English
新闻公告
More
化学进展 2015, Vol. 27 Issue (2/3): 212-219 DOI: 10.7536/PC140921 前一篇   后一篇

• 综述与评论 •

聚多巴胺在生物材料表面改性中的应用

刘宗光, 屈树新*, 翁杰   

  1. 西南交通大学材料科学与工程学院 材料先进技术教育部重点实验室 成都 610031
  • 收稿日期:2014-09-01 修回日期:2014-11-01 出版日期:2015-03-15 发布日期:2014-12-22
  • 通讯作者: 屈树新 E-mail:qushuxin@swjtu.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2012CB933602),国家自然科学基金项目(No.51372210)和高等学校博士点专项科研基金项目(No.20130184110023)资助

Application of Polydopamine in Surface Modification of Biomaterials

Liu Zongguang, Qu Shuxin*, Weng Jie   

  1. Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
  • Received:2014-09-01 Revised:2014-11-01 Online:2015-03-15 Published:2014-12-22
  • Supported by:

    The work was supported by the National Basic Research Program of China (973 Program)(No.2012CB933602), the National Natural Science Foundation of China (No.51372210) and the Research Fund for the Doctoral Program of Higher Education of China (No. 20130184110023).

海洋生物贻贝通过其足腺分泌的具有超强黏附性能的蛋白,可在海水等潮湿环境中牢固黏附在各种材料的表面。受此黏附蛋白的启发,研究发现聚多巴胺(PDA)具有类似于贻贝黏附蛋白的结构和超强黏附性能。在碱性条件下,PDA可在各种材料的表面迅速成膜,其中含有大量亲水的羟基和氨基官能团,可提高材料表面的亲水性和化学多功能性;PDA可作为中间层,在基底材料表面强力结合功能分子。由于PDA的形成过程简单且不需要有机溶剂,近年来常被应用于材料的表面改性。此外,由于PDA可促进细胞的黏附,具有良好的生物相容性,在生物材料表面改性中也有较多的应用。本文将综述PDA的黏附机理及其在生物材料表面改性中的应用,并提出PDA在生物材料表面改性应用中的展望及研究过程中存在的问题,为PDA在生物材料和组织工程中的应用提供参考。

Inspired by the strong adhesive proteins secreted by mussels for attachment onto a wide range of substrates in wet condition, some reports indicated that polydopamine (PDA) possesses the similar structure and strong adhesion to those of adhesive proteins. PDA film can be formed on the surface of substrate in alkaline solution expeditiously, which results in the improvement of the hydrophily and the chemical versatility of substrate due to the hydrophilic hydroxyl and amino groups of PDA. The PDA layer can be used as an intermediate to anchor functional molecules on the surface through chemical bonds (by Michael addition or Schiff base reaction) or other physical bonds (hydrogen bond or van der Waals' force). PDA surface modification strategy is extremely useful because the process is simple and solvent-free. Moreover, due to the improvement of cell adhesion and biocompatibility, PDA has been widely used in surface modification of biomaterials. In this review, adhesive mechanism and application of PDA in surface modification of biomaterials have been summarized. In addition, the problems existed and the promising prospects of the application of PDA in biomaterials are pointed out.This review also provides useful information for the potential application of PDA in biomaterials and tissue engineering.

Contents
1 Introduction
2 Formation process and mechanism of PDA
3 Application of PDA
3.1 Increasing the hydrophilicity of biomaterials with PDA
3.2 Immobilizing drugs or growth factors with PDA
3.3 Immobilizing silver nanoparticles with PDA
3.4 Immobilizing proteins with PDA
3.5 Increasing the biocompatibility of substrates with PDA
3.6 Inducing mineralization on the surface of substrates with PDA
3.7 Application of PDA in other aspects
4 Conclusion and outlook

中图分类号: 

()

[1] Podsiadlo P, Liu Z Q, Paterson D, Messersmith P B, Kotov N A. Adv. Mater., 2007, 19: 949.
[2] Hwang D S, Zeng H B, Masic A, Harrington M J, Israelachvili J N, Waite J H. J. Biol. Chem., 2010, 285: 25850.
[3] 徐又一(Xu Y Y), 蒋金泓(Jiang J H), 朱利平(Zhu L P), 朱宝库(Zhu B K). 膜科学与技术(Membrane Science and Technology), 2011, 31(3): 32.
[4] Yu M E, Hwang J Y, Deming T J. J. Am. Chem. Soc., 1999, 121: 5825.
[5] 孙培育(Sun P Y), 田立颖(Tian L Y), 郑震(Zheng Z), 王新灵(Wang X L). 高分子学报(Acta Polymerica Sinica), 2009, 1(8): 803.
[6] Hong S, Kim K Y, Wook H J, Park S Y, Lee K D, Lee D Y, Lee H. Nanomedicine, 2011, 6: 793.
[7] Waite J H. Nat. Mater., 2008, 7: 8.
[8] Lee H, Dellatore S M, Miller W M, Messersmith P B. Science, 2007, 318: 426.
[9] Faure E, Falentin-Daudre C, Jerome C, Lyskawa J, Fournier D, Woisel P, Detrembleur C. Prog. Polym. Sci., 2013, 38: 236.
[10] Ball V, Frari D D, Michel M, Buehler M J, Toniazzo V, Singh M K, Gracio J, Ruch D. Bionanosci., 2012, 2: 16.
[11] Lynge M E, van der Westen R, Postma A, Städler B. Nanoscale, 2011, 3: 4916.
[12] Liu Y, Ai K, Lu L. Chem. Rev., 2014, 114: 5057.
[13] Faure E, Falentin-Daudré C, Jérôme C, Lyskawa J, Fournier D, Woisel P, Detrembleur C. Prog. Polym. Sci., 2013, 38: 236.
[14] Sedó J, Saiz-Poseu J, Busqué F, Ruiz-Molina D. Adv. Mater., 2013, 25: 653.
[15] 刘娟(Liu J), 杨青林(Yang Q L), 徐晶晶(Xu J J), 刘克松(Liu K S), 郭林(Guo L), 江雷(Jiang L). 化学进展(Progress in Chemistry), 2012, 24(10): 1946.
[16] 陈铭忆(Chen M Y), 温变英(Wen B Y), 张扬(Zhang Y).中国塑料(China Plastics), 2013, 27(6): 7.
[17] 王彩萍(Wang C P), 蔺存国(Lin C G), 张金伟(Zhang J W), 陈守刚(Chen S G).材料开发与应用(Development and Application of Materials), 2014, 8: 101.
[18] Ye Q, Zhou F, Liu W M. Chem. Soc. Rev., 2011, 40: 4244.
[19] 陈丽娟(Chen L J), 曾容菊(Zeng R J), 王延梅(Wang Y M). 高分子通报(Polymer Bulletin), 2012, (1): 15.
[20] 吴俊杰(Wu J J), 龙宇华(Long Y H), 赵宁(Zhao N), 徐坚(Xu J). 高分子通报(Polymer Bulletin), 2011, (10): 86.
[21] Brubaker C E, Messersmith P B. Langmuir, 2012, 28: 2200.
[22] Dreyer D R, Miller D J, Freeman B D, Paul D R, Bielawski C W. Chem. Sci., 2013, 4: 3796.
[23] Herlinger E, Jameson R F, Linert W. J. Chem. Soc. Perkin Trans.2, 1995, (2): 259.
[24] Dreyer D R, Miller D J, Freeman B D, Paul D R, Bielawski C W. Langmuir, 2012, 28: 6428.
[25] Liu L F, Shao B, Yang F L. Sep. Purif. Technol., 2013, 118: 226.
[26] Hong S, Na Y S, Choi S, Song I T, Kim W Y, Lee H. Adv. Funct. Mater., 2012, 22: 4711.
[27] Tsai W B, Chen W T, Chien H W, Kuo W H, Wang M J. Acta Biomater., 2011, 7: 4187.
[28] Ku S H, Ryu J, Hong S K, Lee H, Park C B. Biomaterials, 2010, 31: 2535.
[29] Ku S H, Park C B. Biomaterials, 2010, 31: 9431.
[30] Xi Z Y, Xu Y Y, Zhu L P, Wang Y, Zhu B K. J. Membr. Sci., 2009, 327: 244.
[31] Burzio L A, Waite J H. Biochemistry, 2000, 39: 11147.
[32] LaVoie M J, Ostaszewski B L, Weihofen A, Schlossmacher M G, Selkoe D J. Nat. Med., 2005, 11: 1214.
[33] Zhu L P, Yu J Z, Xu Y Y, Xi Z Y, Zhu B K. Colloids Surf. B, 2009, 69: 152.
[34] 谢槟(Xie B), 李贵才(Li G C), 代璐(Dai L), 杨苹(Yang P), 黄楠(Huang N). 高等学校化学学报(Chemical Journal of Chinese University), 2012, 33(1): 90.
[35] Lee H, Rho J, Messersmith P B. Adv. Mater., 2009, 21: 431.
[36] Poh C K, Shi Z L, Lim T Y, Neoh K G, Wang W. Biomaterials, 2010, 31: 1578.
[37] Kang J, Sakuragi M, Shibata A, Abe H, Kitajima T, Tada S, Mizutani M, Ohmori H, Ayame H, Son T I, Aigaki T, Ito Y. Mat. Sci. Eng. C, 2012, 32: 2552.
[38] Yang K, Lee J S, Kim J, Lee Y B, Shin H, Um S H, Kim J B, Park K I, Lee H, Cho S W. Biomaterials, 2012, 33: 6952.
[39] Saidin S, Chevallier P, Kadir M R A, Hermawan H, Mantovani D. Mater. Sci. Eng. C, 2013, 33: 4715.
[40] Son H Y, Ryu J H, Lee H, Nam Y S. Macromol. Mater. Eng., 2013, 298: 547.
[41] Sileika T S, Kim H D, Maniak P, Messersmith P B. ACS Appl. Mater. Interfaces, 2011, 3: 4602.
[42] Sureshkumar M, Siswanto D Y, Chen Y C, Lee C K, Wang M J. J. Polym. Sci. Pol. Phys., 2013, 51: 303.
[43] Sureshkumar M, Siswanto D Y, Lee C K. J. Mater. Chem., 2010, 20: 6948.
[44] Liao Y A, Wang Y Q, Feng X X, Wang W C, Xu F J, Zhang L Q. Mater. Chem. Phys., 2010, 121: 534.
[45] Chien C Y, Liu T Y, Kuo W H, Wang M J, Tsai W B. J. Biomed. Mater. Res. A, 2013, 101: 740.
[46] Yang S H, Kang S M, Lee K B, Chung T D, Lee H, Choi I S. J. Am. Chem. Soc., 2011, 133: 2795.
[47] Wei Q, Li B J, Yi N, Su B H, Yin Z H, Zhang F L, Li J, Zhao C S. J. Biomed. Mater. Res. A, 2011, 96: 38.
[48] Xie J W, Michael P L, Zhong S P, Ma B, MacEwan M R, Lim C T. J. Biomed. Mater. Res. A, 2012, 100: 929.
[49] Ren Y H, Rivera J G, He L H, Kulkarni H, Lee D K, Messersmith P B. BMC Biotech., 2011, 11: 63.
[50] Lee J S, Lee K, Moon S H, Chung H M, Lee J H, Um S H, Kim D I, Cho S W. Macromol. Biosci., 2014, 14: 1181.
[51] Yu X H, Walsh J, Wei M. RSC Adv., 2014, 4: 7185.
[52] Cho H, Perikamana S K M, Lee J, Lee J, Lee K M, Shin C S, Shin H. ACS Appl. Mater. Interfaces, 2014, 6: 11225.
[53] Rim N G, Kim S J, Shin Y M, Jun I, Lim D W, Park J H, Shin H. Colloids. Surf. B, 2012, 91: 189.
[54] Wu C T, Fan W, Chang J, Xiao Y. J. Mater. Chem., 2011, 21: 18300.
[55] Sun K, Xie Y Y, Ye D K, Zhao Y Y, Cui Y, Long F, Zhang W, Jiang X Y. Langmuir, 2012, 28: 2131.
[56] Shin Y M, Lee Y B, Shin H. Colloids. Surf. B, 2011, 87: 79.
[57] Jeong K J, Wang L Q, Stefanescu C F, Lawlor M W, Polat J, Dohlman C H, Langer R S, Kohane D S. Soft Matter, 2011, 7: 8305.
[58] Yang Z L, Tu Q F, Zhu Y, Luo R F, Li X, Xie Y C, Maitz M F, Wang J, Huang N. Adv. Healthc. Mater., 2012, 1: 548.
[59] Zhong S, Luo R F, Wang X, Tang L L, Wu J, Wang J, Huang R B, Sun H, Huang N. Colloids. Surf. B, 2014, 116: 553.
[60] Kim S, Park C B. Biomaterials, 2010, 31: 6628.
[61] Ryu J, Ku S H, Lee H, Park C B. Adv. Funct. Mater., 2010, 20: 2132.
[62] Lee M, Ku S H, Ryu J, Park C B. J. Mater. Chem., 2010, 20: 8848.
[63] Zhou Y Z, Cao Y, Liu W, Chu C H, Li Q L. ACS Appl. Mater. Interfaces, 2012, 4(12): 6901.
[64] Liu Z G, Qu S X, Zheng X T, Xiong X, Fu R, Tang K Y, Zhong Z D, Weng J. Mater. Sci. Eng. C, 2014, 44: 44.
[65] Wu C T, Fan W, Chang J, Xiao Y. J. Mater. Chem., 2011, 21: 18300.
[66] Feng J J, Zhang P P, Wang A J, Liao Q C, Xi J L, Chen J R. New. J. Chem., 2012, 36: 148.
[67] Ou J F, Wang J Q, Zhang D, Zhang P L, Liu S, Yan P H, Liu B, Yang S R. Colloids. Surf. B, 2010, 76: 123.

[1] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[2] 古孝雪, 于晶, 杨明英, 帅亚俊. 丝素蛋白3D打印在生物医学领域中的应用[J]. 化学进展, 2022, 34(6): 1359-1368.
[3] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[4] 赵睿, 杨晓, 朱向东, 张兴栋. 微量元素锶掺杂生物材料在骨修复领域的应用[J]. 化学进展, 2021, 33(4): 533-542.
[5] 杨世迎, 刘俊琴, 李乾风, 李阳. 机械球磨改性零价铝的作用机制[J]. 化学进展, 2021, 33(10): 1741-1755.
[6] 王惠亚, 赵立敏, 张芳, 何丹农. 高性能锂离子二次电池隔膜[J]. 化学进展, 2019, 31(9): 1251-1262.
[7] 左新钢, 张昊岚, 周同, 高长有. 调控细胞迁移和组织再生的生物材料研究[J]. 化学进展, 2019, 31(11): 1576-1590.
[8] 查东东, 郭斌, 李本刚, 银鹏, 李盘欣. 热塑性淀粉耐水性的化学与物理作用机制[J]. 化学进展, 2019, 31(1): 156-166.
[9] 韩毅, 董海青, 李胜, 李维达, 李永勇. 胰岛封装技术及其在胰岛移植中的应用[J]. 化学进展, 2018, 30(11): 1660-1668.
[10] 蒋敏, 王敏, 魏仕勇, 陈志宝, 木士春. 基于静电纺丝技术的取向纳米纤维[J]. 化学进展, 2016, 28(5): 711-726.
[11] 杨皓程, 陈一夫, 叶辰, 万灵书, 徐志康. 有机-无机复合多孔膜制备与应用[J]. 化学进展, 2015, 27(8): 1014-1024.
[12] 刘天辉, 常刚, 曹瑞军, 孟令杰. 超顺磁性Fe3O4纳米粒子在磁共振造影中的应用[J]. 化学进展, 2015, 27(5): 601-613.
[13] 程新峰, 金勇, 漆锐, 樊宝珠, 李汉平. 刺激响应降解型聚合物水凝胶[J]. 化学进展, 2015, 27(12): 1784-1798.
[14] 刘小波, 寇宗魁, 木士春. 多孔石墨烯材料[J]. 化学进展, 2015, 27(11): 1566-1577.
[15] 张勇杰, 李化毅, 董金勇, 胡友良. 聚烯烃共价键接枝纳米材料及其聚烯烃纳米复合材料[J]. 化学进展, 2015, 27(1): 47-58.