, Wei Y, Hu Y C, Lian X J, Chen S, Chen W Y, Huang D. Biomed. Mater., 2021, 16(2): 025014.

doi: 10.1088/1748-605X/abd68a     URL    
[61]
Lopes-Da-silva J A, Veleirinho B, Delgadillo I. J. Nanosci. Nanotech., 2009, 9(6): 3798.

doi: 10.1166/jnn.2009.NS70     URL    
[62]
Lee B L P, Jeon H, Wang A J, Yan Z Q, Yu J, Grigoropoulos C, Li S. Acta Biomater., 2012, 8(7): 2648.

doi: 10.1016/j.actbio.2012.04.023     URL    
[63]
Sill T J, von Recum H A. Biomaterials, 2008, 29(13): 1989.

doi: 10.1016/j.biomaterials.2008.01.011     URL    
[64]
Xu S, Poirier G, Yao N. Nano Lett., 2012, 12(5): 2238.

doi: 10.1021/nl204334x     URL    
[65]
Katta P, Alessandro M, Ramsier R D, Chase G G. Nano Lett., 2004, 4(11): 2215.

doi: 10.1021/nl0486158     URL    
[66]
Rafique J, Yu J, Yu J L, Fang G, Wong K W, Zheng Z, Ong H C, Lau W M. Appl. Phys. Lett., 2007, 91(6): 063126.

doi: 10.1063/1.2768871     URL    
[67]
Zhang D, Chang J. Adv. Mater., 2007, 19(21): 3664.

doi: 10.1002/(ISSN)1521-4095     URL    
[68]
Huang Z M, Zhang Y Z, Kotaki M, Ramakrishna S. Compos. Sci. Technol., 2003, 63(15): 2223.

doi: 10.1016/S0266-3538(03)00178-7     URL    
[69]
Chew S Y, Wen J, Yim E K F, Leong K W. Biomacromolecules, 2005, 6(4): 2017.

doi: 10.1021/bm0501149     URL    
[70]
Li D, Wang Y, Xia Y. Adv. Mater., 2004, 16(4): 361.

doi: 10.1002/(ISSN)1521-4095     URL    
[71]
Smit E, Búttner U, Sanderson R D. Polymer, 2005, 46(8): 2419.

doi: 10.1016/j.polymer.2005.02.002     URL    
[72]
Khil M S, Bhattarai S R, Kim H Y, Kim S Z, Lee K H. J. Biomed. Mater. Res., 2005, 72B(1): 117.

doi: 10.1002/(ISSN)1097-4636     URL    
[73]
Teo W E, Gopal R, Ramaseshan R, Fujihara K, Ramakrishna S. Polymer, 2007, 48(12): 3400.

doi: 10.1016/j.polymer.2007.04.044     URL    
[74]
Li D, Wang Y L, Xia Y N. Nano Lett., 2003, 3(8): 1167.

doi: 10.1021/nl0344256     URL    
[75]
Ishii Y, Sakai H, Murata H. Mater. Lett., 2008, 62(19): 3370.

doi: 10.1016/j.matlet.2008.03.038     URL    
[76]
Yang D, Lu B, Zhao Y, Jiang X. Adv. Mater., 2007, 19(21): 3702.

doi: 10.1002/(ISSN)1521-4095     URL    
[77]
Liu H Q, Hsieh Y L. J. Polym. Sci. B Polym. Phys., 2002, 40(18): 2119.

doi: 10.1002/(ISSN)1099-0488     URL    
[78]
Kalra V, Lee J H, Park J H, Marquez M, Joo Y L. Small, 2009, 5(20): 2323.

doi: 10.1002/smll.v5:20     URL    
[79]
Pelipenko J, Kristl J, Jankovi B, Baumgartner S, Kocbek P. Int. J. Pharm., 2013, 456(1): 125.

doi: 10.1016/j.ijpharm.2013.07.078     URL    
[80]
Niu X L, Zhao L Q, Yin M, Huang D, Wang N N, Wei Y, Hu Y C, Lian X J, Chen W Y. Tissue Eng. C: Methods, 2020, 26(7): 352.

doi: 10.1089/ten.tec.2020.0073     URL    
[81]
Koombhongse S, Liu W X, Reneker D H. J. Polym. Sci. B Polym. Phys., 2001, 39(21): 2598.

doi: 10.1002/(ISSN)1099-0488     URL    
[82]
Ostermann R, Li D, Yin Y D, McCann J T, Xia Y N. Nano Lett., 2006, 6(6): 1297.

pmid: 16771598
[83]
Jin Y, Yang D Y, Kang D Y, Jiang X Y. Langmuir, 2010, 26(2): 1186.

doi: 10.1021/la902313t     pmid: 19689141
[84]
Xie J W, Li X R, Xia Y N. Macromol. Rapid Commun., 2008, 29(22): 1775.

doi: 10.1002/marc.200800381     URL    
[85]
Liu X H, Jin X B, Ma P X. Nat. Mater., 2011, 10(5): 398.

doi: 10.1038/nmat2999     URL    
[86]
Yan G D, Yu J, Qiu Y J, Yi X H, Lu J, Zhou X S, Bai X D. Langmuir, 2011, 27(8): 4285.

doi: 10.1021/la1047936     URL    
[87]
Sun Z, Zussman E, Yarin A L, Wendorff J H, Greiner A. Adv. Mater., 2003, 15(22): 1929.

doi: 10.1002/(ISSN)1521-4095     URL    
[88]
Martins A, Alves da Silva M L, Faria S, Marques A P, Reis R L, Neves N M. Macromol. Biosci., 2011, 11(7): 978.

doi: 10.1002/mabi.201100012     pmid: 21485007
[89]
Han T, Reneker D H, Yarin A L. Polymer, 2007, 48(20): 6064.

doi: 10.1016/j.polymer.2007.08.002     URL    
[90]
Martins A, Reis R L, Neves N. iSmithers Rapra Technical Publications, 2012.
[91]
Martins A, Gang W, Pinho E D, Rebollar E, Chiussi S, Reis R L, LeÓn B, Neves N M. J. Tissue Eng. Regen. Med., 2010: 4(6): 444.

doi: 10.1002/term.255     pmid: 20112276
[92]
Oberbossel G, Probst C, Giampietro V R, von Rohr P R. Plasma Process. Polym., 2017, 14(3): 1600144.

doi: 10.1002/ppap.201600144     URL    
[93]
Martins A, Pinho E D, Faria S, Pashkuleva I, Marques A P, Reis R L, Neves N M. Small, 2009: 1195.
[94]
Fahmy T M, Samstein R M, Harness C C, Mark Saltzman W. Biomaterials, 2005, 26(28): 5727.

doi: 10.1016/j.biomaterials.2005.02.025     URL    
[95]
He W, Ma Z W, Yong T, Teo W E, Ramakrishna S. Biomaterials, 2005, 26(36): 7606.

doi: 10.1016/j.biomaterials.2005.05.049     URL    
[96]
Baek H S, Park Y H, Ki C S, Park J C, Rah D K. Surf. Coat. Technol., 2008, 202(22/23): 5794.

doi: 10.1016/j.surfcoat.2008.06.154     URL    
[97]
Yang F, Wolke J G C, Jansen J A. Chem. Eng. J., 2008, 137(1): 154.

doi: 10.1016/j.cej.2007.07.076     URL    
[98]
Turmanova S, Minchev M, Vassilev K, Danev G. J. Polym. Res., 2008, 15(4): 309.

doi: 10.1007/s10965-007-9172-0     URL    
[99]
Kou R Q, Xu Z K, Deng H T, Liu Z M, Seta P, Xu Y Y. Langmuir, 2003, 19(17): 6869.

doi: 10.1021/la0345486     URL    
[100]
Liu Z M, Xu Z K, Wang J Q, Wu J, Fu J J. Eur. Polym. J., 2004, 40(9): 2077.

doi: 10.1016/j.eurpolymj.2004.05.020     URL    
[101]
Yoo H S, Kim T G, Park T G. Adv. Drug Deliv. Rev., 2009, 61(12): 1033.

doi: 10.1016/j.addr.2009.07.007     URL    
[102]
Park K, Ju Y M, Son J S, Ahn K D, Han D K. J. Biomater. Sci. Polym. Ed., 2007, 18(4): 369.

doi: 10.1163/156856207780424997     URL    
[103]
Chua K N, Chai C, Lee P C, Tang Y N, Ramakrishna S, Leong K W, Mao H Q. Biomaterials, 2006, 27(36): 6043.

doi: 10.1016/j.biomaterials.2006.06.017     URL    
[104]
Chua K N, Chai C, Lee P C, Ramakrishna S, Leong K W, Mao H Q. Exp. Hematol., 2007, 35(5): 771.

doi: 10.1016/j.exphem.2007.02.002     URL    
[105]
Croll T I, O'Connor A J, Stevens G W, Cooper-White J J. Biomacromolecules, 2004, 5(2): 463.

doi: 10.1021/bm0343040     URL    
[106]
Chen J L, Chu B, Hsiao B S. J. Biomed. Mater. Res., 2006, 79A(2): 307.

doi: 10.1002/(ISSN)1552-4965     URL    
[107]
Wang Y, Cui W G, Zhao X, Wen S Z, Sun Y L, Han J M, Zhang H Y. Nanoscale, 2018, 11(1): 60.

doi: 10.1039/c8nr07329e     pmid: 30350839
[108]
Ye K Q, Liu D H, Kuang H Z, Cai J Y, Chen W M, Sun B B, Xia L G, Fang B, Morsi Y, Mo X M. J. Colloid Interface Sci., 2019, 534: 625.

doi: 10.1016/j.jcis.2018.09.071     URL    
[109]
Li W J, Tuli R, Okafor C, Derfoul A, Danielson K G, Hall D J, Tuan R S. Biomaterials, 2005, 26(6): 599.

doi: 10.1016/j.biomaterials.2004.03.005     URL    
[110]
Chen W M, Xu Y, Li Y Q, Jia L T, Mo X M, Jiang G N, Zhou G D. Chem. Eng. J., 2020, 382: 122986.

doi: 10.1016/j.cej.2019.122986     URL    
[111]
Gomoll A H, Madry H, Knutsen G, Dijk N, Seil R, Brittberg M, Kon E. Knee Surg. Sports Traumatol. Arthrosc., 2010, 18(4): 434.

doi: 10.1007/s00167-010-1072-x     URL    
[112]
Liu Y Y, Yu H C, Liu Y, Liang G, Zhang T, Hu Q X. Polym. Eng. Sci., 2016, 56(2): 170.

doi: 10.1002/pen.24239     URL    
[113]
Zhang S F, Chen L K, Jiang Y Z, Cai Y Z, Xu G W, Tong T, Zhang W, Wang L L, Ji J F, Shi P H, Ouyang H W. Acta Biomater., 2013, 9(7): 7236.

doi: 10.1016/j.actbio.2013.04.003     URL    
[1] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[2] 柳凤琦, 姜勇刚, 彭飞, 冯军宗, 李良军, 冯坚. 超轻纳米纤维气凝胶的制备及其应用[J]. 化学进展, 2022, 34(6): 1384-1401.
[3] 李祥业, 白天娇, 翁昕, 张冰, 王珍珍, 何铁石. 电纺纤维在超级电容器中的应用[J]. 化学进展, 2021, 33(7): 1159-1174.
[4] 杨世迎, 刘俊琴, 李乾风, 李阳. 机械球磨改性零价铝的作用机制[J]. 化学进展, 2021, 33(10): 1741-1755.
[5] 朱蕾, 王嘉楠, 刘建伟, 王玲, 延卫. 静电纺丝一维纳米材料在气敏传感器的应用[J]. 化学进展, 2020, 32(2/3): 344-360.
[6] 马亮, 时学娟, 张笑笑, 李莉莉. 可控核/壳结构聚合物电纺纤维的制备与应用[J]. 化学进展, 2019, 31(9): 1213-1220.
[7] 王惠亚, 赵立敏, 张芳, 何丹农. 高性能锂离子二次电池隔膜[J]. 化学进展, 2019, 31(9): 1251-1262.
[8] 查东东, 郭斌, 李本刚, 银鹏, 李盘欣. 热塑性淀粉耐水性的化学与物理作用机制[J]. 化学进展, 2019, 31(1): 156-166.
[9] 郑勰, 周一凡, 陈思远, 刘晓云, 查刘生. 刺激响应性电纺纳米纤维[J]. 化学进展, 2018, 30(7): 958-975.
[10] 李勃天, 温幸, 唐黎明. 一维聚合物-无机纳米复合材料的制备[J]. 化学进展, 2018, 30(4): 338-348.
[11] 蒋敏, 王敏, 魏仕勇, 陈志宝, 木士春. 基于静电纺丝技术的取向纳米纤维[J]. 化学进展, 2016, 28(5): 711-726.
[12] 孟德芃, 吴俊涛. 静电纺丝法制备新型吸附分离材料[J]. 化学进展, 2016, 28(5): 657-664.
[13] 杨皓程, 陈一夫, 叶辰, 万灵书, 徐志康. 有机-无机复合多孔膜制备与应用[J]. 化学进展, 2015, 27(8): 1014-1024.
[14] 刘天辉, 常刚, 曹瑞军, 孟令杰. 超顺磁性Fe3O4纳米粒子在磁共振造影中的应用[J]. 化学进展, 2015, 27(5): 601-613.
[15] 刘宗光, 屈树新, 翁杰. 聚多巴胺在生物材料表面改性中的应用[J]. 化学进展, 2015, 27(2/3): 212-219.