English
新闻公告
More
化学进展 2021, Vol. 33 Issue (10): 1741-1755 DOI: 10.7536/PC200826 前一篇   后一篇

• 综述 •

机械球磨改性零价铝的作用机制

杨世迎1,2,3,*(), 刘俊琴3, 李乾风3, 李阳3   

  1. 1 海洋环境与生态教育部重点实验室 青岛 266100
    2 山东省海洋环境地质工程重点实验室 青岛 266100
    3 中国海洋大学环境科学与工程学院 青岛 266100
  • 收稿日期:2020-08-10 修回日期:2020-11-17 出版日期:2021-10-20 发布日期:2020-12-28
  • 通讯作者: 杨世迎
  • 基金资助:
    山东省自然科学基金面上项目(ZR2020MB093)

Modification Mechanism of Zero-Valent Aluminum by Mechanical Ball Milling

Shiying Yang1,2,3(), Junqin Liu3, Qianfeng Li3, Yang Li3   

  1. 1 The Key Laboratory of Marine Environment & Ecology, Ministry of Education,Qingdao 266100, China
    2 Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering(MEGE),Qingdao 266100, China
    3 College of Environmental Science and Engineering, Ocean University of China,Qingdao 266100, China
  • Received:2020-08-10 Revised:2020-11-17 Online:2021-10-20 Published:2020-12-28
  • Contact: Shiying Yang
  • Supported by:
    Natural Science Foundation of Shandong Province, China(ZR2020MB093)

零价铝(Zero-valent aluminum, ZVAl)具有良好的延展性和质轻等物理特性以及极低的氧化还原电位等化学特性。在新型轻质高强度复合材料的制备中,ZVAl已被优先考虑作为理想的金属基体;另一方面,作为优良的电子供体,ZVAl被用于产氢领域铝水反应的快速析氢和环境领域污染物的高效去除。机械球磨作为一种操作简单和易于工程化的材料加工新方法,可有效克服传统铝基金属材料制备方法中的混合不均匀及界面结合差等问题;也可有效破坏ZVAl表面的致密氧化膜,促进ZVAl的电子释放。已有研究发现,通过球磨ZVAl与助磨剂,控制研磨强度,可以实现复合材料的均匀分散和良好的界面结合,并伴随有少量的金属间化合物和化学活性物质的生成,获得具有优异材料性能的复合物;另外,通过机械球磨过程中的“切割器”作用,置换、碳化或脱氯等机械化学反应,微观结构的改变,以及水介质中的点蚀作用、原电池效应和副反应的减少等作用机制,可提高产氢量和污染物的去除率。本文综述了利用机械球磨来增强ZVAl基复合材料的机械性能的基本原理,系统总结了ZVAl机械球磨表面改性及其用于产氢和污染物去除时的内在作用,探讨了球磨参数和水化学参数对体系的影响规律,并就值得深入研究的问题进行了展望,以期通过对不同学科相关领域的深入了解,来推动机械球磨改性ZVAl在环境领域的进一步发展。

Zero-valent aluminum(ZVAl) possesses physical properties of good ductility and light weight, and has chemical properties of more negative redox potential. In the preparation process of new lightweight and high-strength composite materials, ZVAl has been taken preferentially as an ideal metal matrix. On the other hand, ZVAl, an excellent electronic donor, has been used for rapid hydrogen evolution and efficient removal of pollutants in the field of hydrogen production and environment remediation. Mechanical ball milling, is a novel material processing method which is simply operated and easy engineering. Furthermore, it can overcome the drawbacks of ununiform mixing and poor interface combination in the traditional preparation methods of aluminum-based metal materials. Moreover, it can destroy the dense oxide film on the surface of ZVAl, and break through the bottleneck that limits the electronic release of ZVAl. By ball milling ZVAl and grinding aids to control the grinding strength, the uniform dispersion and good interface bonding of the composites can be achieved,and a small amount of intermetallic compounds and chemically active substances are generated. As a result, the composites with excellent material properties can be obtained.Besides, the quantity of hydrogen production and the efficiency of pollutants removal could be increased through the function of the “cutter”, the mechanical chemical reaction such as displacement, carbonization or dechlorination, the change of microstructure during mechanical ball milling, and the pitting effect, the primary battery effect, the reduction of side reactions in the aqueous medium and other action mechanisms. Above all, this paper summarizes the principle of using mechanical ball milling to enhance the mechanical properties of ZVAl-based composite materials. In addition, the surface modification of ZVAl by mechanical ball milling and the mechanism of its application in hydrogen production and pollutant removal are systematically summarized. Afterward, the influence of ball milling parameters and water chemical conditions on the system are discussed. Finally, prospects of the research areas meriting for further investigation are pointed out. Supposing to promote the further development of mechanically modified ZVAl in the field of environment remediation through in-depth understanding of related fields of different disciplines.

Contents

1 Introduction

2 Enhanced mechanical properties of materials

2.1 Controlling grinding intensity

2.2 Intermetallic reaction

2.3 Formation of chemically active substances

2.4 Achievement of uniform dispersion of materials

3 Improving chemical reaction efficiency

3.1 Function of “cutter”

3.2 Mechanochemical reaction

3.3 Changes in microstructure

3.4 Pitting effect

3.5 Primary battery effect

3.6 Reducing side reaction

4 Ball milling parameters

4.1 Ball milling time

4.2 Rotating speed

4.3 Grinding aid ratio

4.4 Dopant

4.5 Ball milling atmosphere

5 Water chemical parameters

5.1 pH

5.2 Temperature

5.3 Reaction by-product

6 Conclusion and outlook

()
图1 Al-Bi-Sn三元复合物的XRD图[48]
Fig. 1 XRD patterns of Al-Bi-Sn ternary composites[48]
图2 不同研磨时间的GNS/ZVAl球磨粉末的FE-SEM图像:(a,b) 1 h,(c,d) 2 h,(e,f) 3 h,(g,h) 4 h[50]
Fig. 2 FE-SEM images of GNS/ZVAl ball milling powder with different milling time:(a, b) 1 h,(c, d) 2,h,(e, f) 3 h,(g, h) 4 h[50]
图3 ZVAl/CNT(a,b)和 ZVAlbm/CNT(c,d)球磨不同时间的FESEM图(黑色箭头表示CNT)[37]
Fig. 3 FESEM micrograph of ZVAl/CNT(a,b) and ZVAlbm/CNT(c,d) for various milling times(black arrows indicate the CNT)[37]
图4 化学沉积耦合球磨工艺制备CNT-ZVAl复合粉末[39]
Fig. 4 Preparation of CNT-ZVAl composite powder by chemical deposition coupled ball milling process[39]
图5 SEM图:(a) Bi-NPs@GO,(b) Bi-NPs和(c)Bi-NPs的放大图像[55]
Fig. 5 SEM images of(a) Bi-NPs@GO,(b) Bi-NPs, and(c) magnified images of Bi-NPs[55]
图6 (a) Bi-NPs@GO/Al和(b) Bi-NPs/Al的SEM图[55]
Fig. 6 SEM images of(a) Bi-NPs@GO/Al and(b) Bi-NPs/Al[55]
表1 基于机械球磨改性ZVAl的作用机制的典型案例汇总
Table 1 Typical cases study on surface modification research based on zero-valent aluminum by mechanical ball milling in aqueous media
Surface modification and action mechanism Milling aid Ball milling parameters Results ref
Function of “cutter” NaCl t = 20 h, r = 270 r/min, X = 1.5 wt% The highest average hydrogen generation rate per 1 g of aluminum was achieved to be 75 mL/min. 62
KCl t = 7 h, r = 200 r/min, X = 50 wt% The amount of generated hydrogen as the amount for the sample was already close to the theoretical limit. 35
NiCl2 t = 1 h, r = 400 r/min, X = 10 mol% The hydrogen yield to be 88.8%. 63
Mechanochemical reaction NiCl2, NaBH4 t = 15 h, r = 400 r/min, X1 = 10 wt%,
X2 = 15 wt%
The mixture yields 1778 mL hydrogen/1 g mixture with 100% efficiency within 50 min. 64
Al2O3 r = 400 r/min, X = 1∶1 99.3% of HCB was degraded in the MCT process. 67
SiO2 r = 275 r/min, X = 1∶1 Only 16% of syn-DP and 22% of anti-DP remain. 68
SiO2 r = 275 r/min, X = 5∶1 Only 0.3% of syn-DP and 0.3% of anti-DP remain. 69
CaO t = 20 h, r = 600 r/min, X = 4∶1 Degradation efficiency = 93.2%. 70
Changing the
microstructure
air t = 16 h, r = 400 r/min The particles have platelet morphology and are constituted by a nanocrystalline aluminum core surrounded by a thick amorphous alumina layer of 4.5±0.5 nm. 44
SiO2 t = 60 h, r = 250 r/min, X = 50 wt% Average size of crystalline silica synthesized by mechanical activation was about 30 nm. 71
terpineol, dispersants t = 6 h, r = 200 r/min, Al = 3 mg, terpineol = 18 mL, dispersants = 1~9 mL Excellent surface coating with coating thickness ranging from 10 to 13 nm. 72
Pitting effect NaCl t = 12 h, X = 20 wt% Effectively enhanced the hydrogen generation rate of the powders. 73
TiO2 t =3 min, X = 1∶1 Exhibited higher generation rate than the others' nanocrystals at initial 12 h 74
Primary battery effect Bi, Sn t = 30 min, r = 1500 r/min, X = 10 wt% Composites had >95% hydrogen yields. 48
Sn, In t = 30 min, r = 1500 r/min, X = 10 wt% Al-Sn-In composites have hydrogen yields of >95%. 49
MWCNT t = 4 h, r = 400 r/min, X = 4∶1~15∶1 The accumulative concentration of H2O2 reached 947 mg/L in Al-CNTs/O2 system.
The removal efficiencies of TOC and total phosphorus were 68.35% and 73.27%.
43
Reducing side
reaction
CaH2, NiCl2 t = 3 h, r = 400 r/min, X1 = 10 mol%,
X2 = 10 mol%
Sample shows a hydrogen yield of 92.1% and mHGR(maximum hydrogen generation rate) of 1566.3 mL·min-1·g-1. 63
AlCl3 t = 5 h, r = 250 r/min, X = 5 wt% The mixture shows the best hydrolysis performances with 16% of the theoretical H2 volume reached in 1 h. 61
Bi, GO t = 4 h, r = 800 r/min, X = 10 wt% The hydrogen productions per gram of the prepared composite were about 960 mL. 55
polytetrafluoroethylene t = 5 h, r = 800 r/min, X = 4 wt%~10 wt% PTFE could significantly promote the reaction property of aluminum with water steam. 76
organic fluoride, Bi t = 5 h, r = 800 r/min, X = 10 wt% The sample Al-2.5%OF-7.5%Bi exhibits the maximum hydrogen generation rate of 5622 mL·min-1·g-1 at 50 ℃. 77
图7 用盐研磨的铝粉的SEM显微照片。插图为氯化钠的晶体结构[62]
Fig. 7 SEM micrograph of aluminum powder milled with salt. Inset is the crystal structure of sodium chloride[62]
图8 用TiO2研磨的铝粉的SEM图[74]
Fig. 8 SEM micrograph of aluminum powder milled with titanium dioxide[74]
图9 (a) ZVAl-Sn-In表面的反向散射SEM图以及Al(b),Sn(c)和In(d)的相应EDS映射[49]
Fig. 9 Backscatter SEM micrograph of the surface of ZVAl-Sn-In(a) and the corresponding EDS mappings for Al(b), Sn(c), and In(d)[49]
图10 MWCNT-ZVAl/O2体系原位生成H2O2示意图[43]
Fig. 10 Schematic illustration of in situ generation of H2O2 using MWCNT-ZVAl/O2 system[43]
图11 LSBM(a~c)和HSBM CNT/ZVAl(d~f)粉末的形态演变SEM图像[52]
Fig. 11 SEM images of morphology evolution of(a~c) LSBM and(d~f) HSBM CNT/ZVAl powders[52]
图12 具有不同重量百分比的CNT的CNT-ZVAl复合粉末的SEM图:(a, b) 1 wt%,(c, d) 3 wt%,(e, f) 5 wt%,(g, h) 7 wt%[39]
Fig. 12 SEM images of CNT-ZVAl composite powders having different weight percentages of CNTs:(a, b) 1 wt%,(c, d) 3 wt%,(e, f) 5 wt%,(g, h) 7 wt%[39]
图13 SA投加量对球磨前后mZVAl产氢性能的影响:(a) 反应30 h,(b) 反应180 h[23]
Fig. 13 Effect of SA dosage on H2 evolution of mZVAl before and after ball milling.(a) reaction for 30 h,(b) reaction for 180 h[23]
图14 通过MA-ZVA1除去Cr(Ⅵ)的球磨气氛条件[24]
Fig. 14 Ball milling atmosphere conditions on Cr(Ⅵ) removal by BM-mZVAl[24]
[1]
Lien H L, Yu C C, Lee Y C. Chemosphere, 2010, 80(8): 888.
[2]
Fu F L, Han W J, Cheng Z H, Tang B. Desalination Water Treat., 2016, 57(12): 5592.

doi: 10.1080/19443994.2015.1006259     URL    
[3]
Yang S Y, Zheng D, Chang S Y, Shi C. Prog. Chem., 2016,(05):754.
( 杨世迎, 郑迪, 常书雅, 石超. 化学进展, 2016,(05):754.)
[4]
Yang S Y, Zhang Y X, Zheng D, Xin J. Prog. Chem., 2017,(08):879.
( 杨世迎, 张艺萱, 郑迪, 辛佳. 化学进展, 2017,(08):879.)
[5]
Yuan C, Li L, Sun Y L, Wang B D, Xu H, Wang Y. R. Environm. Sci., 2016, 29(07):1067.
( 袁超, 李磊, 孙应龙, 王邦达, 徐辉, 王毅. 环境科学研究, 2016, 29(07):1067.)
[6]
Lin C J, Wang S L, Huang P M, Tzou Y M, Liu J C, Chen C C, Chen J H, Lin C. Water Res., 2009, 43(20): 5015.

doi: 10.1016/j.watres.2009.08.015     pmid: 19729183
[7]
Jiang B, Xin S S, Gao L, Luo S Y, Xue J L, Wu M B. Chem. Eng. J., 2017, 308: 588.

doi: 10.1016/j.cej.2016.09.098     URL    
[8]
Lin K Y A, Lin C H. Chem. Eng. J., 2016, 297: 19.

doi: 10.1016/j.cej.2016.03.136     URL    
[9]
Lin K Y A, Lin J Y, Lien H L. Chemosphere, 2017, 172: 325.

doi: 10.1016/j.chemosphere.2017.01.040     URL    
[10]
Yang B, Deng S B, Yu G, Zhang H, Wu J H, Zhuo Q F. J. Hazard. Mater., 2011, 189(1/2): 76.

doi: 10.1016/j.jhazmat.2011.02.001     URL    
[11]
Huang C C, Lo S L, Lien H L. Chem. Eng. J., 2015, 273: 413.

doi: 10.1016/j.cej.2015.03.064     URL    
[12]
Chen L H, Huang C C, Lien H L. Chemosphere, 2008, 73(5): 692.

doi: 10.1016/j.chemosphere.2008.07.005     pmid: 18701127
[13]
Zhang H H, Cao B P, Liu W P, Lin K D, Feng J. J. Environ. Sci., 2012, 24(2): 314.
[14]
Wang A Q, Guo W L, Hao F F, Yue X X, Leng Y Q. Ultrason. Sonochemistry, 2014, 21(2): 572.

doi: 10.1016/j.ultsonch.2013.10.015     URL    
[15]
Cai M Q, Wei X Q, Song Z J, Jin M C. Ultrason. Sonochemistry, 2015, 22: 167.
[16]
Wu C C, Hus L C, Chiang P N, Liu J C, Kuan W H, Chen C C, Tzou Y M, Wang M K, Hwang C E. Water Res., 2013, 47(7): 2583.

doi: 10.1016/j.watres.2013.02.024     pmid: 23497977
[17]
Cheng Z H, Fu F L, Dionysiou D D, Tang B. Water Res., 2016, 96: 22.
[18]
Fan J H, Wang H W, Ma L M. Environ. Sci. Pollut. Res., 2016, 23(16): 16686.

doi: 10.1007/s11356-016-6628-y     URL    
[19]
Fan J H, Liu X, Ma L M. Chem. Eng. J., 2015, 263: 71.

doi: 10.1016/j.cej.2014.10.082     URL    
[20]
Cheng Z H, Fu F L, Pang Y S, Tang B, Lu J W. Chem. Eng. J., 2015, 260: 284.

doi: 10.1016/j.cej.2014.09.012     URL    
[21]
Arslan-Alaton I, Olmez-Hanci T, Khoei S, Fakhri H. Catal. Today, 2017, 280: 199.

doi: 10.1016/j.cattod.2016.04.039     URL    
[22]
Yang B, Deng J P, Wei L Y, Han Y N, Yu G, Deng S B, Zhu C Z, Duan H B, Zhuo Q F. Chem. Eng. J., 2018, 333: 613.
[23]
Ren T F, Yang S Y, Wu S, Wang M Q, Xue Y C. Chem. Eng. J., 2019, 374: 100.

doi: 10.1016/j.cej.2019.05.172     URL    
[24]
Zhang Y X, Yang S Y, Zhang Y Q, Wu S, Xin J. Chem. Eng. J., 2018, 353: 760.

doi: 10.1016/j.cej.2018.07.174     URL    
[25]
Mohan M, Subramanian S, Angelo P C. Trans. Indian Ceram. Soc., 2011, 70(3): 125.

doi: 10.1080/0371750X.2011.10600158     URL    
[26]
Zhang G Y, Zha W S, Chen X L, Yan J. Powder Metall. Technol., 2018,(04):315.
( 张桂银, 查五生, 陈秀丽, 严峻. 粉末冶金技术, 2018,(04):315.)
[27]
Wu S, Yang S Y, Liu S J, Zhang Y X, Ren T F, Zhang Y Q. J. Colloid Interface Sci., 2020, 560: 260.
[28]
Estrada-Guel I, Carreño-Gallardo C, Martínez-Sánchez R. Microsc. Microanal., 2012, 18(S2): 1566.

doi: 10.1017/S1431927612009683     URL    
[29]
Liu Z Y, Xu S J, Xiao B L, Xue P, Wang W G, Ma Z Y. Compos. A: Appl. Sci. Manuf., 2012, 43(12): 2161.

doi: 10.1016/j.compositesa.2012.07.026     URL    
[30]
Streletskii A N, Kolbanev I V, Borunova A B, Butyagin P Y. J. Mater. Sci., 2004, 39(16/17): 5175.

doi: 10.1023/B:JMSC.0000039205.46608.1a     URL    
[31]
Chen X Y, Zhao Z W, Liu X H, Hao M M, Chen A L, Tang Z Y. J. Power Sources, 2014, 254: 345.

doi: 10.1016/j.jpowsour.2013.12.113     URL    
[32]
Gai W Z, Liu W H, Deng Z Y, Zhou J G. Int. J. Hydrog. Energy, 2012, 37(17): 13132.

doi: 10.1016/j.ijhydene.2012.04.025     URL    
[33]
Grosjean M H, RouÉ L. J. Alloys Compd., 2006, 416(1/2): 296.

doi: 10.1016/j.jallcom.2005.09.008     URL    
[34]
Jia Y Y, Shen J, Meng H X, Dong Y M, Chai Y J, Wang N. J. Alloys Compd., 2014, 588: 259.

doi: 10.1016/j.jallcom.2013.11.058     URL    
[35]
Razavi-Tousi S S, Szpunar J A. J. Alloys Compd., 2016, 679: 364.

doi: 10.1016/j.jallcom.2016.04.038     URL    
[36]
Ayodele O O, Adegbenjo A O, Awotunde M A, Akinwamide S O, Shongwe M B, Olubambi P A. Mater. Today: Proc., 2020, 28: 745.
[37]
Jargalsaikhan B, Bor A, Lee J, Choi H. Adv. Powder Technol., 2020, 31(5): 1957.

doi: 10.1016/j.apt.2020.02.031     URL    
[38]
Yunusov F A, Larionova T V, Bobrynina E V, Ma T J, Tolochko O V. Mater. Today, 2020, 30: 640.
[39]
Zhang Y P, Wang Q, Ramachandran C S. Diam. Relat. Mater., 2020, 104: 107748.

doi: 10.1016/j.diamond.2020.107748     URL    
[40]
Razavi-Tousi S S, Szpunar J A. Int. J. Hydrog. Energy, 2013, 38(2): 795.

doi: 10.1016/j.ijhydene.2012.10.106     URL    
[41]
Razavi-Tousi S S, Szpunar J A. Powder Technol., 2015, 284: 149.

doi: 10.1016/j.powtec.2015.06.035     URL    
[42]
Dupiano P, Stamatis D, Dreizin E L. Int. J. Hydrog. Energy, 2011, 36(8): 4781.

doi: 10.1016/j.ijhydene.2011.01.062     URL    
[43]
Tan N, Yang Z, Gong X B, Wang Z R, Fu T, Liu Y. Sci. Total. Environ., 2019, 650: 2567.

doi: 10.1016/j.scitotenv.2018.09.353    
[44]
AndrÉ B, Coulet M V, Esposito P H, Rufino B, Denoyel R. Mater. Lett., 2013, 110: 108.

doi: 10.1016/j.matlet.2013.07.101     URL    
[45]
Stamatis D, Jiang Z, Hoffmann V K, Dreizin M S E L, Alinejad B. Combust. Sci. Technol., 2008, 181(1): 20.
[46]
Umbrajkar S, Schoenitz M, Dreizin E. Prop., Explos., Pyrotech., 2006, 31(5): 382.
[47]
Prosviryakov A S, Shcherbachev K D, Tabachkova N Y. Mater. Charact., 2017, 123: 173.

doi: 10.1016/j.matchar.2016.11.028     URL    
[48]
du Preez S P, Bessarabov D G. Int. J. Hydrog. Energy, 2019, 44(39): 21896.

doi: 10.1016/j.ijhydene.2019.06.154     URL    
[49]
du Preez S P, Bessarabov D G. Int. J. Hydrog. Energy, 2018, 43(46): 21398.
[50]
Yu Z H, Yang W S, Zhou C, Zhang N B, Chao Z L liu H, Cao Y F, Sun Y, Shao P Z, Wu G H. Carbon, 2019, 141: 25.
[51]
Ogawa F, Yamamoto S, Masuda C. Mater. Sci. Eng. A, 2018, 711: 460.

doi: 10.1016/j.msea.2017.11.077     URL    
[52]
Xu R, Tan Z Q, Xiong D B, Fan G L, Guo Q, Zhang J, Su Y S, Li Z Q, Zhang D. Compos. A: Appl. Sci. Manuf., 2017, 96: 57.

doi: 10.1016/j.compositesa.2017.02.017     URL    
[53]
Zhao Z Y, Bai P K, Misra R D K, Dong M Y, Guan R G, Li Y J, Zhang J X, Tan L, Gao J F, Ding T, Du W B, Guo Z H. J. Alloys Compd., 2019, 792: 203.

doi: 10.1016/j.jallcom.2019.04.007     URL    
[54]
Thomas S, Pillari L K, Umasankar V, Pious J. Mater. Today: Proc., 2019, 18: 4058.
[55]
Xiao F, Yang R J, Li J M. Int. J. Hydrog. Energy, 2020, 45(11): 6082.

doi: 10.1016/j.ijhydene.2019.12.105     URL    
[56]
PÉrez-Bustamante R, Bolaños-Morales D, Bonilla-Martínez J, Estrada-Guel I, Martínez-Sánchez R. J. Alloys Compd., 2014, 615: S578.

doi: 10.1016/j.jallcom.2014.01.225     URL    
[57]
Rashad M, Pan F S, Zhang J Y, Asif M. J. Alloys Compd., 2015, 646: 223.

doi: 10.1016/j.jallcom.2015.06.051     URL    
[58]
Xie Y M, Huang Y X, Wang F F, Meng X C, Li J C, Dong Z B, Cao J. J. Alloys Compd., 2020, 823: 153741.

doi: 10.1016/j.jallcom.2020.153741     URL    
[59]
Sha J J, Lv Z Z, Lin G Z, Dai J X, Zu Y F, Xian Y Q, Zhang W, Cui D, Yan C L. Mater. Lett., 2020, 262: 127024.

doi: 10.1016/j.matlet.2019.127024     URL    
[60]
Mousavian R T, Behnamfard S, Khosroshahi R A, Zavašnik J, Ghosh P, Krishnamurthy S, Heidarzadeh A, Brabazon D. Mater. Sci. Eng. A, 2020, 771: 138639.
[61]
Al Bacha S, Zakhour M, Nakhl M, Bobet J L. Int. J. Hydrog. Energy, 2020, 45(11): 6102.

doi: 10.1016/j.ijhydene.2019.12.162     URL    
[62]
Alinejad B, Mahmoodi K. Int. J. Hydrog. Energy, 2009, 34(19): 7934.

doi: 10.1016/j.ijhydene.2009.07.028     URL    
[63]
Liu Y, Wang X H, Liu H Z, Dong Z H, Li S Q, Ge H W, Yan M. Energy, 2015, 84: 714.

doi: 10.1016/j.energy.2015.03.035     URL    
[64]
Fan M Q, Liu S, Sun W Q, Fei Y, Pan H, Lv C J, Chen D, Shu K Y. Int. J. Hydrog. Energy, 2011, 36(24): 15673.

doi: 10.1016/j.ijhydene.2011.08.114     URL    
[65]
Chen C, Lan B X, Liu K, Wang H B, Guan X, Dong S J, Luo P. J. Alloys Compd., 2019, 808: 151733.
[66]
Deng Z Y, Tang Y B, Zhu L L, Sakka Y, Ye J H. Int. J. Hydrog. Energy, 2010, 35(18): 9561.

doi: 10.1016/j.ijhydene.2010.07.027     URL    
[67]
Deng S S, Kang S G, Feng N N, Zhu J X, Yu B, Xie X F, Chen J. J. Hazard. Mater., 2017, 333: 116.

doi: 10.1016/j.jhazmat.2017.03.022     URL    
[68]
Wang H Z, Huang J, Zhang K L, Yu Y F, Liu K, Yu G, Deng S B, Wang B. J. Hazard. Mater., 2014, 264: 230.

doi: 10.1016/j.jhazmat.2013.10.075     URL    
[69]
Wang H Z, Huang J, Zhang S Y, Xu Y, Zhang K L, Liu K, Cao Z G, Yu G, Deng S B, Wang Y J, Wang B. Chem. Eng. J., 2016, 292: 98.

doi: 10.1016/j.cej.2016.02.011     URL    
[70]
Chen Z L, Mao Q J, Lu S Y, Buekens A, Xu S X, Wang X, Yan J H. Chemosphere, 2017, 180: 130.

doi: 10.1016/j.chemosphere.2017.04.004     URL    
[71]
Borouni M, Niroumand B, Maleki A. J. Solid State Chem., 2018, 263: 208.

doi: 10.1016/j.jssc.2018.04.014     URL    
[72]
Kim H G, Park J I, Lee G H. Curr. Appl. Phys., 2013, 13(7): 1218.

doi: 10.1016/j.cap.2013.03.019     URL    
[73]
Yolcular S, Karaoglu S. Energy Sources A: Recovery Util. Environ. Eff., 2017, 39(18): 1919.

doi: 10.1080/15567036.2017.1390009     URL    
[74]
Wang H W, Chung H W, Teng H T, Cao G Z. Int. J. Hydrog. Energy, 2011, 36(23): 15136.

doi: 10.1016/j.ijhydene.2011.08.077     URL    
[75]
Fan M Q, Sun L X, Xu F. Renew. Energy, 2011, 36(2): 519.

doi: 10.1016/j.renene.2010.07.006     URL    
[76]
Xiao F, Yang R J, Li J M. J. Alloys Compd., 2018, 761: 24.

doi: 10.1016/j.jallcom.2018.05.087     URL    
[77]
Xiao F, Yang R J, Li J M. Energy, 2019, 170: 159.

doi: 10.1016/j.energy.2018.12.135    
[78]
Zhang B Y, Huang C, Yan S, Li Y C, Cheng Y. Appl. Surf. Sci., 2013, 286: 91.

doi: 10.1016/j.apsusc.2013.09.026     URL    
[79]
Fan M Q, Sun L X, Xu F. Energy Convers. Manag., 2010, 51(3): 594.

doi: 10.1016/j.enconman.2009.11.005     URL    
[80]
Zhang Z M, Wang N, Zhu L H, Lv H, Dong X L, Chai H J, Tang H Q. J. Environ. Chem. Eng., 2017, 5(1): 915.
[81]
Okoro A M, Machaka R, Lephuthing S S, Awotunde M A, Oke S R, Falodun O E, Olubambi P A. J. Alloys Compd., 2019, 785: 356.

doi: 10.1016/j.jallcom.2019.01.174     URL    
[82]
Liu Y, Wang X H, Liu H Z, Dong Z H, Li S Q, Ge H W, Yan M. Energy, 2014, 72: 421.

doi: 10.1016/j.energy.2014.05.060     URL    
[83]
Liu S, Fan M Q, Wang C, Huang Y X, Chen D, Bai L Q, Shu K Y. Int. J. Hydrog. Energy, 2012, 37(1): 1014.
[84]
Czech E, Troczynski T. Int. J. Hydrog. Energy, 2010, 35(3): 1029.

doi: 10.1016/j.ijhydene.2009.11.085     URL    
[1] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[2] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[3] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[4] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[5] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[6] 潘福生, 姚远, 孙洁. 锂硫电池中的催化作用[J]. 化学进展, 2021, 33(3): 442-461.
[7] 王惠亚, 赵立敏, 张芳, 何丹农. 高性能锂离子二次电池隔膜[J]. 化学进展, 2019, 31(9): 1251-1262.
[8] 柯少勇, 吴兆圆, 万中义, 方伟, 张亚妮, 王开梅. 具有农药活性的微生物源核苷类化合物[J]. 化学进展, 2019, 31(7): 954-968.
[9] 查东东, 郭斌, 李本刚, 银鹏, 李盘欣. 热塑性淀粉耐水性的化学与物理作用机制[J]. 化学进展, 2019, 31(1): 156-166.
[10] 魏晨辉, 付翯云, 瞿晓磊, 朱东强. 溶解态黑碳的环境过程研究[J]. 化学进展, 2017, 29(9): 1042-1052.
[11] 杨世迎, 张艺萱, 郑迪, 辛佳. 零价铝在水介质中的表面作用机制[J]. 化学进展, 2017, 29(8): 879-891.
[12] 杨世迎, 张翱, 任腾飞, 张宜涛. 炭基材料催化过氧化物降解水中有机污染物:表面作用机制[J]. 化学进展, 2017, 29(5): 539-552.
[13] 杨世迎, 郑迪, 常书雅, 石超. 基于零价铝的氧化/还原技术在水处理中的应用[J]. 化学进展, 2016, 28(5): 754-762.
[14] 杨皓程, 陈一夫, 叶辰, 万灵书, 徐志康. 有机-无机复合多孔膜制备与应用[J]. 化学进展, 2015, 27(8): 1014-1024.
[15] 刘天辉, 常刚, 曹瑞军, 孟令杰. 超顺磁性Fe3O4纳米粒子在磁共振造影中的应用[J]. 化学进展, 2015, 27(5): 601-613.
阅读次数
全文


摘要

机械球磨改性零价铝的作用机制