English
新闻公告
More
化学进展 2020, Vol. 32 Issue (2/3): 344-360 DOI: 10.7536/PC190628 前一篇   

• •

静电纺丝一维纳米材料在气敏传感器的应用

朱蕾1,2, 王嘉楠1,3,**(), 刘建伟1, 王玲1, 延卫1,**()   

  1. 1. 西安交通大学环境科学与工程系 西安 710049
    2. 渭南师范学院数理学院 渭南 714099
    3. 西安交通大学理学院应用化学系 西安 710049
  • 收稿日期:2019-06-25 出版日期:2020-02-15 发布日期:2019-12-11
  • 通讯作者: 王嘉楠, 延卫
  • 基金资助:
    国家自然科学基金青年项目(51803164); 中国博士后基金项目(2018M643635); 陕西省自然科学基金项目(2019JQ-126); 陕西省教育厅自然科学研究项目(19JK0293)

Applications of Electrospun One-Dimensional Nanomaterials in Gas Sensors

Lei Zhu1,2, Jianan Wang1,3,**(), Jianwei Liu1, Ling Wang1, Wei Yan1,**()   

  1. 1. Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China;
    2. School of Mathematics and Physics, Weinan Normal University, Weinan 714099, China
    3. Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049, China;
  • Received:2019-06-25 Online:2020-02-15 Published:2019-12-11
  • Contact: Jianan Wang, Wei Yan
  • About author:
    ** e-mail: (Jianan Wang);
  • Supported by:
    Natural Science Foundation of China(51803164); China Postdoctoral Science Foundation(2018M643635); Natural Science Foundation of Shaanxi Province(2019JQ-126); Natural Science Research Project of Shaanxi Provincial Education Department(19JK0293)

采用静电纺丝法制备的一维纳米材料具有比表面积大、孔隙率高以及优越的电化学性能等优势,可以显著改善气敏传感器的灵敏度,成为气敏传感器领域应用最广的材料之一。本文介绍了气敏传感器分类、静电纺丝技术原理和半导体气敏传感器的传感机理,详细综述了静电纺丝法制备不同传感材料,包括半导体金属氧化物、金属修饰金属氧化物、聚合物-金属氧化物和石墨烯-金属氧化物复合材料等在气敏传感器的研究现状,并对未来气敏传感器的发展方向进行了展望。

Electrospun 1D nanomaterials have the advantages of such as large specific surface area, high porosity, and superior electrochemical properties, which can significantly improve the sensitivity of gas sensors, making them the most widely used materials in the gas sensor field. In this review, the classification of gas sensor, the principle of electrospinning technology and the sensing mechanism of semiconductor metal oxide gas sensor is highlighted. And the research status of different sensing materials, including semiconductor metal oxide, doped semiconducting metal oxide, polymer-metal oxide, graphene-metal oxide composite material that are prepared by electrospinning and applied in gas sensors is reviewed in detail. Finally, the research prospect in this field is presented.

()
图1 不同形貌静电纺纳米材料 (a)珠串状[14];(b)光滑[15];(c)带状[16];(d)多孔道[17];(e)中空结构[18];(f)纳米管包纳米线[19];(g)刷子状[20];(h)链状[21];(i)纳米网状[22]
Fig.1 Different morphologies of electrospun fibers (a) beaded[14]; (b) smooth[15];(c) ribbon[16]; (d) multichannel tubular[17]; (e)hollow[18];(f) nanowire-in-microtube[19];(g)brush-like[20];(h)chain-like[21] and (i)nano-net[22]
图2 表面电荷层气敏响应模型(a)n型和(b)p型半导体[24]
Fig.2 Smplified gas sensing mechanism of space charged model of (a)n type and(b)p type semiconductor metal oxide[24]
图3 还原性气体H2在n型半导体金属氧化物SnO2界面传感机理原理图[25]
Fig.3 Schematic diagram of the proposed bifunctional sensing mechanism: reducing gas (H2) effect at SnO2 homointerfaces[25]
表1 不同半导体金属氧化物气敏传感器传感性能
Table 1 Summary of sensing properties of semiconducting metal oxide nanostructures
图4 (a) PdO@ZnO-SnO2 NT合成过程示意图;Pd@ZIF-8/PVP/Sn NFs(b) SEM图和(c) TEM图;(d) PdO@ZnO-SnO2 NT SEM图;(e)400 ℃时,四种材料对0.0001‰~0.005‰丙酮气体的动态响应曲线;(f)400 ℃时,PdO@ZnO-SnO2 NT对0.001‰不同气体的选择性[85]
Fig.4 (a) Schematic illustration of synthetic process of PdO@ZnO-SnO2 NTs; (b) SEM image of as-spun Pd@ZIF-8/PVP/Sn composite NFs;(c) TEM image of as-spun Pd@ZIF-8/PVP/Sn composite NFs;(d) SEM image of PdO@ZnO-SnO2 NTs;(e) Dynamic acetone response transition in the concentration range of 0.0001‰~0.005‰ at 400 ℃; (f) selective sensing characteristics of PdO@ZnO-SnO2 NTs toward 0.001‰ of various analytes at 400 ℃ [85]
表2 金属修饰半导体金属氧化物气敏传感器及传感特性汇总
Table 2 Summary of sensors made of metal ion doped semiconducting metal oxide nanostructures and their sensing properties
图5 BW/TiO2 HNFs TEM图和柔性气体传感元件在不同弯曲角度下BW/TiO2对乙醇气体的响应-恢复动态曲线[104]
Fig.5 TEM images of the BW/TiO2 HNFs and dynamic ethanol response-recovery curves of the BW/TiO2 HNFs-based flexible sensing devices under different bent state[104]
表3 半导体金属氧化物复合材料气敏传感器及传感特性汇总
Table 3 Sensing properties of composites of semiconducting metal oxide nanostructures
表4 导电聚合物-半导体金属氧化物复合材料气敏传感器及传感特性汇总
Table 4 Sensing properties of composites of conductive polymer and semiconductor metal oxide nanostructures
表5 石墨烯-半导体金属氧化物复合材料的气敏传感器特性
Table 5 Sensing properties of composites of graphene and semiconductor metal oxide nanostructures
表6 不同材料制备气敏传感器的优缺点
Table 6 The advantages and disadvantages of gas sensor prepared with different materials
表7 静电纺丝纤维制备的不同气敏传感器汇总表
Table 7 Summary of different gas sensors prepared by electrospinning
[1]
Lee J H . Sens. Actuators, B, 2009,140:319. https://linkinghub.elsevier.com/retrieve/pii/S0925400509003499

doi: 10.1016/j.snb.2009.04.026     URL    
[2]
Fratoddi I, Venditti I, Cametti C, Russo M V . Sens. Actuators, B, 2015,220:534.
[3]
Wang C, Yin L, Zhang L, Xiang D, Gao R . Sensors (Basel), 2010,10:2088. https://www.ncbi.nlm.nih.gov/pubmed/22294916

doi: 10.3390/s100302088     URL     pmid: 22294916
[4]
Gupta C S, Chatterjee S, Ray A K, Chakrabortym A K . Sens. Actuators, B, 2015,221:1170.
[5]
Seung Y B, Hee W S, Jeunghee P J . Chem. Phys., 2004,108:5206.
[6]
Xu X X, Wang X . Inorg. Chem., 2009,48:3890. https://www.ncbi.nlm.nih.gov/pubmed/19326893

doi: 10.1021/ic802449w     URL     pmid: 19326893
[7]
Cao G, Liu D . Adv. Colloid Interface Sci., 2008,136:45. https://www.ncbi.nlm.nih.gov/pubmed/17870042

doi: 10.1016/j.cis.2007.07.003     URL     pmid: 17870042
[8]
Qin C, Wang Y, Gong Y, Zhang Z, Cao J J . Alloys Compd., 2019,770:972.
[9]
Yu Q, Wang M, Chen H . Mater. Lett., 2010,64:428.
[10]
Ding B, Wang M, Yu J, Sun G . Sensors., 2009,9:1609. https://www.ncbi.nlm.nih.gov/pubmed/22573976

doi: 10.3390/s90301609     URL     pmid: 22573976
[11]
Imran M, Motta N, Shafiei M . Beilstein J. Nanotechnol, 2018,9:2128. https://www.ncbi.nlm.nih.gov/pubmed/30202686

doi: 10.3762/bjnano.9.202     URL     pmid: 30202686
[12]
Greiner A, Wendorff J H . Angew. Chem. Int. Ed., 2007,46:5670. https://www.ncbi.nlm.nih.gov/pubmed/17585397

doi: 10.1002/anie.200604646     URL     pmid: 17585397
[13]
Tiwari J N, Tiwari R N, Kim K S . Prog. Mater. Sci., 2012,57:724.
[14]
Zhang C, Wang X, Lin J, Ding B, Yu J, Pan N . Sens. Actuators, B, 2011,152:316.
[15]
Lin J, Ding B, Yu J . ACS Appl. Mater. Interfaces, 2010,2:521. https://www.ncbi.nlm.nih.gov/pubmed/20356200

doi: 10.1021/am900736h     URL     pmid: 20356200
[16]
Koombhongse S, Liu W, Reneker D H . J. Polym. Sci., Part B:Polym. Phys., 2001,39:2598.
[17]
Zhao Y, Cao X Y, Jiang L J . Amer. Chem. Soc., 2007,129:764. https://pubs.acs.org/doi/10.1021/ja068165g

doi: 10.1021/ja068165g     URL    
[18]
Dror Y, Salalha W, Avrahami R, Zussman E, Yarin A L, Dersch R, Greiner A, Wendorff J H . Small, 2007,3:1064. https://www.ncbi.nlm.nih.gov/pubmed/17315262

doi: 10.1002/smll.200600536     URL     pmid: 17315262
[19]
Chen H, Wang N, Di J, Zhao Y, Song Y, Jiang L . Langmuir, 2010,26:11291. https://www.ncbi.nlm.nih.gov/pubmed/20337483

doi: 10.1021/la100611f     URL     pmid: 20337483
[20]
Deng J, Yu B, Lou Z, Wang L, Wang R, Zhang T . Sens. Actuators, B, 2013,184:21. https://linkinghub.elsevier.com/retrieve/pii/S0925400513004528

doi: 10.1016/j.snb.2013.04.020     URL    
[21]
Cao J, Zhang H, Yan X . Mater. Lett., 2016,185:40.
[22]
Wang X, Si Y, Wang J, Ding B, Yu J, AlDeyab S S . Sens. Actuators, B, 2012,163:186.
[23]
Liu X, Cheng S, Liu H, Hu S, Zhang D, Ning H . Senors(Basel), 2012,12:9635. https://www.ncbi.nlm.nih.gov/pubmed/23012563

doi: 10.3390/s120709635     URL     pmid: 23012563
[24]
Kim H J, Lee J H . Sens. Actuators, B, 2014,192:607.
[25]
Katoch A, Kim J H, Kwon Y J, Kim H W, Kim S S . ACS Appl. Mater. Interfaces, 2015,7:11351. https://www.ncbi.nlm.nih.gov/pubmed/25950738

doi: 10.1021/acsami.5b01817     URL     pmid: 25950738
[26]
Bian H, Ma S, Sun A, Xu X, Yang G, Gao J, Zhang Z, Zhu H . Superlattices Microstruct., 2015,81:107.
[27]
Katoch A, Abideen Z U, Kim J H, Kim S S . Sens. Actuators, B, 2016,232:698.
[28]
Wei S, Zhao G, Du W, Tian Q . Vac., 2016,124:32. https://linkinghub.elsevier.com/retrieve/pii/S0042207X15301226

doi: 10.1016/j.vacuum.2015.11.010     URL    
[29]
Li T, Zeng W, Zhao W . Mater. Lett., 2016,167:230.
[30]
Fan H, Zhang T, Xu X, Lv N . Sens. Actuators, B, 2011,153:83.
[31]
Wang L, Cao J, Qian X, Zhang H . Mater. Lett., 2016,171:30.
[32]
Can N . Mater. Chem. Phys., 2018,213:6.
[33]
Choi J M, Byun J H, Kim S S . Sens. Actuators, B, 2016,227:149.
[34]
Xu J M, Cheng J P . J. Alloys Compd., 2016,686:753.
[35]
Zheng W, Lu X, Wang W, Li Z, Zhang H, Wang Y, Wang Z, Wang C . Sens. Actuators, B, 2009,142:61.
[36]
Wang L L, Luo X J, Zheng X J, Wang R, Zhang T . RSC Adv., 2013,3:9723.
[37]
Aziz A, Tiwale N, Hodge S A, Attwood S, Divitini G, Welland M E . ACS Appl. Mater. Interfaces, 2018,10:43817. https://www.ncbi.nlm.nih.gov/pubmed/30475575

doi: 10.1021/acsami.8b17149     URL     pmid: 30475575
[38]
Dey A . Mater. Sci. Eng., B, 2018,229:206. https://linkinghub.elsevier.com/retrieve/pii/S0921510717303574

doi: 10.1016/j.mseb.2017.12.036     URL    
[39]
Rothschild A, Komem Y J . Appl. Phys., 2004,95:6374.
[40]
Bai S, Fu H, Zhao Y, Tian K, Luo R, Li D, Chen A . Sens. Actuators, B, 2018,266:692.
[41]
Park J Y, Asokan K, Choi S W, Kim S S . Sens. Actuators, B, 2011,152:254.
[42]
Khalil A, Kim J J, Tuller H L, Rutledge G C, Hashaikeh R . Sens. Actuators, B, 2016,227:54.
[43]
Choi S W, Park J Y, Kim S S . Chem. Eng. J., 2011,172:550.
[44]
Yoon J W, Kim H J, Jeong H M, Lee J H . Sens. Actuators, B, 2014,202:263. https://linkinghub.elsevier.com/retrieve/pii/S0925400514006108

doi: 10.1016/j.snb.2014.05.081     URL    
[45]
Yoon J W, Choi J K, Lee J H . Sens. Actuators, B, 2012,161:570.
[46]
Dario Z V G, Navpreet K, Hashitha M M, Munasinghe A, Orhan S, Elisabetta C . Anal. Chim. Acta., 2018,1039:1. https://www.ncbi.nlm.nih.gov/pubmed/30322540

doi: 10.1016/j.aca.2018.09.020     URL     pmid: 30322540
[47]
Guo X X, Zhang J B, Ni M C, Liu L, Lian H W, Wang H . J. Mater. Sci. Mater. Electron., 2016,27:11262.
[48]
Chiara D P, Maria A S, Antonietta T, Luca F, Antonella M, Joshua A, Pietro S, Simonetta C . IEEE Sensor Journal. 2018,18:7365.
[49]
Xie N, Guo L, Chen F, Kou X, Wang C, Ma J, Sun Y, Liu F, Liang X, Gao Y, Yan X, Lu G . Sens. Actuators, B, 2018,271:44.
[50]
Shankar P, Rayappan J B B . J. Mater. Chem. C, 2017,5:10869.
[51]
Shankar P, Rayappan J B B . ACS Appl. Mat. Interfaces, 2017,9:38135. https://www.ncbi.nlm.nih.gov/pubmed/28990752

doi: 10.1021/acsami.7b11561     URL     pmid: 28990752
[52]
Xu L, Dong B, Wang Y, Bai X, Liu Q, Song H . Sens. Actuators, B, 2010,147:531.
[53]
Xu H, Gao J, Li M, Zhao Y, Zhang M, Zhao T, Wang L, Jiang W, Zhu G, Qian X, Fan Y, Yang J, Luo W . Front. Chem., 2019,7:266. https://www.ncbi.nlm.nih.gov/pubmed/31058141

doi: 10.3389/fchem.2019.00266     URL     pmid: 31058141
[54]
Nikfarjam A, Salehifar N . Sens. Actuators, B, 2015,211:146.
[55]
Trocino S, Frontera P, Donato A, Busacca C, Scarpino L A, Antonucci P, Nei G . Mater. Chem. Phys., 2014,147:35.
[56]
Kim J H, Mirzaei A, Kim H W, Wu P, Kim S S . Sens. Actuators, B, 2019,293:210.
[57]
Jiang Z, Yin M, Wang C . Mater. Lett., 2017,194:209.
[58]
Xu X, Chen Y, Zhang G, Ma S, Lu Y, Bian H, Chen Q J . Alloys Compd., 2017,703:572.
[59]
Kou X, Xie N, Chen F, Wang T, Guo L, Wang C, Wang Q, Ma J, Sun Y, Zhang H, Lu G . Sens. Actuators, B, 2018,256:861.
[60]
Pascariu D P, Airinei A, Olaru N, Fifere N, Doroftei C, Iacomi F . Eur. Polym. J., 2017,91:326.
[61]
Janine M, Walker S A, Patricia A Morris . Sens. Actuators, B, 2019,286:624.
[62]
Xu S, Kan K, Yang Y, Jiang C, Gao J, Jing L, Shen P, Li L, Shi K J . Alloys Compd., 2015,618:240.
[63]
Wang T T, Ma S Y, Cheng L, Luo J, Jiang X H, Jin W X . Sens. Actuators, B, 2015,216:212.
[64]
Mohanapriya P, Segawa H, Watanabe K, Watanabe K, Samitsu S, Natarajan T S, Jaya N V, Ohashi N , Sens. Actuators, B, 2013,188:872.
[65]
Li W Q, Ma S Y, Li Y F, Li X B, Wang C Y, Yang X H, Cheng L, Mao Y Z, Luo J J . Alloys Compd., 2014,605:80.
[66]
Cheng J P, Wang B B, Zhao M G, Liu F, Zhang X B . Sens. Actuators, B, 2014,190:78.
[67]
Choi J K, Hwang I S, Kim S J, Park J S, Park S S, Jeong U, Kang Y C, Lee J H . Sens. Actuators, B, 2010,150:191.
[68]
Xu X, Sun J, Zhang H, Wang Z, Dong B, Jiang T, Wang W, Li Z, Wang C . Sens. Actuators, B, 2011,160:858.
[69]
Ma L, Ma S Y, Kang H, Shen X F, Wang T T, Jiang X H, Chen Q . Mater. Lett., 2017,209:188.
[70]
Katoch A, Byun J H, Choi S W, Kim S S . Sens. Actuators, B, 2014,202:38.
[71]
Xiong Y, Xue Q, Ling C, Lu W, Ding D, Zhu L, Li X . Sens. Actuators, B, 2017,241:725.
[72]
Qin W, Xu L, Song J, Xing R, Song H . Sens. Actuators, B, 2013,185:231.
[73]
Yang D J, Kamienchick I, Youn D Y, Rothschild A, Kim I D . Adv. Funct. Mater., 2010,20:4258.
[74]
Wang W, Huang H, Li Z, Zhang H, Wang Y, Zheng W, Wang C . J. Am. Ceram. Soc., 2008,91:3817.
[75]
Hu J, Gao F, Sang S, Li P, Deng X, Zhang W, Chen Y, Lian K J . Mater. Sci., 2014,50:1935.
[76]
AlHardan N H, Abdullah M J, Aziz A A . Appl. Surf. Sci., 2013,270:480.
[77]
Sun Y, Zhao Z, Li P, Li G, Chen Y, Zhang W, Hu J . Appl. Surf. Sci., 2015,356:73.
[78]
Wan G X, Ma S Y, Li X B, Li F M, Bian H Q, Zhang L P, Li W Q . Mater. Lett., 2014,114:103.
[79]
Wang C, Ma S, Sun A, Qin R, Yang F, Li X, Li F, Yang X . Sens. Actuators, B, 2014,193:326.
[80]
Zhao M, Wang X, Cheng J, Zhang L, Jia J, Li X . Curr. Appl. Phys., 2013,13:403. https://linkinghub.elsevier.com/retrieve/pii/S1567173912003562

doi: 10.1016/j.cap.2012.08.019     URL    
[81]
Paraguay D F, Yoshida M M, Morales J, Solis J, Estrada L W . Thin Solid Films, 2000,373:137. https://linkinghub.elsevier.com/retrieve/pii/S0040609000011202

doi: 10.1016/S0040-6090(00)01120-2     URL    
[82]
Kim J H, Mirzaei A, Kim H W, Kim S S . Sens. Actuators, B, 2019,284:628.
[83]
Koo W T, Choi S J, Kim N H, Jang J S, Kim I D . Sens. Actuators, B, 2016,223:301.
[84]
Yang X, Salles V, Kaneti Y V, Liu M, Maillard M, Journet C, Jiang X, Brioude A . Sens. Actuators, B, 2015,220:1112.
[85]
Koo W T, Jang J S, Choi S J, Cho H J Kim I D . ACS Appl. Mater. Interfaces, 2017,9:18069. https://www.ncbi.nlm.nih.gov/pubmed/28492302

doi: 10.1021/acsami.7b04657     URL     pmid: 28492302
[86]
Koo W T, Choi S J, Kim S J, Jang J S, Tuller H L, Kim I D . J. Am. Chem. Soc., 2016,138:13431. https://www.ncbi.nlm.nih.gov/pubmed/27643402

doi: 10.1021/jacs.6b09167     URL     pmid: 27643402
[87]
Li Z J, Li H, Wu Z L, Wang M K, Luo J T, Hamdi T, Hu P A, Yang C, Marius G, Liu X T, Fu Y Q . Mater. Horiz., 2019,6:470.
[88]
Huang B, Wang Y, Hu Q, Mu X, Zhang Y, Bai J, Wang Q, Sheng Y, Zhang Z, Xie E . J. Mater. Chem., 2018,6:10935.
[89]
Liu Y, Gao X, Li F, Lu G, Zhang T, Barsan N . Sens. Actuators, B, 2018,260:927.
[90]
Jiang Z, Zhao R, Sun B, Nie G, Ji H, Lei J, Wang C . Ceram. Int., 2016,42:15881.
[91]
Li F, Ruan S, Zhang N, Yin Y, Guo S, Chen Y, Zhang H, Li C . Sens. Actuators, B, 2018,265:355.
[92]
Cui J, Jiang J, Shi L, Zhao F, Wang D, Lin Y, Xie T . RSC Adv., 2016,6:78257.
[93]
Wang Z J, Li Z Y, Sun J H, Zhang H N, Wang W, Zheng W, Wang C . J. Phys. Chem. C, 2010,114:6100.
[94]
Zheng Y, Wang J, Yao P . Sens. Actuators, B, 2011,156:723.
[95]
Wang Y, Zhang H, Sun X . Appl. Surf. Sci., 2016,389:514.
[96]
Yan C, Lu H, Gao J, Zhu G, Yin F, Yang Z, Liu Q, Li G . J. Alloys Compd., 2017,699:567.
[97]
Lee J H, Kim J Y, Kim J H, Kim S S . Sensor, 2019,19:726. http://www.mdpi.com/1424-8220/19/3/726

doi: 10.3390/s19030726     URL    
[98]
Zhang R, Zhou T T, Zhang T . Adv. Mater. Interfaces, 2018,5:1800967.
[99]
Yan S H, Ma S Y, Li W Q, Xu X L, Cheng L, Song H S, Liang X Y . Sens. Actuators, B, 2015,221:88.
[100]
Xu S, Gao J, Wang L, Kan K, Xie Y, Shen P, Li L, Shi K . Nanoscale, 2015,7:14643. https://www.ncbi.nlm.nih.gov/pubmed/26265494

doi: 10.1039/c5nr03796d     URL     pmid: 26265494
[101]
Zhang X J, Qiao G J . Appl. Surf. Sci., 2012,258:6643.
[102]
Katoch A, Kim J H, Kim S S . ACS Appl. Mater. Interfaces, 2014,6:21494. https://www.ncbi.nlm.nih.gov/pubmed/25379680

doi: 10.1021/am506499e     URL     pmid: 25379680
[103]
Wang K, Li J, Li W, Wei W, Zhang H, Wang L L . Adv. Mater. Technol., 2018,4:1800521.
[104]
Wang K, Wei W, Lou Z, Zhang H, Wang L L . Appl. Surf. Sci., 2019,479:209.
[105]
Wang X, Ding B, Sun M, Yu J, Sun G . Sens. Actuators, B, 2010,144:11. https://linkinghub.elsevier.com/retrieve/pii/S0925400509006674

doi: 10.1016/j.snb.2009.08.023     URL    
[106]
Manesh K M, Gopalan A I, Lee K P, Santhosh P, Song K D, Lee D D . IEEE T. Nanotechnol., 2007,6:513.
[107]
Li F, Gao X Wang R Zhang T . Appl. Surf. Sci., 2018,442:30. https://linkinghub.elsevier.com/retrieve/pii/S0169433218304665

doi: 10.1016/j.apsusc.2018.02.122     URL    
[108]
Huang B, Zhang Z, Zhao C, Cairang L, Bai J, Zhang Y, Mu X, Du J, Wang H, Pan X, Zhou J, Xie E . Sens. Actuators, B, 2018,255:2248.
[109]
Chen K, Chen S, Pi M, Zhang D . Solid State Electron., 2019,157:42.
[110]
Li F, Gao X, Wang R, Zhang T, Lu G . Sens. Actuators, B, 2017,248:812.
[111]
Alali K T, Liu J, Aljebawi K, Liu P, Chen R, Li R, Zhang H, Zhou L, Wang J . J. Alloy. Compd., 2019,793:31.
[112]
Gao X, Li F, Wang R, Zhang T . Sens. Actuators, B, 2018,258:1230. https://linkinghub.elsevier.com/retrieve/pii/S0925400517322190

doi: 10.1016/j.snb.2017.11.088     URL    
[113]
Cao J, Wang Z, Wang R, Liu S, Fei T, Wang L, Zhang T . J. Mater. Chem. A, 2015,3:5635. https://www.ncbi.nlm.nih.gov/pubmed/32262534

doi: 10.1039/c5tb00270b     URL     pmid: 32262534
[114]
Ji S, Li Y, Yang M . Sens. Actuators, B, 2008,133:644.
[115]
Li Y, Gong J, He G, Deng Y . Mater. Chem. Phys., 2011,129:477.
[116]
Pang Z, Fu J, Luo L, Huang F, Wei Q . Colloids Surf. A, 2014,461:113.
[117]
Pang Z, Yang Z, Chen Y, Zhang J, Wang Q, Huang F, Wei Q . Colloids Surf., A, 2016,494:248.
[118]
Li Y, Ban H, Yang M . Sens. Actuators, B, 2016,224:449.
[119]
Liu P H, Wu S H, Zhang Y, Zhang H N, Qin X H . Nanomaterials, 2016,6:121.
[120]
Anju V P, Jithesh P R, Narayanankutty S K . Sens. Actuators, A, 2019,285:35.
[121]
Zhao J, Wu G, Hu Y, Liu Y, Tao X, Chen W . J. Mater. Chem. A, 2015,3:24333.
[122]
Aria M M, Irajizad A, Astaraei F R, Shariatpanahi S P, Sarvari R . Measurement, 2016,78:283.
[123]
Sharma H J, Jamkar D V, Kondawar S B . Procedia Materials Science, 2015,10:186.
[124]
Hu W, Chen S, Liu L, Ding B, Wang H . Sens. Actuators, B, 2011,157:554.
[125]
Hu Y, Yu H, Yan Z, Ke Q . RSC Adv., 2018,8:8747.
[126]
Jia Y, Yu H, Zhang Y, Chen L, Dong F . Sens. Actuators, B, 2015,212:273.
[127]
Yuan W, Huang L, Zhou Q, Shi G . ACS Appl. Mater. Interfaces, 2014,6:17003. https://www.ncbi.nlm.nih.gov/pubmed/25208097

doi: 10.1021/am504616c     URL     pmid: 25208097
[128]
Kim J H, Zheng Y, Mirzaei A, Kim H W, Kim S S . J. Electron. Mater., 2017,46:3531.
[129]
Abideen Z U, Katoch A, Kim J H, Kwon Y J, Kim H W, Kim S S . Sens. Actuators, B, 2015,221:1499.
[130]
Reddy S C, Zhang L W, Qiu Y J, Chen Y N, Reddy A S . J. Ind. Eng., 2018,63:411.
[131]
Kim J H, Mirzaei A, Zheng Y, Lee J H, Kim J Y, Kim H W, Kim S S . Sens. Actuators, B, 2019,281:453.
[132]
Zhang J, Lu H, Yan C, Yang Z, Zhu G, Gao J, Yin F, Wang C . Sens. Actuators, B, 2018,264:128.
[133]
Yan C, Lu H, Gao J, Zhang Y, Guo Q, Ding H, Wang Y, Wei F, Zhu G, Yang Z, Wang C . J. Alloys Compd., 2018,741:908.
[134]
Feng Q, Li X, Wang J, Gaskov A M . Sens. Actuators, B, 2016,222:864.
[135]
Abideen Z U, Kim J H, Mirzaei A, Kim H W, Kim S S . Sens. Actuators, B, 2018,255:1884.
[136]
Guo L, Kou X, Ding M, Wang C, Dong L, Zhang H, Feng C, Sun Y, Gao Y, Sun P, Lu G . Sens. Actuators, B, 2017,244:233.
[137]
Mauro D A, Zimbone M, Fragalà M E, Impellizzeri G . Mat. Sci. Semicon. Proc., 2016,42:98.
[138]
Wang L, Kang Y, Liu X, Zhang S, Huang W, Wang S . Sens. Actuators, B, 2012,162:237.
[139]
Landau O, Rothschild A J . Electroceram., 2015,35:148. http://link.springer.com/10.1007/s10832-015-0007-9

doi: 10.1007/s10832-015-0007-9     URL    
[140]
Sungpanich J, Thongtem T, Thongtem S . Mater. Lett., 2011,65:3000.
[141]
Tanguy N R, Thompson M, Yan N . Sens. Actuators, B, 2018,257:1044.
[142]
Li X, Zhao Y, Wang X, Wang J, Gaskov A M, Akbar S A . Sens. Actuators, B, 2016,230:330.
[143]
Su P G, Yang L Y . Sens. Actuators, B, 2016,223:202.
[144]
Chen Y, Zhang W, Wu Q . Sens. Actuators, B, 2017,242:1216.
[145]
Yan S, Wu Q . Sens. Actuators, B, 2014,205:329.
[146]
Khorami H A, Keyanpour Rad M, Vaezi M R . Appl. Surf. Sci., 2011,257:7988.
[147]
Nie Q, Pang Z, Li D, Zhou H, Huang F, Cai Y, Wei Q . Colloids Surf. A, 2018,537:532.
[148]
Jaroenapibal P, Boonma P, Saksilaporn N, Horprathum M, Amornkitbamrung V, Triroj N . Sens. Actuators, B, 2018,255:1831. https://linkinghub.elsevier.com/retrieve/pii/S0925400517316362

doi: 10.1016/j.snb.2017.08.199     URL    
[149]
Wang X, Zhang J, He Y, Wang L, Liu L, Wang H, Guo X, Lian H . Chem. Phys. Lett., 2016,658:319.
[150]
Bai S L, Gao W, Sun J H, Li J, Tian Y, Chen A F, Luo R X, Li D Q . Sens. Actuators, B, 2016,226:96.
[151]
Lim S K, Hwang S H, Chang D, Kim S . Sens. Actuators, B, 2010,149:28.
[152]
Feng C, Li X, Ma J, Sun Y, Wang C, Sun P, Zheng J, Lu G . Sens. Actuators, B, 2015,209:622.
[153]
Lee C S, Kim I D, Lee J H . Sens. Actuators, B, 2013,181:463
[1] 郑勰, 周一凡, 陈思远, 刘晓云, 查刘生. 刺激响应性电纺纳米纤维[J]. 化学进展, 2018, 30(7): 958-975.
[2] 徐宇兴 谭强强 唐子龙 张中太 袁章福. WO3基气敏传感器*[J]. 化学进展, 2009, 21(12): 2734-2743.
[3] 盛显良,刘娜仁,翟锦,安丽平. 一维纳米材料在染料敏化太阳电池中的应用*[J]. 化学进展, 2009, 21(09): 1969-1979.
[4] 冯秀梅,胡建强,谢静思,刘玉英,马玉洁. 一维金属/半导体异质结纳米材料的制备及性能研究*[J]. 化学进展, 2009, 21(04): 755-764.
[5] 樊希安,官建国,王维,王一龙,童国秀,牟方志. 一维铁磁金属纳米材料的制备、结构调控及其磁性能*[J]. 化学进展, 2009, 21(01): 143-151.
[6] 张毓芳,张正国,方晓明. TiO2一维纳米材料及其纳米结构的合成*[J]. 化学进展, 2007, 19(04): 494-501.
[7] 尹秉胜,马厚义,陈慎豪. 电化学技术制备纳米材料研究的新进展*[J]. 化学进展, 2004, 16(02): 196-.