English
新闻公告
More
化学进展 2015, Vol. 27 Issue (5): 601-613 DOI: 10.7536/PC141042 前一篇   后一篇

• 综述与评论 •

超顺磁性Fe3O4纳米粒子在磁共振造影中的应用

刘天辉, 常刚, 曹瑞军, 孟令杰*   

  1. 西安交通大学理学院化学系 西安 710049
  • 收稿日期:2014-10-01 修回日期:2015-01-01 出版日期:2015-05-15 发布日期:2015-03-16
  • 通讯作者: 孟令杰 E-mail:menglingjie@mail.xjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21174087, 21474079),教育部新世纪优秀人才计划(No.NCET-13-0453),中国博士后基金项目(No.2013M540738, 2014T70909)和中央高校基本科研业务费 (No.08142027, 08143101)资助

Applications of Superparamagnetic Fe3O4 Nanoparticles in Magnetic Resonance Imaging

Liu Tianhui, Chang Gang, Cao Ruijun, Meng Lingjie*   

  1. Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an 710049, China
  • Received:2014-10-01 Revised:2015-01-01 Online:2015-05-15 Published:2015-03-16
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21174087, 21474079), the Program for New Century Excellent Talents in University (No.NCET-13-0453),the Postdoctoral Fund of China (No.2013M540738, 2014T70909), and the Fundamental Funds for the Central Universities (No.08142027, 08143101).
超顺磁性Fe3O4纳米粒子由于其廉价、低毒及超顺磁等特性,已成为重要的一类磁共振造影剂.本文综述了超顺磁性Fe3O4纳米粒子的可控制备方法,归纳总结影响粒径、结晶度和磁性能的主要因素和影响规律;为进一步提高磁性能并实现多功能,总结了Fe3O4纳米粒子进一步组装和表面改性的方法和机理;系统讨论了Fe3O4纳米粒子的形貌、尺寸和表面性能等对磁性能和生物相容性的影响规律;并指出了Fe3O4纳米粒子在磁共振造影领域潜在的发展方向和研究热点.
Fe3O4 nanomaterials have attracted tremendous attention in the field of magnetic resonance imaging (MRI) because of their low cost, good biocompatibility, favorable superparamagnetic properties. This article focuses on the controlled preparation methods of superparamagnetic Fe3O4 nanoparticles, and provides an in-depth discussion of the key factors and their influence rules for particle size, crystallinity and magnetic properties. The current status of available methodologies and mechanisms for the assembly and surface modification of Fe3O4 nanoparticles are highlighted to generate high performance and multifunction. We also systematically summarize the effect of particle size, morphology and surface properties on the magnetic and toxic properties of Fe3O4 nanoparticles. Finally, the future opportunities and challenges of Fe3O4 nanomaterials used as MRI contrast agents are addressed to our understanding.

Contents
1 Introduction
2 Controllable preparation of Fe3O4 nanoparticles
2.1 Thermal decomposition
2.2 Coprecipitation
2.3 Solvothermal
2.4 Sol-gel
2.5 Microemulsion
2.6 Sonochemical
3 Assembly of Fe3O4 nanoparticles
3.1 Zero-dimensional sphere
3.2 One-dimensional nanochain
3.3 Multidimensional assembly
4 Surface functionalization of Fe3O4 nanoparticles
4.1 Modified by SiO2
4.2 Modified by polymer
4.3 Multifunctional modification
5 Toxicity
6 MRI applications
6.1 Cell imaging
6.2 Tissue/organ imaging
7 Conclusion

中图分类号: 

()
[1] O'Neill C, Kurgansky M, Kaiser J, Lau W. PAIN Physician, 2008, 11:311.
[2] Kim C K, Park B K, Lee H M, Kim S S, Kim E J. Am. J. Roentgenol., 2008, 190:1180.
[3] Laurent S, Forge D, Port M, Roch A, Robic C, Elst L V, Muller R N. Chem. Rev., 2008, 108:2064.
[4] Laurent S, Forge D, Port M, Roch A, Robic C, Elst L V, Muller R N. Chem. Rev., 2008, 108:2064.
[5] Weissleder R, Moore A, Mahmood U, Bhorade R, Benveniste H, Chiocca E A, Basilion J P. Nat. Med., 2000, 6:351.
[6] Xie J, Chen K, Lee H Y, Xu C J, Hsu A R, Peng S, Chen X Y, Sun S H. J. Am. Chem. Soc., 2008, 130:7542.
[7] Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S. Adv. Mater., 2010, 22:2729.
[8] Yang C, Wu J, Hou Y. Chem. Commun., 2011, 47:5130.
[9] Bateer B, Qu Y, Tian C, Du S, Ren Z, Wang R, Pan K, Fu H. Mater. Res. Bull., 2014, 56:34.
[10] Abdulwahab K, Malik M A, O'Brien P, Govender K, Muryn C A, Timco G A, Tuna F, Winpenny R E P. Dalton Trans., 2012, 42:196.
[11] Bateer B, Tian C, Qu Y, Du S, Tan T, Wang R, Tian G, Fu H. CrystEngComm., 2013, 15:3366.
[12] Xu Z, Shen C, Hou Y, Gao H, Sun S. Chem. Mater., 2009, 21:1778.
[13] Roca A G, Morales M P, O Grady K, Serna C J. Nanotechnology, 2006, 17:2783.
[14] Chen Z P, Zhang Y, Zhang S, Xia J G, Liu J W, Xu K, Gu N. Colloids Surf. A, 2008, 316:210.
[15] Shavel A, Rodríguez-González B, Spasova M, Farle M, Liz-Marzán L M. Adv. Funct. Mater., 2007, 17:3870.
[16] Asuha S, Wan H L, Zhao S, Deligeer W, Wu H Y, Song L, Tegus O. Ceram Int., 2012, 38:6579.
[17] Jiang F, Li X, Zhu Y, Tang Z. Physica B, 2014, 443:1.
[18] Petcharoen K, Sirivat A. Mater. Sci. Eng. B-Solid, 2012, 177:421.
[19] Shen L, Qiao Y, Guo Y, Meng S, Yang G, Wu M, Zhao J. Ceram Int., 2014, 40:1519.
[20] Jiang W, Yang H C, Yang S Y, Horng H E, Hung J C, Chen Y C, Hong C. J. Magn. Magn. Mater., 2004, 283:210.
[21] Mahdavi M, Ahmad M, Haron M, Namvar F, Nadi B, Rahman M, Amin J. Molecules, 2013, 18:7533.
[22] Ramalakshmi M, Shakkthivel P, Sundrarajan M, Chen S M. Mater. Res. Bull., 2013, 48:2758.
[23] Zeng Y, Hao R, Xing B, Hou Y, Xu Z. Chem. Commun., 2010, 46:3920.
[24] Cheng W, Tang K, Qi Y, Sheng J, Liu Z. J. Mater. Chem., 2010, 20:1799.
[25] Wang Y, Zhu Q, Tao L. CrystEngComm., 2011, 13:4652.
[26] Xuan S, Wang Y J, Yu J C, Leung K C F. Chem. Mater., 2009, 21:5079.
[27] Zhang D, Zhang X, Ni X, Song J, Zheng H. Cryst. Growth Des., 2007, 7:2117.
[28] Gao S, Shi Y, Zhang S, Jiang K, Yang S, Li Z, Takayama-Muromachi E. J. Phys. Chem. C, 2008, 112:10398.
[29] Chen J, Wang F, Huang K, Liu Y, Liu S. J. Alloy Compd., 2009, 475:898.
[30] Li C Y, Wei Y J, Liivat A, Zhu Y H, Zhu J F. Mater. Lett., 2013, 107:23.
[31] Tadi? M, Kusigerski V, Markovi? D, Panjan M, Miloševi? I, Spasojevi? V. J. Alloy Compd., 2012, 525:28.
[32] Lemine O M, Omri K, Zhang B, El Mir L, Sajieddine M, Alyamani A, Bououdina M. Superlattices Microstruct., 2012, 52:793.
[33] Lu T, Wang J, Yin J, Wang A, Wang X, Zhang T. Colloids Surf. A, 2013, 436:675.
[34] Maleki H, Simchi A, Imani M, Costa B F O. J. Magn. Magn. Mater., 2012, 324:3997.
[35] Kim E H, Lee H S, Kwak B K, Kim B K. J. Magn. Magn. Mater., 2005, 289:328.
[36] Abbas M, Takahashi M, Kim C. J. Nanopart. Res., 2013, 15.
[37] Jun Y, Lee J, Cheon J. Angew. Chem. Int. Ed., 2008, 47:5122.
[38] Hu Y, He L, Yin Y. Angew. Chem. Int. Ed., 2011, 50:3747.
[39] Zhou J, Meng L, Feng X, Zhang X, Lu Q. Angew. Chem. Int. Ed., 2010, 49:8476.
[40] Zhang W, Shen F L, Hong R Y. Particuology, 2011, 9:179.
[41] Lu B Q, Zhu Y J, Zhao X Y, Cheng G F, Ruan Y J. Mater. Res. Bull., 2013, 48:895.
[42] Zhu Y, Zhao W, Chen H, Shi J. J. Phys. Chem. C, 2007, 111:5281.
[43] Yu D, Sun X, Zou J, Wang Z, Wang F, Tang K. J. Phys. Chem. B, 2006, 110:21667.
[44] Jia B, Gao L. J. Phys. Chem. C, 2008, 112:666.
[45] Ding Y, Hu Y, Jiang X, Zhang L, Yang C. Angew. Chem. Int. Ed., 2004, 43:6369.
[46] Zhang Y, Sun L, Zhai Y, Huang H B, Huang R S, Lu H X, Zhai H R. J. Appl. Phys., 2007, 101.
[47] Wang H, Chen Q, Sun L, Qi H, Yang X, Zhou S, Xiong J. Langmuir, 2009, 25:7135.
[48] Ma M, Zhang Q, Dou J, Zhang H, Geng W, Yin D, Chen S. Colloid. Polym. Sci., 2012, 290:1207.
[49] Kim Y, Choi Y S, Lee H J, Yoon H, Kim Y K, Oh M. Chem. Commun., 2014, 50:7617.
[50] Xiong Y, Ye J, Gu X, Chen Q W. J. Phys. Chem. C, 2007, 111:6998.
[51] Xi G, Wang C, Wang X. Eur. J. Inorg. Chem., 2008, 2008:425.
[52] Gao Q, Zhao A, Gan Z, Tao W, Li D, Zhang M, Guo H, Wang D, Sun H, Mao R, Liu E. CrystEngComm., 2012, 14:4834.
[53] Zhong L S, Hu J S, Liang H P, Cao A M, Song W G, Wan L J. Adv. Mater., 2006, 18:2426.
[54] Zhang Z J, Chen X Y, Wang B N, Shi C W. J. Cryst. Growth, 2008, 310:5453.
[55] Liu X, Duan X, Qin Q, Wang Q, Zheng W. CrystEngComm., 2013, 15:3284.
[56] Reddy L H, Arias J L, Nicolas J, Couvreur P. Chem. Rev., 2012, 112:5818.
[57] Lu Z, Dai J, Song X, Wang G, Yang W. Colloid Surf. A, 2008, 317:450.
[58] Hui C, Shen C, Tian J, Bao L, Ding H, Li C, Tian Y, Shi X, Gao H. Nanoscale, 2011, 3:701.
[59] Lu Y, Yin Y, Mayers B T, Xia Y. Nano Lett., 2002, 2:183.
[60] Arsalani N. Express Polym. Lett., 2010, 4:329.
[61] Wydra R J, Kruse A M, Bae Y, Anderson K W, Hilt J Z. Mater. Sci. Eng. C-Mater., 2013, 33:4660.
[62] Li J, Zheng L, Cai H, Sun W, Shen M, Zhang G, Shi X. Biomaterials, 2013, 34:8382.
[63] Hong R Y, Feng B, Chen L L, Liu G H, Li H Z, Zheng Y, Wei D G. Biochem. Eng. J., 2008, 42:290.
[64] Easo S L, Mohanan P V. Carbohydr. Polym., 2013, 92:726.
[65] Yu C, Gou L, Zhou X, Bao N, Gu H. Electrochim. Acta, 2011, 56:9056.
[66] Javid A, Ahmadian S, Saboury A A, Kalantar S M, Rezaei-Zarchi S. Chem. Biol. Drug Des., 2013, 82:296.
[67] Zhou T, Wu B, Xing D. J. Mater. Chem., 2011, 22:470.
[68] Hu Y, Meng L, Niu L, Lu Q. ACS Appl. Mater. Interfaces, 2013, 5:4586.
[69] Xu Z, Hou Y, Sun S. J. Am. Chem. Soc., 2007, 129:8698.
[70] Qi D, Zhang H, Tang J, Deng C, Zhang X. J. Phys. Chem. C, 2010, 114:9221.
[71] Sun L, Zhang C, Chen L, Liu J, Jin H, Xu H, Ding L. Anal. Chim. Acta, 2009, 638:162.
[72] Fan Q, Neoh K, Kang E, Shuter B, Wang S. Biomaterials, 2007, 28:5426.
[73] Hong S C, Lee J H, Lee J, Kim H Y, Park J Y, Cho J, Lee J, Han D W. Int. J. Nanomed., 2011, 6:3219.
[74] Karlsson H L, Gustafsson J, Cronholm P, Mller L. Toxicol. Lett., 2009, 188:112.
[75] Katsnelson B A, Degtyareva T D, Minigalieva I I, Privalova L I, Kuzmin S V, Yeremenko O S, Kireyeva E P, Sutunkova M P, Valamina I I, Khodos M Y, Kozitsina A N, Shur V Y, Vazhenin V A, Potapov A P, Morozova M V. Int. J. Toxicol., 2011, 30:59.
[76] Chen W, Yi P, Zhang Y, Zhang L, Deng Z, Zhang Z. ACS Appl. Mater. Interfaces, 2011, 3:4085.
[77] Yi P, Chen G, Zhang H, Tian F, Tan B, Dai J, Wang Q, Deng Z. Biomaterials, 2013, 34:3010.
[78] Sun P, Zhang H, Liu C, Fang J, Wang M, Chen J, Zhang J, Mao C, Xu S. Langmuir, 2010, 26:1278.
[79] Wang L, Neoh K, Kang E, Shuter B, Wang S. Biomaterials, 2010, 31:3502.
[80] Patel D, Kell A, Simard B, Xiang B, Lin H Y, Tian G. Biomaterials, 2011, 32:1167.
[81] Gao G H, Lee J W, Nguyen M K, Im G H, Yang J, Heo H, Jeon P, Park T G, Lee J H, Lee D S. J. Controlled Release, 2011, 155:11.
[82] Im G H, Kim S M, Lee D, Lee W J, Lee J H, Lee I S. Biomaterials, 2013, 34:2069.
[83] Kokuryo D, Anraku Y, Kishimura A, Tanaka S, Kano M R, Kershaw J, Nishiyama N, Saga T, Aoki I, Kataoka K. J. Controlled Release, 2013, 169:220.
[84] Lee H, Yu M K, Park S, Moon S, Min J J, Jeong Y Y, Kang H, Jon S. J. Am. Chem. Soc., 2007, 129:12739.
[85] Niu C, Wang Z, Lu G, Krupka T M, Sun Y, You Y, Song W, Ran H, Li P, Zheng Y. Biomaterials, 2013, 34:2307.
[86] Zhou J, Guo D, Zhang Y, Wu W, Ran H, Wang Z. ACS Appl. Mater. Interfaces, 2014, 6:5566.
[1] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[2] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[3] 程熙萌, 张庆瑞. 功能蛋白纳米材料在环境保护中的应用[J]. 化学进展, 2021, 33(4): 678-688.
[4] 杨世迎, 刘俊琴, 李乾风, 李阳. 机械球磨改性零价铝的作用机制[J]. 化学进展, 2021, 33(10): 1741-1755.
[5] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[6] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
[7] 蒋乔, 徐雪卉, 丁宝全. 纳米材料对生物凝聚态的调控[J]. 化学进展, 2020, 32(8): 1128-1139.
[8] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[9] 刘阳, 张新波, 赵樱灿. 二维MoS2纳米材料及其复合物在水处理中的应用[J]. 化学进展, 2020, 32(5): 642-655.
[10] 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用[J]. 化学进展, 2020, 32(2/3): 298-308.
[11] 朱蕾, 王嘉楠, 刘建伟, 王玲, 延卫. 静电纺丝一维纳米材料在气敏传感器的应用[J]. 化学进展, 2020, 32(2/3): 344-360.
[12] 李巍, 杨子煜, 侯仰龙, 高松. 二维磁性纳米材料的可控合成及磁性调控[J]. 化学进展, 2020, 32(10): 1437-1451.
[13] 王惠亚, 赵立敏, 张芳, 何丹农. 高性能锂离子二次电池隔膜[J]. 化学进展, 2019, 31(9): 1251-1262.
[14] 杨悦, 王珏玉, 赵敏, 崔岱宗. 病毒模板合成的金属纳米材料及应用[J]. 化学进展, 2019, 31(7): 1007-1019.
[15] 陈贺, 张帅其, 赵致雪, 刘萌, 张庆瑞. 多巴胺功能材料在水污染控制中的应用[J]. 化学进展, 2019, 31(4): 571-579.
阅读次数
全文


摘要